Discretization Method of Continuous-Time Dynamic Linear Model

Sławomir Gryś, Waldemar Minkina


The article presents a new discretization method
of a continuous-time linear model of sensor dynamics. It can be useful to reduce measuring errors related to the inertia of the sensor. For example it is important in the measurement of rapid processes as temperature changes in combustion chambers, or for shortening the time needed to establish the sensor readings in a transition state. There is assumed that sensor dynamics can be approximated by linear differential equation or transfer function. The searched coefficients of equivalent difference equation or discrete transfer function are obtained from Taylor expansion of a sensor output signal and then on the solution of the linear set of equations. The method does not require decomposition of sensor transfer function for zeros and poles and can be applied to the case of transfer function with zeros equal to zero. The method was used to compensate the dynamics of sensor measuring fast signals. The Bode characteristics of a compensator were compared with others derived using classical methods of discretization of linear models. Additionally, signals in time were presented to show the dynamic error before and after compensation.

Full Text:



M. Boumahdi, “Blind identification using the kurtosis with applications to field data”, Elsevier Signal Processing 48 (1996) pp. 205-216, https://www.sciencedirect.com/science/article/pii/0165168495001360.

S. Brohez, C. Delvosalle, G. Marlair, “A two-thermocouples probe for radiation corrections of measured temperature in compartment fires”, Elsevier Fire Safety Journal 39 (2004) pp. 399-411, https://www.sciencedirect.com/science/article/pii/S037971120400027X.

P. D. Gillespie, P. C. Hung, R. J. Kee, S. F. McLoone, “Blind characterisation of sensors with second-order dynamic response”, IFAC-PapersOnLine 48-28 (2015) pp. 484-489 International Federation of Automatic Control Hosting by Elsevier Ltd., https://www.sciencedirect.com/science/article/pii/S2405896315027998.

K. Kar, A. K. Swain, R. Raine, “Identification of Time-Varying Thermocouple Systems” Conference TENCON October 2007, https://www.researchgate.net/publication/4310652_Identification_of_time-varying_thermocouple_systems.

W. Minkina, S. Gryś, “Korekcja charakterystyk dynamicznych czujników termometrycznych - metody, układy, algorytmy” (“Compensation of dynamic characteristics of thermometric sensors - methods, systems, algorithms”), Publishing house Wydawnictwo Politechniki Częstochowskiej, Częstochowa, Poland, 2004, 116g pp., ISBN 83-7193-243-X, https://www.researchgate.net/publication /360861645_Korekcja_charakterystyk_dynamicznych_czujnikow_termometrycznych_metody_uklady_algorytmy.

W. Minkina, “Theoretical and experimental identification of the temperature sensor unit step response non-linearity during air temperature measurement” Elsevier, Sensors and Actuators A: Physical A 78 (1999) pp. 81–87, https://www.sciencedirect.com/science /article/pii/S09244247 9900206X.

S. Grys, W. Minkina, “Fast temperature determination using two thermometers with different dynamical properties”, Elsevier, Sensors and Actuators A: Physical A 100 (2002) pp. 192-198, https://www. sciencedirect.com/science/article/pii/S0924424702000602.

J. Nabielec, “A “blind” correction of dynamic error of a nonstationary first order transducer for the periodic case-simulation investigation”, XVIII IMEKO WORLD CONGRESS, Metrology for a Sustainable Development, September, 17 – 22, 2006, Rio de Janeiro, Brazil, https://www.imeko.org/publications/wc-2006/PWC-2006-TC4-018u.pdf.

J. Nalepa, “The “blind” dynamic error correction method – simulation study for the first – and second – order measurement channel”, Measurement Science Review, 2002, Vol. 2, section 1, https://www.measurement.sk/PAPERS/Nalepa.pdf.

A. Olczyk, “Measurements of unsteady flow parameters in pipe-receiver and pipe-turbocharger systems” Metrology and Measurement Systems, https://www.researchgate.net/publication/298829711_MEASUREMENTS_OF_UNSTEADY_FLOW_PARAMETERS_IN_PIPE-RECEIVER_AND_PIPE-TURBOCHARGER_SYSTEMS.

K. Rupnik, J. Kutin, I. Bajsic, “Identification and prediction of the dynamic properties of resistance temperature sensors”, Elsevier, Sensors and Actuators A: Physical A 197 (2013) pp. 69-75, https://www.sciencedirect.com/science/article/pii/S0924424713001568.

K. Kar, A. Swain, R. Raine, S. Roberts, R. Stone, “Cycle-by-cycle variations in exhaust temperatures using thermocouple compensation techniques” 2005 SAE International, https://doi.org/10.4271/2006-01-1197.

B. Saggin, S. Debei, M. Zaccariotto, “Dynamic error correction of a thermometer for atmospheric measurements” Elsevier Measurement 30 (2001) pp. 223–230, https://www.sciencedirect.com/science/article/pii /S026322410100015X.

M. Tagawa, Y. Ohta, “Two-thermocouple probe for fluctuating temperature measurement in combustion-rational estimation of mean and fluctuating time constans”, Elsevier Science Inc. Combustion and Flame 109 (1997) pp. 549-560, https://www.sciencedirect.com/science/article /pii/S0010218097000448.

W. W. Tan, J. Ch. Tang, A. P. Loh, A. Tay, “In situ measurement of wafer temperature using two sensors with different dynamical properties”, Measurement Science and Technology 17 (2006) 2957–2963, http://dx.doi.org/10.1088/0957-0233/17/11/014.

K. J. Åström, B. Wittenmark, “Computer-controlled systems. Theory and design”, Prentice Hall, 1990, http://www.ioe.nchu.edu.tw /Pic/CourseItem/4687_Computer_Controlled_Systems_3rd_Part1.pdf.

G. F. Franklin, J. D. Powell, M. L. Workman, “Digital control of dynamic systems”, 2nd ed., Addison-Wesley 1990, https://www.researchgate.net/publication/31849881_Digital_Control_of_Dynamic_Systems-Third_Edition.

J.O. Smith, "Impulse invariant method", Physical Audio Signal Processing, August 2007, https://www.dsprelated.com/dspbooks/pasp /Impulse_Invariant_Method.html.

T. Laakso, V. Valimaki, "Splitting the unit delay", IEEE Signal Processing Magazine, Vol. 13, No. 1 (1996), pp. 30-60.


  • There are currently no refbacks.

International Journal of Electronics and Telecommunications
is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Sciences

eISSN: 2300-1933