
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 2, PP. 429–436
Manuscript received November 8, 2023; revised June, 2024. doi: 10.24425/ijet.2024.149562

Performance evaluation of microservices
communication with REST, GraphQL, and gRPC

Muhammad Niswar, Reza Arisandy Safruddin, Anugrayani Bustamin, and Iqra Aswad

Abstract—Microservice architecture has become the design
paradigm for creating scalable and maintainable software sys-
tems. Selecting the proper communication protocol in microser-
vices is critical to achieving optimal system performance. This
study compares the performance of three commonly used API
protocols: REST, GraphQL, and gRPC, in microservices ar-
chitecture. In this study, we established three microservices
implemented in three containers and each microservice contained
a Redis and MySQL database. We evaluated the performance of
these API protocols using two key performance metrics: response
time and CPU Utilization. This study performs two distinct
data retrieval: fetching flat data and fetching nested data, with
a number of requests ranging from 100 to 500 requests. The
experimental results indicate that gRPC has a faster response
time, followed by REST and GraphQL. Moreover, GraphQL
shows higher CPU Utilization compared to gRPC and REST. The
experimental results provide insight for developers and architects
seeking to optimize their microservices communication protocols
for specific use cases and workloads.

Keywords—Microservices; API; gRPC; REST; GraphQL

I. INTRODUCTION

SOFTWARE development using microservices architec-
ture has changed the way we design applications. This

architecture advocates breaking down complex applications
into smaller, self-contained microservices. Each microservice
has specific tasks and that can be managed and changed
without affecting other components. It allows development
teams to focus on specific aspects of the application, improving
scalability, faster changes, and better fault isolation [1].

In microservice communication, two commonly used pro-
tocols are Representational State Transfer (REST) and Graph
Query Language (GraphQL). REST has been one of the most
widely used data exchange methods, which relies on a number
of endpoints to access and manipulate data. Although REST
remains popular, it comes with certain drawbacks, such as
over-fetching or under-fetching data, where the retrieved data
may exceed or fall short of actual needs. Addressing these
drawbacks, GraphQL emerges as an attractive alternative.
GraphQL allows clients to specify the data they needed
[2] [3], overcoming REST’s inefficiency problem and giving
application developers more control.

Muhammad Niswar, Reza Arisandy Safruddin, Anugrayani Bustamin,
Iqra Aswad are with Department of Informatics, Faculty of Engineer-
ing, Hasanuddin University, Gowa, South Sulawesi, Indonesia (e-mail:
niswar@unhas.ac.id, rezaarisandy2525@gmail.com, anugrayani@unhas.ac.id,
iqra@unhas.ac.id.)

In addition to REST and GraphQL, another data exchange
method gaining attention today is Google Remote Procedure
Call (gRPC). gRPC offers an efficient and versatile approach
to communication among distributed services. Unlike the
REST and GraphQL methods that utilize the HTTP/1 protocol,
gRPC employs the HTTP/2 protocol and supports streaming
data. gRPC simplifies remote procedure calls across various
programming languages, delivering enhanced performance and
speed in microservice communication [4].

In this study, we aim to evaluate and compare the per-
formance of REST, gRPC, and GraphQL for data exchange
within a microservice system under both fetching flat data
and nested data. Our study includes a performance analysis
with key performance metrics, including response time and
CPU utilization. By evaluating these three communication
protocols, we aim to assist developers and organizations in
making informed decisions when designing and implementing
microservices-based systems.

II. RELATED WORK

There have been many studies that compare the performance
of REST and GraphQL. Reference [5] describes the perfor-
mance of the REST and GraphQL in using the Ocelot and Hot
Chocolate Application Programming Interface (API) gateways
in the case of writing data and getting data. Reference [6]
discusses the advantages and disadvantages of the REST and
GraphQL. When dealing with data that undergoes frequent
changes and needs to be handled efficiently with resource opti-
mization in mind, GraphQL is the preferred choice. Reference
[7] describes the REST as the appropriate selection for the
data exchange method in situations where data is consistently
accessed. Reference [8] [9] focuses on implementing GraphQL
in a web application, which shifts from REST to GraphQL.
Reference [10] [11] compares REST and GraphQL for API
web design, focusing on response times and data sizes. Two
NodeJS apps performed CRUD (Create, Read, Update, Delete)
operations on MongoDB. There are no major differences for
a few queries or resource removal. GraphQL outperformed
REST when displaying data under heavy loads and for small
data portions, while REST performed better for large data por-
tions. Reference [12] compared the performance of REST and
GraphQL architectural models in three different applications
based on two metrics, i.e., response time and data transfer
rate. It found that GraphQL improved performance in most

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


430 MUHAMMAD NISWAR, ET AL.

cases, except for workloads above 3,000 requests, where REST
performed better. For smaller workloads (100 requests), both
REST and GraphQL showed similar performance. Reference
[13] compares REST and GraphQL for data communication in
web applications. An experiment was conducted to assess the
performance of both approaches when requesting nested ob-
jects. The results indicate that GraphQL outperformed REST
in most scenarios. Reference [14] assesses these benefits in
practice by migrating seven systems from standard REST-
based APIs to GraphQL. The key finding is that GraphQL
can significantly reduce the size of JavaScript Object Notation
(JSON) documents returned by REST APIs, with a reduction
of 94%.

In addition to studies on the performance of REST and
GraphQL, there are several studies that discuss the perfor-
mance of gRPC. Reference [15] explains microservices and
gRPC, covering their workings, implementations, limitations,
and applications. It relies on reliable online sources to demon-
strate a microservice with gRPC servers. Reference [16]
explores microservices architecture and its communication
methods, primarily REST API and gRPC. It evaluates the
pros and cons of both approaches and conducts a compar-
ative analysis. It presents a decision-making framework for
organizations to determine if adopting gRPC offers substantial
benefits over REST for their architecture. Reference [17]
explores the potential of gRPC for improving content delivery.
The study aims to evaluate gRPC using the Goal Question
Metric (GQM) methodology. The findings indicate that gRPC
performs exceptionally well in scenarios involving mobile
or IoT applications as clients. Reference [18] discusses load
balancing challenges in gRPC microservices within Kuber-
netes using Golang. Reference [19] proposes a solution for
building gRPC services using NodeJS as independent modules
or components. Reference [20] focuses on analyzing emerging
technologies for cross-process communication between Linux
and Android-based platforms using the gRPC framework.
The study involves developing applications in various object-
oriented programming languages to perform remote procedure
calls between a single-board computer and a smartphone. The
performance of computational offloading for algorithms in
each platform is evaluated through data analysis.

Our study focuses on the performance comparison of REST,
GraphQL, and gRPC in microservice environments to pro-
vide valuable insights into their respective advantages and
drawbacks. We aim to reveal which communication protocols
operate efficiently across various scenarios and workloads.

III. APPLICATION PROGRAMMING INTERFACE (API)
PROTOCOLS

API protocols are sets of rules, conventions, and standards
that facilitate communication and interaction between diverse
software programs and systems. These protocols define the
structure and format of requests and responses, as well as
the methods and rules for communication. The API acts as
a bridge that allows developers to integrate functionality. The
most commonly used API protocols are REST, GraphQL, and
gRPC.

A. Representational State Transfer (REST)

REST is an API development architecture that provides
client-server-based communication over the HTTP protocol.
REST was first introduced by Roy Fielding in 2000 as his
doctoral dissertation at the University of California [21]. REST
uses the HTTP/1.1 protocol to send data from clients to
servers. In systems that use REST, each service usually has a
certain endpoint so that it can interact between services and
exchange data. In REST, there are several methods that can be
used, including GET, POST, PUT, and DELETE. The REST
supports several formats for presenting data, such as JSON and
XML. JSON is used more often because of its simplicity and
efficiency. Figure 1 shows the REST communication model.

Fig. 1. REST Model

B. Graph Query Language (GraphQL)

GraphQL, a query language for APIs, was created by
Facebook and used in communication between clients and
servers [22]. The client requests data as needed with a query
so the server can return a response according to the query
request from the client. GraphQL offers an alternative solution
to REST and allows developers to request specific data in
a more efficient and flexible format. The background of the
development of GraphQL was to meet Facebook’s needs in
handling complex data and to overcome the problems in the
REST, such as over-fetching or under-fetching data. One of the
main advantages of GraphQL is its flexibility. With GraphQL,
clients can request multiple data sources in a single request,
reducing the requests needed to retrieve the desired data. In
addition, clients can validate their query requests by using
clearly defined types before sending them to the server. Figure
2 shows the GraphQL communication model.

C. Google Remote Procedure Call (gRPC)

gRPC [23] is an open-source, high-performance framework
for building efficient, distributed systems and microservices.
It was developed by Google and designed to enable commu-
nication between applications and services in a way that is
both language-agnostic and platform-independent. The gRPC
allows applications to define their service methods and data
structures using Protocol Buffers (protobufs), a language-
neutral interface definition language. Based on these defini-
tions, it generates client and server code in multiple program-
ming languages. Clients and servers can then communicate



PERFORMANCE EVALUATION OF MICROSERVICES COMMUNICATION WITH REST, GRAPHQL, AND GRPC 431

Fig. 2. GraphQL Model

using HTTP/2, benefiting from features like bidirectional
streaming, multiplexing, and efficient serialization. It is a high-
performance framework for building efficient and language-
agnostic distributed systems, microservices, and APIs. Figure
3 shows the gRPC communication model.

Fig. 3. gRPC Model

IV. SYSTEM DESIGN

In this study, we have developed microservices using
Golang, with the case study of the Integrated Education
Information System in the Ministry of Education and Culture
Indonesia, known as SISTER. It is designed to manage and
monitor resources in the education sector, including data re-
lated to academic institutions, research, and human resources.
This system aims to improve the efficiency and effectiveness
of educational management and administration.

Our study utilizes Hasanuddin University’s SISTER data,
specifically lecturer data and the lecturer’s educational back-
ground. This research aims to assess the performance of
REST, gRPC, and GraphQL. Our proposed service architecture
consists of three services implemented in three containers,
including authentication services, fetching lecturer profiles ser-
vice (flat data), and fetching lecturer profile with educational
background service (nested data). Each service contained a
Redis and MySQL database. Figure 4 shows the architecture
of our system.

The evaluation comprises two distinct data retrieval, i.e.,
fetching flat data and nested data. Fetching flat data refers
to JSON structures where all the data is organized at the
same level, typically using simple key-value pairs. On the
other hand, fetching nested data refers to JSON structures
where data is organized hierarchically, with one or more items
containing other items as properties or elements.

This study utilizes Redis and MySQL as Database Man-
agement Systems, with MySQL as the long-term storage
solution and Redis as the in-memory storage system. Being

an in-memory database, Redis excels in read-heavy operations
and is ideal for our use cases demanding low-latency data
access. Initially, we imported the SISTER data, available at
http://sister.unhas.ac.id/ws.php/1.0 into the MySQL database.
This imported data includes lecturer profile data totaling 2,221
entries and lecturer profiles with educational backgrounds,
which amounts to 6,197 entries. Subsequently, Redis exported
the SISTER data from the MySQL database. The service
fetches data from Redis rather than directly from the MySQL
database in the data retrieval process. In cases where Redis
lacks the required data, the service retrieves it from the
MySQL database and caches it within Redis. During testing,
data retrieval occurs from Redis. Figure 5 illustrates the data
fetching process within the services.

Figure 6 shows that JSON represents flat data. It includes
a single object within an array, with several key-value pairs.
Figure 7 shows that JSON represents nested data within the
”pendidikan formal” array to represent the lecturer’s educa-
tional backgrounds. The data in Figures 6 and 7 are dummy
data, used to avoid exposing sensitive information.

V. PERFORMANCE EVALUATION AND RESULT

Performance evaluation has been conducted to assess the
impact of data fetching load on response time and CPU perfor-
mance. This evaluation aims to evaluate the data exchange with
REST, gRPC, and GraphQL to determine the most suitable
approach for both flat data and nested data cases. We used
Apache JMeter for API load testing. The Apache JMeter
application is open source software designed to conduct load
test on functional capabilities and assess performance [24].

A. Concurrent Requests Evaluation

In concurrent requests evaluation, multiple clients initiate
requests concurrently, ranging from 100 to 500 requests, to
assess response times and CPU utilization under these simul-
taneous load conditions. This approach allows us to gauge
how the system performs when subjected to varying levels of
concurrent user activity. Response time measurements were
conducted for both the fetching flat data and nested data. Each
evaluation was carried out over ten iterations. The average
response time (aveRT ) can be calculated using equation (1) :

aveRT =
1

n

n∑
i=1

(trespi
− treqi) (1)

In equation (1), n represents the total number of requests,
treqi is the request time of the i-th request, and trespi

is the
the response time of the i-th request. The equation calculates
the average time interval required for the client to receive a
response from the sent request.

Figure 8 shows the average response time for fetching flat
data. For REST, the average response times increase as the
number of requests increases, ranging from 1,113.33 ms for
100 requests to 4,009.83 ms for 500 requests. gRPC offers
significantly lower response times, with averages ranging from
233.84 ms for 100 requests to 2,606.59 ms for 500 requests.
On the other hand, GraphQL shows the highest response times,



432 MUHAMMAD NISWAR, ET AL.

Fig. 4. System Architecture

Fig. 5. Data Fetching Process

Fig. 6. JSON for Fetching Flat Data

with averages increasing from 3,852.07 ms for 100 requests to
21,148.14 ms for 500 requests. In summary, gRPC provides
the fastest response times, followed by REST, while GraphQL

Fig. 7. JSON for Fetching Nested Data

lags with substantially slowest response times, particularly as
the request volume increases.

Figure 9 shows the average response time for fetching
nested data. For REST, as the number of requests increased
from 100 to 500, the average response times grew from
5,201.39 ms to 16,646.55 ms. In the case of gRPC, the
response times also increased with more requests, ranging



PERFORMANCE EVALUATION OF MICROSERVICES COMMUNICATION WITH REST, GRAPHQL, AND GRPC 433

Fig. 8. Average response time for Fetching Flat Data

Fig. 9. Average response time for Fetching Nested Data

from 5,667.33 ms to 14,962.61 ms. GraphQL showed the
highest response times, averaging 8,510.84 ms to 29,734.59
ms as the number of requests increased. Overall, REST had
the lowest response times, followed by gRPC, while GraphQL
exhibited the slowest response times, particularly with a larger
number of requests.

We also measured CPU utilization to assess the impact of
data fetching load on CPU performance. We aim to gauge
how the act of fetching data, whether it involves retrieving
flat or nested data, influences the CPU utilization. We examine
CPU performance across a range of scenarios, each involving
a varying number of data retrieval requests, spanning from 100
to 500 requests.

Fig. 10. Average CPU Utilization for Fetching Flat Data

Fig. 11. Average CPU Utilization for Fetching Nested Data

Figure 10 shows the average CPU utilization for fetching flat
data. For REST requests, as the number of requests increased
from 100 to 500, CPU utilization gradually increased from
10.26% to 48.90%. With gRPC requests, CPU utilization also
increased with the number of requests, going from 10.95% to
36.11%. However, for GraphQL requests, CPU utilization ex-
hibited a different trend, starting remarkably high at 120.09%
for 100 requests and gradually increasing to 142.15% for 500
requests. These figures highlight the varying CPU resource
demands of different data request protocols. GraphQL was no-
tably more resource-intensive than REST and gRPC, showing
increased linear CPU utilization with increasing request loads.

Figure 11 shows the average CPU utilization for fetching
nested data. For REST, CPU utilization increased from 38.23%
at 100 requests to 123.01% at 500 requests. gRPC had lower
CPU utilization, starting at 30.11% and reaching 84.04%
at 500 requests. In contrast, GraphQL showed significantly
higher CPU utilization, exceeding 100% even at 100 requests
and peaking at 177.41% at 500 requests. This indicates that the
workload is being distributed across at least two CPU cores,
suggesting higher processing demands for GraphQL queries
than REST and gRPC as the request load increased.

B. Consecutive Requests Evaluation

In the consecutive request evaluation, clients initiate re-
quests consecutively for five minutes with a varying number
of requests, from 100 to 500 requests, to measure response
time and CPU utilization during the test.

Fig. 12. Response time during five minutes for Fetching Flat
Data (100 requests)



434 MUHAMMAD NISWAR, ET AL.

Fig. 13. Response time during five minutes for Fetching Flat
Data (300 requests)

Fig. 14. Response time during five minutes for Fetching Flat
Data (500 requests)

Figures 12, 13, and 14 show that the response time of gRPC
is faster than REST and GraphQL during five minutes mea-
surements for fetching flat data. For 100 requests (Figure 12),
gRPC performed the fastest, with an average response time
of 79.90 ms, followed by REST at 152.56 ms and GraphQL
at 196.90 ms. When the number of requests increased to 300
(Figure 13), gRPC remained the fastest with 66.42 ms, while
REST and GraphQL showed slight increases in response times
with an average of 154.45 ms and 205.04 ms, respectively.
However, when the number of requests further increased to
500 (Figure 14), GraphQL had the highest average response
time at 204.35 ms, while gRPC and REST had response times
of 67.75 ms and 149.68 ms, respectively, with gRPC being
the fastest.

Fig. 15. Response time during five minutes for Fetching Nested
Data (100 requests)

Figures 15, 16, and 17 show that the response time of
gRPC is faster than REST and GraphQL during five minutes
measurements for fetching nested data. For 100 requests

Fig. 16. Response time during five minutes for Fetching Nested
Data (300 requests)

Fig. 17. Response time during five minutes for Fetching Nested
Data (500 requests)

(Figure 15), gRPC performed the fastest, with an average
response time of 437.03 ms, followed by REST at 510.47
ms and GraphQL at 589.25 ms. When the number of requests
increased to 300 (Figure 16), gRPC remained the fastest with
337.34 ms, while REST and GraphQL showed slight increases
in response times with an average of 517.08 ms and 565.59 ms,
respectively. However, when the number of requests further
increased to 500 (Figure 17), GraphQL had the highest average
response time at 1,035.46 ms, while gRPC and REST had
response times of 748.22 ms and 798.41 ms, respectively, with
gRPC being the fastest.

We also measured the CPU utilization for five minutes for
each data fetching scenario with a different number of requests
(100, 300, and 500 Requests).

Fig. 18. CPU Utilization during five minutes for Fetching Flat
Data (100 requests)

Figures 18, 19, and 20 show the CPU utilization of three
API protocols during five minutes measurement for fetching
flat data. With 100 requests (Figure 18), REST had the lowest



PERFORMANCE EVALUATION OF MICROSERVICES COMMUNICATION WITH REST, GRAPHQL, AND GRPC 435

Fig. 19. CPU Utilization during five minutes for Fetching Flat
Data (300 requests)

Fig. 20. CPU Utilization during five minutes for Fetching Flat
Data (500 requests)

CPU utilization with an average of 3.87%, gRPC was slightly
higher with an average of 4.09%, and GraphQL had the highest
utilization, averaging 17.63%. As the request count increased
to 300 (Figure 19), REST’s CPU utilization increased with an
average of 4.13%, gRPC decreased with an average of 3.70%,
and GraphQL spiked with an average of 21.62%. At 500
requests (Figure 20), REST’s CPU utilization increased with
an average of 6.95%, gRPC with an average of 5.98%, and
GraphQL had the highest CPU utilization, averaging 33.53%.
These results suggest that GraphQL places a heavier load on
the CPU as the number of requests grows compared to REST
and gRPC.

Fig. 21. CPU Utilization during five minutes for Fetching
Nested Data (100 requests)

Figures 21, 22, and 23 show the CPU utilization of three
API protocols during five minutes measurement for fetching
nested data. For 100 requests (Figure 21), REST had the
lowest CPU utilization with an average of 10.51%, followed
by gRPC with an average of 20.84%, and GraphQL had

Fig. 22. CPU Utilization during five minutes for Fetching
Nested Data (300 requests)

Fig. 23. CPU Utilization during five minutes for Fetching
Nested Data (500 requests)

the highest, averaging 37.53%. As the request load increased
to 300 (Figure 22) and 500 (Figure 23) requests, the CPU
utilization also increased across all three protocols. REST
maintained the lowest utilization, gRPC in the middle, and
GraphQL consistently had the highest CPU utilization with
an average of 90.30% for 500 requests.

The performance evaluation shows that gRPC outperformed
REST and GraphQL in terms of response time, while REST
demonstrated lower CPU utilization compared to the others.
gRPC’s superior performance can be largely attributed to
its use of the HTTP/2 protocol, which offers several ad-
vantages over the HTTP/1 protocol utilized by both REST
and GraphQL. HTTP/2 enables more efficient data exchange
through features like multiplexing and reduced latency, mak-
ing it a key factor in gRPC’s enhanced performance when
compared to its counterparts.

VI. CONCLUSION

Microservice architecture is now the prevailing framework
for developing software systems that are both scalable and
easy to maintain. The selection of the proper communication
protocol within microservices is essential for attaining the
best possible system performance. This research evaluates the
performance of API protocols: REST, gRPC, and GraphQL
in a microservices-based system using Redis and MySQL
as databases. Two distinct data retrieval were examined:
fetching flat data and nested data. Based on the evaluation
of response time and CPU utilization for fetching flat and
nested data scenarios, gRPC had the fastest response time,
while REST showed the lowest CPU utilization compared
to gRPC and GraphQL. gRPC’s use of HTTP/2, with its



436 MUHAMMAD NISWAR, ET AL.

multiplexing feature, allows multiple requests over a single
connection, making it highly efficient for concurrent remote
procedure calls. These findings provide insights for choosing
API protocols in microservices environment.

REFERENCES

[1] I. Karabey Aksakalli, T. Çelik, A. B. Can, and B. Tekinerdoğan,
“Deployment and communication patterns in microservice architectures:
A systematic literature review,” Journal of Systems and Software, vol.
180, p. 111014, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121221001114

[2] G. S. M. Diyasa, G. S. Budiwitjaksono, H. A. Ma’rufi, and
I. A. W. Sampurno, “Comparative analysis of rest and graphql
technology on nodejs-based api development,” Nusantara Science and
Technology Proceedings, pp. 43–52, Apr. 2021. [Online]. Available:
https://nstproceeding.com/index.php/nuscientech/article/view/322

[3] M. Vesić and N. Kojić, “Comparative analysis of web application
performance in case of using rest versus graphql,” in Proceedings
of the Fourth International Scientific Conference on Recent Advances
in Information Technology, Tourism, Economics, Management and
Agriculture (ITEMA), Online-Virtual, 2020, pp. 17–24. [Online].
Available: https://doi.org/10.31410/ITEMA.2020.17

[4] Y. Lee and Y. Liu, “Using refactoring to migrate rest applications
to grpc,” in Proceedings of the 2022 ACM Southeast Conference,
ser. ACMSE ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 219–223. [Online]. Available: https://doi.org/10.
1145/3476883.3520220

[5] N. Vohra and I. B. K. Manuaba, “Implementation of rest api vs graphql
in microservice architecture,” in 2022 International Conference on
Information Management and Technology (ICIMTech). IEEE, 2022,
pp. 45–50. [Online]. Available: https://doi.org/10.1109/ICIMTech55957.
2022.9915098

[6] S. L. Vadlamani, B. Emdon, J. Arts, and O. Baysal, “Can graphql
replace rest? a study of their efficiency and viability,” in 2021
IEEE/ACM 8th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP). IEEE, 2021, pp. 10–17.
[Online]. Available: https://doi.org/10.1109/SER-IP52554.2021.00009

[7] A. Lawi, B. L. Panggabean, and T. Yoshida, “Evaluating graphql and
rest api services performance in a massive and intensive accessible
information system,” Computers, vol. 10, no. 11, p. 138, 2021. [Online].
Available: https://doi.org/10.3390/computers10110138

[8] B. Lama, “Implementing graphql in existing rest api,” B.S. thesis,
Universitat Politècnica de Catalunya, 2019.

[9] M. Vogel, S. Weber, and C. Zirpins, “Experiences on migrating
restful web services to graphql,” in Service-Oriented Computing–
ICSOC 2017 Workshops: ASOCA, ISyCC, WESOACS, and Satellite
Events, Málaga, Spain, November 13–16, 2017, Revised Selected
Papers. Springer, 2018, pp. 283–295. [Online]. Available: https:
//doi.org/10.1007/978-3-319-91764-1 23

[10] P. Margański and B. Pańczyk, “Rest and graphql comparative analysis,”
Journal of Computer Sciences Institute, vol. 19, pp. 89–94, 2021.
[Online]. Available: https://doi.org/10.35784/jcsi.2473

[11] M. Mikuła and M. Dzieńkowski, “Comparison of rest and graphql
web technology performance,” Journal of Computer Sciences Institute,
vol. 16, pp. 309–316, 2020. [Online]. Available: https://doi.org/10.
35784/jcsi.2077

[12] M. Seabra, M. F. Nazário, and G. Pinto, “Rest or graphql? a performance
comparative study,” in Proceedings of the XIII Brazilian Symposium on
Software Components, Architectures, and Reuse, 2019, pp. 123–132.
[Online]. Available: https://doi.org/10.1145/3357141.3357149

[13] M. D. C. França and E. da Silva, “Performance evaluation of rest
and graphql apis searching nested objects,” Anais do Computer on
the Beach, vol. 11, no. 1, pp. 237–244, 2020. [Online]. Available:
https://doi.org/10.14210/cotb.v11n1.p237-244

[14] G. Brito, T. Mombach, and M. T. Valente, “Migrating to graphql:
A practical assessment,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2019, pp. 140–150. [Online]. Available: https://doi.org/10.1109/SANER.
2019.8667986

[15] H. Vo, “Applying microservice architecture with modern grpc api to
scale up large and complex application,” 2021. [Online]. Available:
https://urn.fi/URN:NBN:fi:amk-2021060314024

[16] M. Stefanic, “Developing the guidelines for migration from restful
microservices to grpc,” Masaryk University, Faculty of Informatics,
Brno, pp. 1–81, 2021. [Online]. Available: https://is.muni.cz/th/ozxws/

[17] B. P. Rebrošová, “grpc layer for content delivery in kentico kontent,”
Master’s thesis, Masaryk University, 2021. [Online]. Available:
https://is.muni.cz/th/d1f9l/Masters Thesis.pdf

[18] K. Nieman and S. Sajal, “A comparative analysis on load balancing and
grpc microservices in kubernetes,” in 2023 Intermountain Engineering,
Technology and Computing (IETC). IEEE, 2023, pp. 322–327.
[Online]. Available: https://doi.org/10.1109/IETC57902.2023.10152023

[19] M. Vasiljević, A. Manasijević, A. Kupusinac, Ć. Sukić, and
D. Ivetić, “One solution of component based development in nodejs for
modularization of grpc services and rapid prototyping,” SAR J, vol. 2, pp.
181–185, 2019. [Online]. Available: https://doi.org/10.18421/SAR24-06

[20] M. Araújo, M. E. Maia, P. A. Rego, and J. N. De Souza, “Performance
analysis of computational offloading on embedded platforms using the
grpc framework,” in 8th International Workshop on ADVANCEs in
ICT Infrastructures and Services (ADVANCE 2020), 2020, pp. 1–8.
[Online]. Available: https://hal.science/hal-02495252

[21] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-
Lee, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, UC Irvine, 2000. [Online]. Available:
https://ics.uci.edu/∼fielding/pubs/dissertation/top.htm

[22] The GraphQL Foundation. (2015) ”graphql”,. Accessed: September 26,
2023. [Online]. Available: https://graphql.org/

[23] Louis Ryan (Google). (2015) ”grpc”,. Accessed: September 16, 2023.
[Online]. Available: https://grpc.io

[24] The Apache Software Foundation. (n.d) ”apache jmeter”,. Accessed:
October 23, 2022. [Online]. Available: https://jmeter.apache.org/

https://www.sciencedirect.com/science/article/pii/S0164121221001114
https://www.sciencedirect.com/science/article/pii/S0164121221001114
https://nstproceeding.com/index.php/nuscientech/article/view/322
https://doi.org/10.31410/ITEMA.2020.17
https://doi.org/10.1145/3476883.3520220
https://doi.org/10.1145/3476883.3520220
https://doi.org/10.1109/ICIMTech55957.2022.9915098
https://doi.org/10.1109/ICIMTech55957.2022.9915098
https://doi.org/10.1109/SER-IP52554.2021.00009
https://doi.org/10.3390/computers10110138
https://doi.org/10.1007/978-3-319-91764-1_23
https://doi.org/10.1007/978-3-319-91764-1_23
https://doi.org/10.35784/jcsi.2473
https://doi.org/10.35784/jcsi.2077
https://doi.org/10.35784/jcsi.2077
https://doi.org/10.1145/3357141.3357149
https://doi.org/10.14210/cotb.v11n1.p237-244
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/SANER.2019.8667986
https://urn.fi/URN:NBN:fi:amk-2021060314024
https://is.muni.cz/th/ozxws/
https://is.muni.cz/th/d1f9l/Masters_Thesis.pdf
https://doi.org/10.1109/IETC57902.2023.10152023
https://doi.org/10.18421/SAR24-06
https://hal.science/hal-02495252
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://graphql.org/
https://grpc.io
https://jmeter.apache.org/

	Introduction
	Related Work
	Application Programming Interface (Api) Protocols
	Representational State Transfer (REST)
	Graph Query Language (GraphQL)
	Google Remote Procedure Call (gRPC)

	System Design
	Performance Evaluation and Result
	Concurrent Requests Evaluation
	Consecutive Requests Evaluation

	Conclusion
	References

