Miniaturized Wearable Fractal Patch Antenna for Body Area Network Applications
Abstract
This article presents the design of a miniaturized wearable patch antenna to be utilized for the body area network (BAN) applications. To reduce the size of the antenna a crown fractal geometry antenna design technique has been adopted, and which resulted in a size reduction of 26.85%. Further, the polyester cloth has been used as the substrate of the antenna to make the proposed antenna a flexible one, and suitable for wearable biomedical devices. The designed antenna functions for the 2.45 GHz ISM band and has the gain and bandwidth of 4.54 dB and 131 MHz respectively, covering the entire ISM band. The antenna characteristics like return loss (S11), directivity and radiation pattern have been simulated and analyzed. Specific absorption rate (SAR) and front to back ratio (FBR) of the proposed antenna at the human body tissue model (HBTM) in the planer and different bending conditions of the antenna have also simulated and analyzed, and the proposed antenna fulfils the desired design standards.References
S. Sindhu, S. Vashisth and S. K. Chakarvati., “A review on wireless body area network (WBAN) for health monitoring system: Implementatioeen protocols,” Communications on Applied Electronics, vol. 4, no. 7, pp. 16-20, Mar. 2016.
A. Amsaveni, M. Bharathi and J. N. Swaminathan, "Design and performance analysis of low SAR hexagonal slot antenna using cotton substrate,” Microsystems Technologies, vol. 25, no.6, pp. 2273-2278, Jun. 2019.
F. N. Giman, P. J. Soh, M. F. Jamlos, H. Lago, A. A. Al-Hadi and M. A. N. Abdulaziz, “Conformal dual-band textile antenna with metasurface for WBAN application,” Applied Physics A, vol. 123, no. 1, pp. 32 (1-7), Jan. 2017.
N. F. M. Aun, P. J. Soh, M. F. Jamlos, H. Lago and A. A. Al-Hadi, “A wideband rectangular-ring textile antenna integrated with corner-notched artificial magnetic conductor (AMC) plane,” Applied Physics A, vol.123, no.1, pp. 19 (1-6), Jan. 2017.
B. S. Dhaliwal, S. S. Pattnaik, “BFO-ANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system,” Neural Computing and Applications, vol. 28, no 1, pp. 917-928, Dec. 2017.
C. A. Balanis, “Antenna Theory: Analysis and Design,” 2nd ed., Singapore: Wiley, 2005.
J. G. Joshi, S. S. Pattnaik and S. Devi, “Metamaterial embedded wearable rectangular microstrip patch antenna,” International Journal of Antennas and Propagation, vol. 2012, pp. 1-9, Sep. 2012.
S. Roy and U. Chakraborty, “Metamaterial based dual wideband wearable antenna for wireless applications,” Wireless Personal Communications, vol. 106, no. 3, pp. 1117-1133, Jun. 2019.
E. Thangaselvi and K. Meena alias Jeyanthi, “Implementation of flexible denim nickel copper rip stop textile antenna for medical application,” Cluster Computing, vol.22, no. 1, pp. 635-645, Feb. 2018.
M. P. Joshi, J. G. Joshi and S. S. Pattnaik, “Hexagonal slotted wearable microstrip patch antenna for body area network, IEEE Pune Section International Conference, 18-20 Dec. 2019.
A. Amsaveni, M. Bharathi and J. N. Swaminathan, “Design and performance analysis of low SAR hexagonal slot antenna using cotton substrate,” Microsystem Technologies, vol. 25, no. 6, pp. 2273-2278, Jun. 2019.
E. A. Mohammad, A. Hasliza, H. A. Rahim, P. J. Soh, M. F. Jamlos, M. Abdulmalek and Y. S. Lee, “Dual-band circularly polarized textile antenna with split-ring slot for off-body 4G LTE and WLAN applications,” Applied Physics A, vol. 124, no. 8, pp. 568 (1-10), Aug. 2018.
M. E. Jalil., M. K. A. Rahim, N. A. Samsuri, R. Dewan and K. Kamardin, “Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RIFD application,” Applied Physics A, vol. 123, no. 1, pp. 48 (1-5), Jan. 2017.
P. J. Gogoi, S. Bhattacharyya and N. S. Bhattacharyya, “Linear low density polyethylene (LLDPE) as flexible substrate for wrist and arm antennas in C-band,” Journal of Electronic Materials, vol. 44, no. 4, pp. 1071-1080, Apr. 2015.
M. N. Ramli., P. J. Soh, M. F. Jamlos, H. Lago., N. M. Aziz and A. A. Al-Hadi, “Dual-band wearable fluidic antenna with metasurface embedded in a PDMS substrate,” Applied Physics A, vol. 123, no. 2, pp. 149 (1-7), Feb. 2017.
http://www.fcc.gov/encylopedia/specific-absorption-rate-sar-cellulattelephones.
A. Y. I. Ashyap, Z. Z. Abidin, S. H. Dahlan, H. A. Majid, M. R. Kamarudin and A. A. Alhameed, “Robust low-profile electromagnetic band-gap- based on textile wearable antennas for medical application,” International workshop on Antenna Technology, Small Antennas, Innovative Structures, and Applications, Athens, Greece, 1-3 Mar. 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.