Monitoring of PV inverters while unintentional islanding using PMU

Szymon Henryk Barczentewicz, Tomasz Lerch, Andrzej Bień


Unintentional islanding detection is one the mandatory criterion that must be met by PV inverters before connecting them into the grid. Inverters are capable of detecting islanding, acceptable time for detection is less than 2 seconds. In this paper voltage parameters after islanding occurrence and before turning off the inverter is analyzed. In order to simulate islanding state and perform measurements the testing system was build. Three different commercial PV inverters were tested. Measured signals were used to calculate voltage envelope, phasor, frequency and ROCOF. Collected data proved to be helpful to compere different Inverters.

Full Text:



S. Barczentewicz, A Bień, K. Duda , „The use of PMU data for detecting and monitoring selected electromagnetic disturbances”, International Journal od Electronics and Telecommunication. 2020

IEEE Standard for Synchrophasor Measurements for Power Systems—Amendment 1: Modification of Selected Performance Requirements, IEEE Standard C37.118.1a, Apr. 2014.

International Standard Synchrophasor for power systems – Measurements, IEC/IEEE 60255-118-1, Edition 1.0, Dec. 2018.

G. A. Dileep, “Survey on smart grid technologies and

applications”, Renewable Energy, vol. 146, pp. 2589-2625, 2020.

S. Barczentewicz, T. Lerch, A. Bień, K. Duda, “Laboratory Evaluation of a Phasor-Based Islanding Detection Method”. Energies. 2021; 14(7):1953.

IEEE 15471-2020 „Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces”

S. Raza, H. Arof, H. Mokhlis, H. Mohamad, H. Azil Illias, “Passive islanding detection technique for synchronous generators based on performance ranking of different passive parameters”. IET Gener. Transm. Distrib. 2017, 11, 4175–4183.

Z. Lin, T. Xia, Y. Ye, Y. Zhang, L. Chen, Y. Liu, K. Tomsovic, T. Bilke, F. Wen, “Application of wide area measurement systems to islanding detection of bulk power systems.” IEEE Trans. Power Syst. 2013, 28, 2006–2015.

S.I. Jang, K.H. Kim, “An islanding detection method for distributed generations using voltage unbalance and total harminic distrotion of current.” IEEE Trans. Power Deliv. 2004, 19, 745–752.

R. Teodorescu, M. Liserre, P. Rodriguez, “Grid Converters for Photovoltaic and Wind Power System” John Wiley & Sons, Ltd: Chichester, West Sussex, UK; 2011; pp. 93–96.

S. Murugesan, M. Venkatakirthiga, “Active Unintentional Islanding Detection Method for Multiple PMSG based DGs.” IEEE Trans. Ind. Appl. 2020, 56, 4700–4708

S. Murugesan, V. Murali, “Hybrid Analyzing Technique Based Active Islanding Detection for Multiple DGs.” IEEE Trans. Ind. Inform. 2019, 15, 1311–1320.

D. Sivadas, K. Vasudevan, “An Active Islanding Detection Strategy with Zero Non detection Zone for Operation in Single and Multiple Inverter Mode Using GPS Synchronized Pattern.” IEEE Trans. Ind. Electron. 2020, 67, 5554–5564.

M. Ropp, E. Aaker, K. Haigh, J. Sabbah, “Using power line carrier communication to prevent islanding”. IEEE Photovolt. Spec. Conf. 2002, 1675–1678.

X. Wilson, Z. Guibin, L. Chun, W. Wencong, W. Guangzhu, K. A Jacek, “Power line signaling based technique for anti-islanding protection of distributed generators-Part I: Sheme and analysis.”, IEEE Trans. Power Deliv. 2007, 22, 1758–1766.

Z. Ye, R. Walling, L. Garces, R. Zhou, L. Li, T. Wang, “Study and Development of Anti-Islanding Control. for Grid-Connected Inverters”; Nat. Renew. Energy Lab.: Golden, CO, USA, May 2004, NREL/ SR-560-36243.

S. Katyara, A. Hashmani, B.S. Chowdhary, H.B. Musavi, A. Aleem, F.A. Chachar, M.A. Shah, “Wireless Networks for Voltage Stability Analysis and Anti-islanding Protection of Smart Grid System.” Wirel. Pers. Commun. 2020, 1–18.

K. Duda, T.P. Zieliński, S. Barczentewicz, “Perfectly Flat-Top and Equiripple Flat-Top Cosine Windows”, IEEE Trans. Instrum. Meas. 2016, 65, 1558–1567.

K. Duda, T.P. Zieliński, “FIR Filters Compliant with the IEEE Standard for M Class PMU”. Metrol. Meas. Syst. 2016, 23, 623–636.


  • There are currently no refbacks.

International Journal of Electronics and Telecommunications
is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Sciences

eISSN: 2300-1933