
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 4, PP. 321–326
Manuscript received October 10, 2015; revised December, 2015. DOI: 10.1515/eletel-2015-0041

Searching Design Patterns Fast by Using Tree
Traversals

Stefano Cicciarella, Christian Napoli and Emiliano Tramontana

Abstract—Large software systems need to be modified to
remain useful. Changes can be more easily performed when
their design has been carefully documented. This paper presents
an approach to quickly find design patterns that have been
implemented into a software system. The devised solution greatly
reduces the performed checks by organising the search for a
design pattern as tree traversals, where candidate classes are
carefully positioned into trees. By automatically tagging classes
with design pattern roles we make it easier for developers to
reason with large software systems. Our approach can provide
documentation that lets developers understand the role each
class is playing, assess the quality of the code, have assistance
for refactoring and enhancing the functionalities of the software
system.

Keywords—design patterns, source code analysis, software
architecture, tree traversals

I. INTRODUCTION

DEVELOPERS find it difficult to analyse and understand
the code of large software systems. Generally, there

are several problems that have to be faced: lack of a well-
defined and documented software architecture, architectural
erosion [1], [2], mixing of concerns [3], etc. Trying to
understand the software architecture of a system by only
visually inspecting the whole source code can be far too
complex and time consuming. Moreover, such an analysis may
lead developers to several misunderstandings. Even when a
software system is well designed, analysing it would still be
difficult for both the huge amount of code, and the different
design solutions that different teams use, and which can be
difficult to assess by looking at the code alone.

Seeing that software systems need to change due to new
requirements or supporting technologies, understanding their
structure plays a fundamental role in keeping them useful and
maintaining or improving their structure. Knowledge about
the existing design solutions and overall architecture of a
software system may be acquired by recognising the design
patterns [4] that have been implemented within the system.
Any information about the design patterns is an indication
to maintainers about the choices of previous developers, i.e.
the role of the class for the design pattern unveils the reason
for the low level details, and the motivation for the class.

This work has been supported by project PRISMA PON04a2 A/F funded
by the Italian Ministry of University and Research within PON 2007-2013
framework and by project PRIME within POR FESR Sicilia 2007-2013
framework.

S. Cicciarella, C. Napoli and E. Tramontana are with the Department
of Mathematics and Informatics, University of Catania, Viale A. Doria 6,
95125 Catania, Italy, (email: stefano.cicciarella@tiscali.itm {napoli, tramon-
tana}@dmi.unict.it).

Moreover, once a design pattern has been revealed a change
on its classes may be conveniently carried out to introduce
new functionalities, for the reason that how the portion of the
system comprising the classes of the design pattern would be
understood at once. Moreover, even knowing that some classes
are not arranged according to any design pattern can be useful,
since appropriate refactoring can be carried out [5], [6], [7],
[8], or improvements to the modularity can be performed by
adopted advanced technologies [9], [10], [11], [12].

Previous approaches that identify design patterns are slower
compared to our solution, often inaccurate due to their as-
sumptions, or not fully automated, because relaying on other
external tools or human supervision [13], [14] (the detailed
comparison with the related work is in Section V). This paper
proposes an approach to automatically find design patterns in
large software systems fast. Our approach consists of analysing
the Java bytecode of a software system in order to discover
the constituting classes and their relationships, and build a
corresponding class graph. Then, we search design patterns by
matching portions of the graph with known characteristics of
the roles within design patterns; the candidate classes having
some role for a design pattern are then organised as trees,
which are traversed to find out whether a whole design pattern
exists. Thanks to the proposed search algorithm, finding design
patterns is very fast when compared with other approaches.
Moreover, an exact match is sought therefore the approach is
the most accurate according to the model of the known design
pattern.

This paper is structured as follows. Section II gives an
overview of our approach. Section III describes the details
of our solution. Section IV presents the results of some
experiments. Section V compares our solution with other
approaches. Finally, Section VI draws our conclusions.

II. APPROACH OVERVIEW

The proposed approach consists of two main phases: (i) the
Java bytecode exploration that analyses an existing software
system and extracts necessary data and (ii) the searching for
design patterns, as models known beforehand, by properly
organising extracted data in order to reduce checks as much
as possible.

The exploration phase scans the Java bytecode of the target
software system in order to extract the name of all the classes,
and the relationships existing among classes. The latter are un-
veiled by carefully processing the bytecode declaring classes,
and the instructions within classes that rely onto other classes
(such as method invocations, variable declarations, etc.). The



322 S. CICCIARELLA, C. NAPOLI, E. TRAMONTANA

class relationships we are interested in are: inheritance, use,
invocation, implementation, method parameter type, return
type, override, and instantiation, as defined in [15]. These
are all the relationships that can be distinguished from the
code alone, as e.g. aggregation or composition cannot be
recognised [15]. By extracting all the relationships we can
build a graph that represents classes, as nodes, and their
relationships as edges. Given that there are different kinds
of relationships the corresponding graph edges are labelled
accordingly. In our approach, in order to explore the bytecode
of a system we use Computational Reflection [16], [17] and
the support of Javassist libraries [18].

As for the design patterns to be found, we use a Java
implementation for each of the well-known design patterns
from the GoF’s catalogue [4] and, analogously to the software
system exploration, we build a “small” graph for each design
pattern we want to look for. Then, such design pattern graphs,
i.e. models, are stored into a catalogue, so that they can be used
during search. Moreover, new models can be easily stored in
our catalogue at any time, e.g. to cater for correct variants.

After the bytecode exploration phase, the search phase
begins and aims at finding any occurrence of each design
pattern model into the graph representing the whole target
software system. The search phase is organised into several
steps. The first step is to examine for a node the edges of the
“small” graph for a design pattern model and match them with
the ones of a node in the “large” graph for the software system.
This lets us find the classes of the examined software system
that match one role for a design pattern model, as they have
all the needed relationships with other “surrounding” classes
as the role prescribes. Each role of the design pattern model
is matched independently of other roles.

Starting from the assigned roles, the second step is to check
whether all the relationships among classes having given a
role correspond to the ones for the selected design pattern
model. If there is full correspondence between model and
graph relationships, i.e. each relationship between roles in
the model exists in the graph, then we will conclude it is a
match. On the contrary, if one or more relationships existing
for the design pattern model can not have any correspondence,
then we conclude that the examined design pattern can not
be matched. In this step, in order to reduce the number of
possible matches between classes and correspondent roles of
a design pattern we use trees. Each tree represents one possible
match, and each tree level represents a role that a class can
have. During tree traversals, nodes of each level are added
as children to the ones of the previous level. This happens
only if all the relationships among classes in the same path
match the design pattern roles. Details for such an algorithm
will be given in the next section, showing design choices and
optimisations aimed at obtaining fast execution even when
large software systems are analysed.

III. SEARCHING DESIGN PATTERNS BY BUILDING TREES

Our solution has been implemented as a Java tool, named
DPRecog, that provides several classes, and among them,
classes Explorer, Graph and Recog. Class Explorer analyses the

bytecode of the input application and builds the corresponding
graph. Method explore() of such a class scans the bytecode
instruction by instruction; then returns an instance of class
Graph at the end of the task.

A. Exploration and Graph Representation

Class Graph holds a representation of an adjacency matrix
that maps the classes and their relationships. This represen-
tation allows us to execute most of the needed operations in
a constant time. Moreover, thanks to an encoding we avoid
to incur into memory waste in case of a large number of
classes (that would otherwise bring a large sized matrix). The
encoding allows us to have just a byte per element. In this
way, a software system consisting of n classes will take up to
n2 bytes, which is a very small amount of memory even for
large sized systems.

The encoding consists of using a power of two
to represent one of the eight different kinds of rela-
tionships between classes (inheritance=1, use=2, method
invoke=4, implementation=8, method parameters type=16, re-
turn type=32, override=64, instantiation=128). If a given kind
of relationship holds between two classes (that is to say a kind
of edge connecting two nodes of the graph), then the binary
representation of that element of the matrix will be 1 in the
proper bit; of course zero will appear otherwise.

B. Building Sets of Classes for Design Pattern Roles

Each class of the analysed system is assigned to a set,
according to which role the class could play in a design
pattern. A class is recognised to play a role in a design pattern
only when all of its relationships with other classes hold as
in the design pattern. Enough elements to understand if these
conditions are met can be retrieved by means of the graph we
have built; in particular we will focus on the incoming and
the outgoing edges of any vertex.

Therefore, several sets are filled with suitable classes, each
set corresponds to a role in a design pattern. E.g. for design
pattern Observer, a set will be build containing all the classes
from the system that can play the role Subject, another
set containing the classes for role ConcreteSubject, etc. The
number of sets is the same as the number of roles prescribed
by a design pattern. Of course the smaller the sets, the faster
the search. In our implementation each design pattern model is
handled by a dedicated Java thread, hence more design patterns
at once are examined in a multi-core host. Building such sets
will be instrumental for drastically decreasing the number of
checks to be performed when searching for design patterns.

Both the procedure to fill the sets and the search itself are
implemented by class Recog. Sets are represented by arrays
and the method fillSets() accomplishes the task of filling them
with the ids of the proper classes. For this, we use the data
stored in the Graph class during the exploration phase (each
vertex is associated to two bytes; one describes the types of
incoming edges the other is for the types of outgoing edges).

Figure 1 left shows a simple application represented as a
graph, where each node is a class and each edge is a relation-
ship between classes. Relationships (and roles) are displayed



SEARCHING DESIGN PATTERNS FAST 323

3

6

4

8

1

7

2

5

10

11

9

(a)
A graph representation of a simple application, where each

class has been marked according to its possible role for the
design pattern

Role1

Role3

Role2

(b)
The roles and their relationships for a design pattern model,
where each role has been marked by a different colour

Fig. 1: An example of matching between roles for a design pattern and candidate classes for an application. Accordingly,
Role1 (yellow) matches classes 5, 10, 11; Role2 (lightblue) matches classes 1, 3, 7; and Role3 (pink) matches classes 4, 8.

using different colours, with reference to the design pattern
shown in the rightside. Hence, each role of the design pattern
is marked in the application graph using the corresponding
colour, and each relationship in the design pattern is also
marked in the application graph. The given representation is
very simplified, whereas a real system under analysis will have
a much bigger number of classes and relationships. Moreover,
all the sought design patterns will have to be modelled.

C. Matching Whole Design patterns
Once the sets for the roles have been filled, an element of

each set will be positioned as a node of a tree. We associate
every set to a tree level, so that the elements of the first set will
be the possible root nodes, the elements of the second set will
be the possible nodes of the second level, etc. Then for each
tree, we perform a traversal, which consists of the checks that
ensure the match between the edges of the positioned class
and the related ones in the design pattern model. If just one
check fails, then the whole branch of the tree will be truncated.
If the traversal keeps going on, and all checks succeed till the
leaf node, we will store a match. The search ends when all the
possible paths have been explored. Figure 2 shows the above
search algorithm for the simple application and for the design
pattern model shown in Figure 1.

This algorithm (that is an iterative tree traversal) is im-
plemented by the recognise() method of class Recog. For
each vertex in the path, the vertexSuits() method is invoked
to perform all the checks about the edges. The references to
the vertices having passed all the checks at the current state
are pushed into a stack structure so that, when a path has been
completed, its elements can be simply stored as an occurrence
of a design pattern.

D. Performance Optimisation
Before the traversals begin, the sequence of sets representing

role filled with candidate classes (which in our implementation

is a sequence of arrays) is ordered by ascending cardinality,
so that the set containing the root nodes has the smallest
number of elements and the set containing the leaf nodes has
the largest one. I.e. we determine the nodes in each level by
giving the highest priority to the smallest sets. While such an
order does not affect the correspondences that will be found,
the performances are greatly increased.

A simple observation can help us to understand the way
in which the execution time could change by reordering the
sets. Generally, the number of combinations for classes that
are playing a role for a design pattern are much less than
the total number of possible combinations for classes; this
implies that most tree paths will be truncated during the search.
Hence, the best strategy appears to perform the exploration
by beginning from the smallest sets. In all likelihood, this
choice will allow us to truncate soon the useless paths, having
performed only a small number of checks. As we will show in
the following, experimental data have confirmed that by using
this optimisation we have sensibly improved the efficiency of
the search.

IV. RESULTS

A. Performances

Most of the effort we made during the development of
our approach was focused on improving performances. Tests
to estimate the execution speed have been performed using
the Java software JHotDraw (version 6.0b1) as an input
application. JHotDraw is an open source graphic framework,
which was created as a design exercise and now it is often used
as a case of study for software engineering issues. It contains
many design patterns and is provided with documentation,
hence it is an ideal input application to test our method.

We have executed our tests by using an Intel Core i7 Q720
with 1.60 GHz and 4 GiB RAM, both on Linux Ubuntu 11.4
and Microsoft Windows 7. The tests have been done on the



324 S. CICCIARELLA, C. NAPOLI, E. TRAMONTANA

4

5 10 11

1 3 7

8

5 10 11

1 3 7

Fig. 2: Trees representing a design pattern, where each level is a described role, and each tree is a possible design pattern
occurrence, filled by properly positioning classes at the different levels according to their role. The sought model is found
matching classes 4, 5, 1 for the first occurrence, and classes 8, 10, 7 for the second occurrence; the link colour represents
whether a check succeeds (green) or fails (red).

TABLE I: Measured Execution Times in Milliseconds

JHotDraw java.awt JUnit JEdit
Classes 600 590 252 1267
Reading catalogue 13 4 4 16
Building graph 460 366 358 1043
Searching for patterns 111 68 78 85
Total 583 448 440 1144

TABLE II: Found Design Patterns

Adapter Bridge Composite Decorator Proxy
JHotDraw 11 12 1 1
java.awt 10 2 1 5
JUnit 1 1 2 1
JEdit 2 1 1 1

whole JHotDraw (six hundred classes), using a catalogue con-
taining seventeen design pattern models. The outcome showed
that running the full analysis took barely 700 milliseconds. By
observing the execution times we can value the importance of
ordering the sets by ascending cardinality. In fact, without such
an optimisation, the whole analysis took a few seconds to run.
A so remarkable performance improvement is certainly due to
the great amount of checks we have avoided by truncating the
dead ending branches at the beginning of the traversals.

We have analysed several applications, hence testing the
execution time of our tool. Table I shows the execution times
on JHotDraw, the package java.awt, JUnit and JEdit.

Table II contains the number of occurrences found for five
design patterns, i.e. Adapter, Bridge, Composite, Decorator,
Proxy, when searching, by executing our tool, on the said
applications.

As an example of the outcomes of our tool we report the
findings for the java.awt library. Such findings have been
confirmed as true positive by visually inspecting the actual
code. Table III shows the mapping of roles to classes for design
pattern Composite, which has been found as two occurrences.
Design pattern Decorator has been found as one occurrence
and the mapping of roles to classes is given in Table IV. Five
occurrences of design pattern Proxy have been found and are
shown in Table V.

TABLE III: Design Pattern Composite Found in java.awt

Component Composite Leaf
java.awt.Window java.awt.Dialog java.awt.Frame
java.awt.Component java.awt.Container java.awt.TextComponent

java.awt.Scrollbar
java.awt.List
java.awt.Label
java.awt.Choice
java.awt.Checkbox
java.awt.Canvas
java.awt.Button

B. Accuracy

The accuracy of our approach is related to the character-
isation that we manage to give to a design pattern model,
which we have defined according to the relationships that
classes have (see Section II) and that can be detected by
automatically processing the code of a system under analysis.
However, design patterns can be found on software systems
in a variant, rather than the original definition [4]. Some of
the related works in pattern mining classify such variations as
true positives, other ones go through a manual classification
of the implementation, and then a false positive is sometimes
associated. Accordingly, the accuracy measurements are dif-
ferent from one another. As we can see in Section V, many
other approaches approximate the matching between a design
pattern model an the code from the system, in order to cater for
variations, and include these as findings. Hence, given that a
commonly agreed definition of true positive for an occurrence
of a design pattern may not be available, we can not precisely
compare the accuracy of the several approaches.

Our algorithm is a novel implementation of an exact graph
matching, hence we can state that only a sub-graph that is the
exact copy of the model we are searching for will be given as
a match. Therefore, some class relationships that are similar
to models (however, not exactly the same) will be discarded,
ignoring whether or not they represent a different version of
the design pattern. This is not a limitation for our approach
given that any number of models, hence variations of known
design patterns, can be given to our tool to analyse software
systems, as far as they can be described in terms of the said
relationships between classes.



SEARCHING DESIGN PATTERNS FAST 325

TABLE IV: Design Pattern Decorator Found in java.awt

Component ConcreteComponent Decorator ConcreteDecorator
java.awt.image.ImageConsumer java.awt.image.PixelGrabber java.awt.image.ImageFilter java.awt.image.RGBImageFilter

java.awt.image.ReplicateScaleFilter
java.awt.image.CropImageFilter
java.awt.image.BufferedImageFilter

TABLE V: Design Pattern Proxy Found in java.awt

Proxy RealSubject Subject
java.awt.image.BufferedImage java.awt.image.ColorModel java.awt.Transparency
java.awt.Polygon java.awt.Rectangle java.awt.Shape
java.awt.Frame java.awt.MenuBar java.awt.MenuContainer
java.awt.MenuBar java.awt.Menu java.awt.MenuContainer
java.awt.GradientPaint java.awt.Color java.awt.Paint

In a different work we have considered how variations of
a design pattern can be detected and provide the developers
with means to determine which characteristics is fundamental
for a correct implementation, hence definition, of a design
pattern [2].

V. RELATED WORK

Tsantalis et al. [19] proposed an approach aimed to auto-
matically discover design patterns, that shares some common
elements with ours. First of all, the input application bytecode
is scanned in order to build a graph representing its structure.
Next, inheritance hierarchies are detected in order to create
the so called sub-systems (namely portions of the main class
graph), which are used to improve performances, i.e. the
research will be performed on these sub-graphs rather than
on the main structure. Both sub-systems graphs and design
pattern graphs are represented by adjacency matrices. The
search algorithm consists of computing similarity scores for
matrices, in order to obtain an inexact graph matching. The
authors chose not to use an exact graph matching algorithm
as they state that otherwise the modified versions of design
patterns will not fit the used model. Using the similarity score
algorithm should allow to find both the standard version of
design patterns as they are defined by models, and the possible
variations that designers could use.

Guéhéneuc and Antoniol [20] introduced an approach con-
sisting of three layers, each one related to a model used to
represent the input program. The first layer model is produced
by inspecting the source code and is very similar to a UML
class diagram. Next, it is transformed by adding information
about particular features of classes and relationships in order
to obtain the so called idiom layer model. The third layer,
namely the design-level layer, consists of describing a model
of a design pattern and transforming it in a constraint system.
This will be used to look for possible design patterns into the
previous layer model. Eventually a new model provided with
information about design patterns is built. It is important to
note that users are allowed to relax constraints during research.
This is useful to detect design pattern versions which do not
strictly fit the given model.

Similarly to other approaches, De Lucia et al. [21]. first step
is the construction of an UML class diagram, that is performed
by scanning the source code of the input application. Next, a

visual language based on this model is defined, introducing
a formalism that is similar to context free grammars. The
actual design pattern search is accomplished by the means of
a LR parsing process. The final operation is a new source code
analysis aimed to reduce the number of false positives among
the results (relationships are verified by specific algorithms).

Dong et al. [14] introduced an approach and a tool named
DPMiner to recover design patterns based on a matrix. This
approach uses a pre-built representation of the input software
system that is the UML class diagram produced by IBM
Rational Rose (the actual design pattern search is performed
by firstly parsing the XMI files generated by a plug-in). A
matrix is filled with a set of weights that represent structural
information about systems and patterns, i.e. the relationships
among classes are stored into the matrix elements, while
weights are useful for attributes and operations. If a pattern
matrix matches a system matrix, it means that the same
relationships hold for the pattern and the system. If even
the weights are the same, it is considered a pattern structure
match. Additionally, a behavioral analysis is performed aiming
at reducing the possible false positives that could have been
found previously. In order to do this, each design pattern
is formally defined using a set of predicates that provide
information about methods (such as invocations, parameters
or return types). Outcome of the structural analysis are then
filtered according to such definitions. Eventually, a semantic
analysis is performed in order to retrieve information about
possible design patterns from the names of involved methods
(hoping that developers have followed certain conventions) and
refine the results in this way.

Compared with the previous approach, our solution retrieves
a more detailed information, since UML modeling often
generates rather abstract representations of software systems
and it is strongly influenced by the designer will. Moreover,
it is important to point out that the mere fact our tool does
not rely on an external support is a big advantage in terms
of use flexibility. Moreover, the previous approach relies on
hard-coded design pattern structures, while our tool models
are fully customizable. An important feature claimed by the
authors of DPMiner is performance. Since a big time gap lies
between the development of the last approach and ours, we
have reported in Section IV the performances of our tool on a
much more advanced hardware. However, for comparison, we
measured the average execution time by running our tool on an



326 S. CICCIARELLA, C. NAPOLI, E. TRAMONTANA

Intel Pentium with 1.4 GHz frequency and 256 MB RAM, with
JHotDraw as input, and the output was given in about 2464
milliseconds. DPMiner was reported to run in about 24000
milliseconds by using a better hardware (Pentium processor
with 3.4 GHz frequency and 1 GB RAM), hence we can state
with reasonable confidence that performances of our tool are
far better.

We can see that each approach mainly consists of three
phases. First an analysis of the input software system is
performed by inspecting the source code or the bytecode. Next,
a structure representing the system is built: the most common
choice is the adjacency matrix. The last phase is the search
procedure, performed according to a known model of a design
pattern. Most of the approaches do not look for a precise
model of a design pattern. This choice is aimed to avoid that
some design patterns are missed, since they are a variation
of the model. On the contrary, our research algorithm is an
exact graph matching, hence sub-graphs have to fully match
the models to result as true positives.

We have adopted an exact match for the uncertainty that can
derive from relaxing the rules determining the characteristics
of a design pattern. Such relaxation could put at risk the fun-
damental structure and definition of a design pattern. Instead
in our approach the developer is free to define own variations,
as additional model, to be looked for in an application.

VI. CONCLUSIONS

This paper has proposed an approach to quickly find design
patterns inside a software system. The devised algorithm
consists of building trees by carefully positioning in them
candidate classes, then check that all the characteristics of a
design pattern model are matched into the tree. The outcomes
have shown a very short processing time for large systems
under analysis. The usefulness of the approach lies on the
ability to automatically document a system and opens up
the possibility to further improve the implementation of the
analysed system. Future work aims at assessing the benefits
of a massively parallel processor (e.g. as in [22]) for finding
many variants of design patterns.

REFERENCES

[1] A. Calvagna and E. Tramontana, “Delivering dependable reusable com-
ponents by expressing and enforcing design decisions,” in Proceedings
of IEEE Computer Software and Applications Conference (COMPSAC)
Workshop QUORS, Kyoto, Japan, July 2013, pp. 493–498.

[2] E. Tramontana, “Detecting extra relationships for design patterns roles,”
in Proceedings of AsianPlop, Tokyo, Japan, March 2014.

[3] ——, “Automatically characterising components with concerns and
reducing tangling,” in Proceedings of IEEE Computer Software and
Applications Conference (COMPSAC) Workshop QUORS, Kyoto, Japan,
July 2013, pp. 499–504.

[4] E. Gamma, R. Helm, R. Johnson, and R. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[6] J. Kerievsky, Refactoring to patterns. Addison-Wesley, 2005.
[7] C. Napoli, G. Pappalardo, and E. Tramontana, “Using modularity metrics

to assist move method refactoring of large systems,” in Proceedings of
IEEE ICLS workshop at CISIS, Taichung, Taiwan, 2013.

[8] G. Pappalardo and E. Tramontana, “Suggesting extract class refactoring
opportunities by measuring strength of method interactions,” in Proceed-
ings of IEEE Asia Pacific Software Eng. Conference (APSEC), Bangkok,
Thailand, December 2013, pp. 105–110.

[9] R. Giunta, G. Pappalardo, and E. Tramontana, “Using Aspects and
Annotations to Separate Application Code from Design Patterns,” in
Proceedings of ACM Symposium on Applied Computing (SAC), March
2010.

[10] ——, “Aspects and annotations for controlling the roles application
classes play for design patterns,” in Proceedings of IEEE Asia Pacific
Software Engineering Conference (APSEC), Ho Chi Minh, Vietnam,
December 2011, pp. 306–314.

[11] ——, “AODP: refactoring code to provide advanced aspect-oriented
modularization of design patterns,” in Proceedings of ACM Symposium
on Applied Computing (SAC), Riva del Garda, Italy, March 2012, pp.
1243–1250.

[12] ——, “Superimposing roles for design patterns into application classes
by means of aspects,” in Proceedings of ACM Symposium on Applied
Computing (SAC). Riva del Garda, Italy: ACM, March 2012, pp. 1866–
1868.

[13] G. Pappalardo and E. Tramontana, “Automatically discovering design
patterns and assessing concern separations for applications,” in Proceed-
ings of ACM Symposium on Applied Computing (SAC), Dijon, France,
April 2006.

[14] J. Dong, Y. Zhao, and Y. Sun, “A matrix-based approach to recovering
design patterns,” Trans. on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 39, no. 6, 2009.

[15] M. Fowler, UML distilled. Addison-Wesley Professional, 2004.
[16] P. Maes, “Concepts and experiments in computational reflection,” in

Proc. OOPSLA, vol. 22 (12). ACM, 1987.
[17] I. Forman and N. Forman, Java Reflection in Action. Manning

Publications, 2005.
[18] S. Chiba, “Load-time Structural Reflection in Java,” in Proceedings of

ECOOP, ser. Lecture Notes in Computer Science, vol. 1850. Springer-
Verlag, 2000.

[19] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis,
“Design Pattern Detection Using Similarity Scoring,” IEEE Transactions
on Software Engineering, vol. 32, no. 11, pp. 896–909, 2006.

[20] Y.-G. Gueheneuc and G. Antoniol, “Demima: A multilayered approach
for design pattern identification,” IEEE Transactions on Software Engi-
neering, vol. 34, no. 5, pp. 667–684, 2008.

[21] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern
recovery through visual language parsing and source code analysis,”
Journal of Systems and Software, vol. 82, no. 7, pp. 1177–1193, 2009.

[22] C. Napoli, G. Pappalardo, E. Tramontana, and G. Zappalà, “A cloud-
distributed gpu architecture for pattern identification in segmented
detectors big-data surveys,” Computer Journal, 2014. [Online].
Available: http://dx.doi.org/10.1093/comjnl/bxu147


