
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 4, PP. 357–363
Manuscript received October 15, 2015; revised November, 2015. DOI: 10.1515/eletel-2015-0047

Passive Radar Parallel Processing
Using General-Purpose Computing

on Graphics Processing Units
Karolina Szczepankiewicz, Mateusz Malanowski and Michał Szczepankiewicz

Abstract—In the paper an implementation of signal processing
chain for a passive radar is presented. The passive radar which
was developed at the Warsaw University of Technology, uses
FM radio and DVB-T television transmitters as ”illuminators
of opportunity”. As the computational load associated with
passive radar processing is very high, NVIDIA CUDA technology
has been employed for effective implementation using parallel
processing. The paper contains the description of the algorithms
implementation and the performance results analysis.

Keywords—PCL, Passive Coherent Location, Paralell Imple-
mentation, NVIDIA CUDA

I. INTRODUCTION

PASSIVE coherent location (PCL) radars are a special case
of a bistatic radars that exploit third-party transmitters as

their sources of signal which are referred to ”illuminators of
opportunity”. Commercial transmitters make PCL radar low
cost and undetectable due to the lack of own signal emission.
Radar compares the reference signal with the echoes reflected
from targets by means of the crossambiguity function. The
numerical analysis of the crossambiguity gives the opportunity
to detect target reflections and estimate their parameters.
In general, passive radars can make use of analog, digital
television and radio signals, as well as cellular phone base
stations, GPS satellites and others [1].

PCL system developed at the Warsaw University of Tech-
nology makes use of digital television (DVB-T) and radio
(FM) signals in order to locate airborne objects. It is focused
on constructing passive radar that works in real time. Several
attempts have been made so far including parallel implemen-
tation of Passive Radar Demonstrator (PaRaDe) presented in
[2] which utilizes FM transmitters as the source of the signal.
Processing in passive radar systems is more complex and
demanding in terms of computing power than in classic active
radars. Therefore, we refer to recent technologies providing
parallel computation capabilities to achieve required perfor-
mance. This paper is an extension of work presented in [3].

This is the extended version of the ”Effective implementation of passive
radar algorithms using General-Purpose computing on Graphics Processing
Units” presented in Signal Processing Symposium, Debe, Poland, June 10 -
12, 2015 [3].

K. Szczepankiewicz is with the Institute of Computer Science, Warsaw
University of Technology, Poland (e-mail: k.krej@stud.elka.pw.edu.pl).

M. Malanowski is with the Institute of Electronic Systems, Warsaw Uni-
versity of Technology, Poland (e-mail: m.malanowski@elka.pw.edu.pl).

M. Szczepankiewicz is with the Institute of Computer
Science, Warsaw University of Technology, Poland (e-mail:
m.szczepankiewicz@stud.elka.pw.edu.pl).

beamforming

crossambiguity function

for many accelerations

calculation

target detection

ltering - clutter

removal

crossambiguity

function

calculation

target extraction

estimation

Fig. 1. Passive radar data processing pipeline

Driven by the growing market demand for high perfor-
mance computing and real time processing, Graphic Processor
Units (GPUs) have evolved into highly parallel, multithreaded
processors. One of the producers that offers graphic cards
equipped with multi-core GPUs and programming toolkit
for developing numerical processing applications is NVIDIA
with technology called Compute Unified Device Architecture
(CUDA). PCL system makes use of the NVIDIA CUDA
technology to achieve better performance. In this paper, the
computation time of signal processing algorithms tested in
passive radar is presented and compared to Matlab implemen-
tation.

II. RADAR PROCESSING

Passive radar taken into consideration processes data that is
digitized at the first stage of processing. Most of algorithms are
performed digitally by the developed software. Consecutive
stages of the process chain are shown in Fig. 1. They are
arranged in the pipeline which means the output of the previ-
ous operation is the input of the next one. Data (input signal)
is divided into blocks, the size of which is arbitrary. This
paper focuses on data processing starting from receiving the
digitized signal to achieving objects with estimated coordinates
of bistatic range, velocity, acceleration and azimuth.

After data acquisition, reference and several echo signals
are obtained through a beamforming algorithm. It is assumed
that statistical properties of the desired signal, interference and



358 K. SZCZEPANKIEWICZ, M. MALANOWSKI AND M. SZCZEPANKIEWICZ

antenna parameters are known. Beamforming coefficients are
obtained by the calibration procedure [4]. Then several beams
of the signal are obtained by the linear combination of input
data and calculated coefficients.

Signal after beamforming still contains strong clutter com-
ponent, which can mask reflected echoes of the targets. For
that reason, the filtering procedure is done. It uses two filters:

• Adaptive lattice filter [5], [6] with short order.
• FFT (Fast Fourier Transform)-based clutter canceller for

the best performance.
Both filters divide data into arbitrarily sized blocks. The lat-

tice filter consists of vector operations: dot products, additions
and multiplications, whereas FFT-based clutter removal uses
mainly Fast Fourier Transform.

Afterwards, the crossambiguity function is calculated and
the results are range-doppler matrix for all signal beams
(3-dimensional structure). Likewise in filtering, signal is di-
vided into small blocks and partial correlation is calculated.
Signals are modulated and range profiles are obtained using
FFT. For DVB-T signals an additional stretch procedure is
executed [7]. Algorithm can work in two modes. In the
first one, the size of the block is computed using only the
parameters of the radar, such as bistatic range and bistatic
velocity. This can result in block sizes which are not power
of 2, which in turn can lead to slow calculation of the FFTs.
In the second mode the size of blocks is assumed to be a
power of 2. This usually means that the amount of data is
increased, however, the time of FFT algorithm computation
is reduced. Crossambiguity function is calculated for several
acceleration values. For that purpose, Finite Impulse Response
(FIR) filter has been used [1], [8], [9]. After the filtering stage,
4-dimensional matrix of range, doppler, acceleration and beam
is obtained.

The 4-dimensional matrix from the previous stage is passed
to the detection procedure. It uses the two dimensional Cell
Averaging Constant False Alarm Rate (CACFAR) [10] operat-
ing in range-velocity dimensions to detect targets. Data from
each acceleration and each beam are processed separately. Bins
of the beam-acceleration-range-Doppler surface which exceed
selected detection threshold are marked as containers of target
echoes. These detections are passed to the extractor.

Extraction consists of copying target echoes from large four
dimensional matrix to object containers. The individual detec-
tions are clustered together using image processing algorithms.
As a result, single detections which are close to each other are
combined into potential targets.

Potential objects are passed to the estimator module to
determine precise targets parameters. As a result plots cor-
responding to detected targets are created. Further processing,
which is out of scope of this paper, includes bistatic tracking,
target localization and Cartesian tracking.

III. MATLAB IMPLEMENTATION OF PASSIVE RADAR

Presented radar processing was firstly implemented in the
Matlab environment to check correctness and improve the
quality of the algorithms in terms of target detection. An
example of application performance is presented in Tab. I. In

TABLE I
TIME RESULTS OF PROCESSING STAGES FOR FM SIGNAL (MATLAB

IMPLEMENTATION)

Algorithm (FM) Processing time (Matlab)
Beamforming 170 ms

Filtering 5000 ms
Crossambiguity 40000 ms

CACFAR 7000 ms
Extraction 200000 ms

DRAM

Cache

Control ALU ALU

ALUALU

DRAM

CPU GPU

Fig. 2. GPU and CPU architecture comparison, Fig. 3 in [11]

the experiment parameters typical for FM based radar were
assumed: sampling frequency of 200 kHz, integration time
of 1 s and carrier frequency of 100MHz. Maximum radar
range in the crossambiguity function was set to 400 km and
maximum velocity was set to 1000m/s.

The obtained results clearly show that Matlab implementa-
tion is not suitable for real-time operations. It is, however, a
good starting point for other implementations, as it may serve
as a reference solution for assessing numerical correctness
of alternative implementations. Among many possibilities of
different languages and hardware platforms the CUDA GPU
technology has been selected for further development.

IV. NVIDIA CUDA TECHNOLOGY

CUDA is a parallel computing platform released by
NVIDIA, the programming model of which allows program-
mers to access existing parallel computational elements in
graphics cards. Not only can Graphical Processing Units
(GPUs) be used for graphic calculations but also for general
purpose computing. GPUs differ from Central Processing
Units (CPUs) in more transistors dedicated to data process-
ing than controlling activities, which is presented in Fig. 2.
Therefore, different programming approach has to be used
[12]. Moreover, the application development may be done
using CUDA libraries e.g. CUDA C language. Furthermore,
highly optimized tools such as cuBLAS (for numerical compu-
tation) and cuFFT (parallel implementation of FFT algorithm)
libraries facilitate creating effective processing applications.
Constantly enhanced computing environment makes this tech-
nology attractive for radar processing engineers.

The devices used at the Warsaw University of Technology
for passive radar processing have compute capability [11]
more than 2.0, such as GTX Titan (Fig. 3) with 2688 CUDA
cores, base clock of 837MHz and memory bandwidth of
288.4GB/s [13].

In the following section, parallel realization of passive radar
algorithms is presented. Described stages of processing are
performed using single precision floating point numbers.



PASSIVE RADAR PARALLEL PROCESSING USING GENERAL-PURPOSE COMPUTING ON GRAPHICS PROCESSING UNITS 359

Fig. 3. Geforce GTX Titan, Fig. in [13]

V. PARALLEL REALIZATION OF PASSIVE RADAR
ALGORITHMS

Overall performance of developed solution depends on
the configuration of CUDA blocks dimensions [14], [15].
However, it is strictly connected to the architecture of a graphic
card and requires separate tuning.

During the process of implementation several problems
were encountered. Large amount of input and processing data
limited possible optimization techniques. In some cases, data
layout could not be properly padded. Amount of graphics card
memory appeared to be the bottleneck of the implementation
for more demanding DVB-T signals.

A. Beamforming

The beamforming procedure is realized simply by multi-
plying the matrix of the input signals by the matrix of fixed
beamforming coefficients. As a result, the signal correspond-
ing to a digitally formed beam is a linear combination of
the input signals. One CUDA function (kernel) is used for
additional scaling the coefficients and data transposition, but
since the number of coefficients is very low, this operation
is irrelevant as far as computational time is concerned. The
linear combination was firstly realized with the usage of
cuBLAS library function cublasCgemm [16]. However, the
results of the profiling tool (NVIDIA Visual profiler) showed
that the coefficient of GPU card utilization was at the level
of 46.4%. The reason for this is that the routine from cuBLAS
library used for calculations is optimized for multiplying large
matrices. Input matrix for beamforming procedure is N ×M ,
where M is number of antennas and N is the number of
signal samples in a processed block. The coefficient matrix
size is M × L, where L is the number of beams and usually
M,L � N . Therefore, beamforming can be decomposed
to many tasks of small matrices multiplications as shown
in Fig. 4. This kind of multiplication can be performed
by cublasCgemmBatched routine from cuBLAS library. This
solution was not satisfactory either, because internal matrix
division performed by the cuBLAS routine did not provide any
growth in efficiency. On the other hand, the result achieved
for undivided input data matrix was about 31, 33% faster
than initial solution. Taking that all into consideration, a

task P
1

Signal matrix before

beamforming

beamforming

coe icients

matrix

wT

.
multiplication

task P2.
multiplication

task P3.
multiplication

...
...

...task Pn

wT

wT

wT

Signal matrix after

beamforming

y
P1

y
P2

y
P3

y
Pp

x
P1

x
P2

x
P3

x
Pp

x y

Fig. 4. Beamforming matrix multiplication decomposition to many tasks

special kernel was implemented for multiplying matrices in
the beamforming procedure. Designed algorithm performed
65, 50% faster than the initial solution and achieved 91.9%
GPU utilization due to significant reduction of used registers
by each block of threads.

B. Filtering – Clutter Removal

Formed beams of the signal are passed to the filtering
procedure. FFT-based clutter removal algorithm uses several
CUDA kernels for signal shifting, modulation and correlation
calculation. During correlation procedure blocks are processed
simultaneously. For inner product calculation, the schema
known as ”map and reduce” is used (Fig. 5). Each number
from the signal is mapped into one CUDA thread. A block of
threads realizes summation with the usage of on-chip shared
memory which is faster than global RAM memory. Results
from multiple blocks are gathered (reduced) through atomic
addition CUDA instructions on global memory to achieve as
much parallelism as possible. FFT is proceeded by highly
optimized cuFFT library [17] for many batches with overlay
at once.

Adaptive lattice filtering is performed when a low order
filter is desired. The algorithm consists of two parts: a lattice
predictor and a delay line [2]. The signal is divided into blocks.
Partial correlation and norm calculation is implemented for all
blocks simultaneously in terms of the map-reduce procedure
described above.

C. Crossambiguity Function Calculation

The correlation function for small blocks is calculated by
performing FFT/multiplication/IFFT consecutively. Results of
multiplications are obtained by a simple kernel function. Each
number in the signal matrix is mapped into one CUDA thread.
CUDA cuFFT library is used to compute FFT of the signal
divided into blocks. The procedure consists of several CUDA
kernel functions used to modulate and normalize the signal
after inverse FFT. Afterwards, the FIR filter implemented in



360 K. SZCZEPANKIEWICZ, M. MALANOWSKI AND M. SZCZEPANKIEWICZ

signal

map operation

cuda threads block 1

reduce operations

 (summation):

cuda threads block 2

atomic addition

(gathering results)

result

reduce operations

 (summation):

Fig. 5. ”Map-reduce” operations

CUT

*1

*2

Fig. 6. The schema of the two dimensional CACFAR window. CUT - cell
under test, *1 - window cells, *2 - guard cells

the CUDA kernel function is used to determine the crossam-
biguity function results for different accelerations. During
optimization steps several changes have been made. The
crossambiguity function was firstly computed for all beams
simultaneously, but optimization process has shown that better
GPU utilization is achieved when one thread computes more
output values. One of the optimization techniques was also
changing the dimensionality of CUDA blocks and separating
the range and velocity dimensions.

D. Target Detection

In the detection procedure, 2-dimensional CACFAR algo-
rithm is used (Fig. 6). A signal matrix is mapped to CUDA
threads. Each thread from the block of threads loads a piece
of data from 2D input chunk of the signal matrix into faster
shared memory of the graphics processor. Then summation
and threshold computation is done. Bins of the crossambiguity
surface that exceed threshold are written as the result of the
algorithm.

For better results the loop unrolling feature provided by the
CUDA compiler is used. However, it demands fixed window

r = 1,2,...,R

v = 1,2,...,V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

2

2

2

2

1 1

1

1

1

111

1

1

1

1

1

1

range indices

velocity

indices

2

1

1

1

11

Fig. 7. Schema of the extraction procedure

size at compile time. In order to enable parameter change in
the runtime phase, the detection function was implemented as
a C++ language template. Such a solution is more flexible,
as functions can be explicitly generated for desired window
sizes at compile time, but provides slightly worse performance
results.

Due to high computational requirements of the algorithm,
additional detection procedure with a constant threshold was
implemented in CUDA C language and can be used for more
computationally demanding DVB-T signals. It consists of two
kernels, the first of which computes the noise level. The second
one indicates if the currently tested value is above the noise
level and given detection threshold.

E. Target Extraction

The goal of the extraction is to select target echoes from
the detection matrix which exceed the given threshold and
connect all echoes that are to be considered as a single
target. The schema of the extraction procedure for two targets
(number 1 and number 2) is shown in figure 7. The green tone
indicates the strength of the target echo. In order to achieve
better time results, a simplified algorithm of the extraction that
locates local maxima in detection matrix was used. The applied
CUDA kernel function is designed to return only those results
of the detection matrix that can be considered as target echoes
and are local maxima in their neighbourhood. The result of the
extraction is copied to CPU memory afterwards.

F. Estimation of Targets Parameters

The next step of the extraction is the estimation of target
parameters. This part of the algorithm is proceeded by CPU
and is implemented in C++ language. The main tasks of the es-
timation procedure is fitting the parabola in the crossambiguity
matrix as shown in Fig. 8. However, further optimization steps
led to the conclusion that connecting this processing stage
to the extraction kernel provides better performance results.
Estimated parameters are: bistatic range, velocity, acceleration
and azimuth.

VI. PERFORMANCE AND ACCURACY RESULTS

Presented results were obtained using computer components
listed below:

• Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz.
• 64GB of DDR3 memory.



PASSIVE RADAR PARALLEL PROCESSING USING GENERAL-PURPOSE COMPUTING ON GRAPHICS PROCESSING UNITS 361

arguments of crossambiguity

function in considered dimension

crossambiguity 

function value

found target

estimated value of the considered parameter

fitted parabola

Fig. 8. Fitting Parabola to Crossambiguity Function in One Dimension

• GeForce GTX 780 Ti, CC 3.5, 2880 cores, GPU clock:
928MHz, memory clock: 3500 MHz, amount of global
memory: 3072MB.

• GeForce GTX TITAN, CC 3.0, 2688 cores, GPU clock:
876MHz, memory clock: 3004MHz, amount of global
memory: 6143MB.

• Debian Jessie (Stable), kernel 3.16.
• CUDA Toolkit 7.0.
• NVIDIA Visual Profiler 7.0.
For FM signals processing, GPU with higher clock fre-

quency was used, namely GeForce GTX 780 Ti. Due to higher
memory requirements, GeForce GTX TITAN was chosen for
DVB-T signal processing.

A. Performance Results of Consecutive Processing Stages

The computation time of the consecutive processing stages
was measured. Passive radar and signal parameters studied
were:

• Integration time: FM – 1000ms, DVB-T – 100ms.
• Filter length: FM – 100, DVB-T – 1000.
• Detection window: 16 reference and 2 guard cells in

velocity dimension, 8 reference and 3 guard cells in range
dimension.

• Maximum acceleration: 100m/s2.
• Maximum range: 300 km for FM signals and 50 km for

DVB-T signals.
• Maximum velocity: 1000m/s.
Results for FM signal processing are presented in Tab. II.

Tab. III contains performance results for CUDA realization
of DVB-T signal processing. The long time of detection stage
results from the number of crossambiguity matrices for various
accelerations. In order to achieve real-time processing for
DVB-T signals, either the algorithms have to be deployed
to several graphics cards or the number of beams should be
reduced.

Due to the fact that extraction and estimation time de-
pends mainly on the number of targets, separate tests were
performed. The relationship between execution time of the
extraction and the number of detections is presented in Fig. 9.
The curve shape result from the parallel realization of compu-
tations. After extraction, the estimation procedure is performed
on CPU platform. The linear relationship between execution
time of the estimation and the number of targets is presented
in Fig. 10.

TABLE II
PERFORMANCE RESULTS OF PROCESSING STAGES FOR FM SIGNALS

(1000ms INTEGRATION TIME, 7 BEAMS)

Algorithm (FM) Processing time (CUDA C)

Beamforming 0.22ms

Filtering 1.63ms

Crossambiguity calculation 16.89ms

Detection (CACFAR) 34.99ms

Extraction (approx. 40000 detections) 3.80ms

Estimation (approx. 100 targets) 1ms

Overall time 58.53ms

TABLE III
PERFORMANCE RESULTS OF PROCESSING STAGES FOR DVB-T SIGNAL
(100 MS INTEGRATION TIME, 7 BEAMS), MAXIMUM ACCELERATION:

100m/s2

Algorithm (DVB-T) Processing time (CUDA C)

Beamforming 1.10ms

Filtering 12.59ms

Crossambiguity calculation 177.15ms

Detection (CACFAR) 164.06ms

Extraction (40000 detections) 3.8ms

Estimation (100 targets) 1ms

Overall time 359.70ms

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25

30

Number of detections

E
x
e
c
u
ti
o
n

ti
m

e
[m

s
]

Fig. 9. Relationship between execution time of extraction and the number
of detections

One of the concerns associated with implementing parallel
processing is scalability. If the amount of data to process
increases, it should not lead to disproportional increase in
the execution time. This behavior was verified by processing
varying number of the surveillance beams and measuring the
execution time. The results are shown in Fig. 11. There is
a linear relationship between the execution time of CUDA
processing and the number of beams with the slope coefficient
below 1.0. The diagram presents that calculation of data from
other beams is executed in parallel.

Several measurements were made in order to investigate
relation between execution time of processing in CUDA C
language and the radar integration time. Results are presented
in Fig. 12. It shows that the integration time enhancement
results in a linear increase of the execution time.



362 K. SZCZEPANKIEWICZ, M. MALANOWSKI AND M. SZCZEPANKIEWICZ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1

2

3

4

5

6

7

Number of targets after extraction

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Fig. 10. Relationship between execution time of estimation and the number
of targets after extraction procedure

1 2 3 4 5 6 7
20

30

40

50

60

70

80

number of beams

ti
m

e
 [
m

s
]

Fig. 11. Relationship between an execution time of CUDA processing
and the number of beams (beamforming, filtering, crossambiguity calculation,
detection), FM Signal, maximum velocity 1000m/s, maximum range 400 km

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

15

20

25

30

35

40

45

integration time [s]

ex
ec

ut
io

n 
tim

e 
[m

s]

Fig. 12. Relationship between the radar integration time and the execution
time of CUDA processing (beamforming, filtering, crossambiguity calculation,
detection), FM Signal, maximum velocity 800m/s, maximum range 300 km

B. Accuracy of Results
All calculations in first five stages of processing were

implemented using single precision floating point numbers

V [m/s]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

R
 [

k
m

]

0

50

100

150

200

250

300

350

90

95

100

105

110

115

120

125

130

135

Fig. 13. Results of FM signal processing – the example of crossambiguity
function and found targets (red crosses)

to achieve better performance (double precision calculations
are several times slower on GPUs). The accuracy after these
phases was compared to computations executed in Matlab
realization of the passive radar which uses double precision
numbers. The accuracy counted as a normalized difference of
all data after extraction procedure is at the level of 10−4 which
is satisfactory in the considered application.

C. Example Test Case of Target Detection and Estimation

To show some sample results of radar processing, several
FM and DVB-T signals with a few target echoes were simu-
lated. Tab. IV lists parameters of simulated targets.

TABLE IV
TARGETS PARAMETERS STUDIED IN AN EXAMPLE SIMULATION

parameter target 1 target 2 target 3
range (r)[km] 20 45 85
velocity (v)[m/s] 500 −880 700
acceleration (a)[m/s2] 12 −15 10
azimuth (doa)[o] 180 90 225

Results of processing (crossambiguity function for one
beam and one acceleration) are shown in Fig. 13 (FM) and
Fig. 14 (DVB-T). All found plots are marked with red crosses.
Measured processing mean time was: 54.45ms for FM signal
(1 s integration time) and 357.25ms for DVB-T signal (100ms
integration time).

VII. CONCLUSION

Real-time processing for passive radars is a computationally
demanding task, especially for radars based on DVB-T signal,
where a signal bandwidth, and therefore sampling frequency,
is much higher than for FM radio. In such a situation the
demand is high not only on the computing power, but also
data throughput and numerical accuracy.

In this paper effective implementation of passive radar
processing on GP-GPUs was presented. It was shown that
the performance improvement in comparison to the original
Matlab implementation is remarkable. The obtained numerical



PASSIVE RADAR PARALLEL PROCESSING USING GENERAL-PURPOSE COMPUTING ON GRAPHICS PROCESSING UNITS 363

V [m/s]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

R
 [

k
m

]

0

10

20

30

40

50

60

70

80

90

100

120

125

130

135

140

145

150

155

160

165

170

Fig. 14. Results of DVB-T signal processing – the example of crossambiguity
function and found targets (red crosses)

TABLE V
RESULTS OF PASSIVE RADAR PROCESSING - ESTIMATED PARAMETERS OF

FOUND TARGETS

target parameter FM DVB-T
Matlab CUDA Matlab CUDA

1

r [m] 20506.15 20506.15 19990.05 19990.04
v [m/s] 499.99 499.99 500.00 500.00
a [m/s2] 12.96 12.96 11.50 11.50
doa [o] 180.10 180.10 180.02 180.02

2

r [m] 44872.68 44872.68 44987.10 44987.10
v [m/s] −879.92 −879.92 −880.00 −880.00
a [m/s2] −23.73 −23.73 −15.27 −15.27
doa [o] 89.98 89.98 89.96 89.96

3

r [m] 85711.43 85711.43 85009.73 85009.73
v [m/s] 699.95 699.95 700.00 700.00
a [m/s2] 9.99 9.99 7.38 7.38
doa [o] 269.92 269.92 270.01 270.01

accuracy is also satisfactory. The final implementation was
obtained in the multi-iteration process of refining, implement-
ing and optimizing consecutive stages of processing. In some
cases, algorithm execution time was reduced at the expense of
worse quality, however, each of such trade-offs was carefully
examined.

Despite the fact that the current implementation provides
very good performance, the research on better implementation

continues, as demand to process more data (more frequency
channels or more physical channels) increases.

REFERENCES

[1] H. Griffiths and C. Baker, “Passive coherent location radar systems.
part 1: performance prediction,” Radar, Sonar and Navigation, IEE
Proceedings -, vol. 152, no. 3, pp. 153–159, June 2005.

[2] K. Szumski, M. Malanowski, J. Kulpa, W. Porczyk, and K. Kulpa, “Real-
time software implementation of passive radar,” in Radar Conference,
2009. EuRAD 2009. European, Sept 2009, pp. 33–36.

[3] K. Szczepankiewicz, M. Malanowski, and M. Szczepankiewicz, “Effec-
tive implementation of passive radar algorithms using general-purpose
computing on graphics processing units,” in Signal Processing Sympo-
sium (SPSympo), 2015, June 2015, pp. 1–5.

[4] M. Malanowski and K. Kulpa, “Digital beamforming for passive coher-
ent location radar,” in Radar Conference, 2008. RADAR ’08. IEEE, May
2008, pp. 1–6.

[5] K. Kulpa, “Adaptive clutter rejection in bi-static cw radar,” in Interna-
tional Radar Symposium, 2004, May 2004, pp. 61–66.

[6] M. Malanowski, “Comparison of adaptive methods for clutter removal
in pcl radar,” in Radar Symposium, 2006. IRS 2006. International, May
2006, pp. 1–4.

[7] M. Malanowski, K. Kulpa, and K. Olsen, “Extending the integration
time in dvb-t-based passive radar,” in Radar Conference (EuRAD), 2011
European, Oct 2011, pp. 190–193.

[8] M. Malanowski, K. Kulpa, and J. Misiurewicz, “Acceleration estimation
for passive coherent location radar,” in Radar Conference, 2008. RADAR
’08. IEEE, May 2008, pp. 1–5.

[9] M. Malanowski, “Target acceleration estimation for continuous wave
noise radar,” in Proc. International Radar Symposium 2005, September
2005, pp. 177–183.

[10] L. Scharf and C. Demeure, Statistical Signal Processing: Detection,
Estimation, and Time Series Analysis, ser. Addison-Wesley series in
electrical and computer engineering. Addison-Wesley Publishing
Company, 1991. [Online]. Available: https://books.google.pl/books?id=
y\ dSAAAAMAAJ

[11] (2015) Cuda computing guide. [Online]. Available: http://docs.nvidia.
com/cuda/cuda-c-programming-guide/

[12] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach. Elsevier Science, 2012. [Online]. Available: https:
//books.google.pl/books?id=E0Uaag8qicUC

[13] (2015) The nvidia gtx titan. [Online]. Available: http://www.geforce.
com/hardware/desktop-gpus/geforce-gtx-titan

[14] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU
Programming. Pearson Education, 2013. [Online]. Available: https:
//books.google.pl/books?id=ynydqKP225EC

[15] R. Farber, CUDA Application Design and Development, ser. Applica-
tions of GPU computing series. Morgan Kaufmann, 2011. [Online].
Available: https://books.google.pl/books?id=MtLvlQvYDOEC

[16] (2015) Cuda toolkit documentation (cublas). [Online]. Available: http:
//docs.nvidia.com/cuda/cublas/

[17] (2015) Cuda computing guide (cufft). [Online]. Available: http://docs.
nvidia.com/cuda/cufft/


