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Deep Image Features in Music Information
Retrieval

Grzegorz Gwardys and Daniel Grzywczak

Abstract—Applications of Convolutional Neural Networks
(CNNs) to various problems have been the subject of a number
of recent studies ranging from image classification and object
detection to scene parsing, segmentation 3D volumetric images
and action recognition in videos. CNNs are able to learn input
data representation, instead of using fixed engineered features.
In this study, the image model trained on CNN were applied to
a Music Information Retrieval (MIR), in particular to musical
genre recognition. The model was trained on ILSVRC-2012 (more
than 1 million natural images) to perform image classification and
was reused to perform genre classification using spectrograms
images. Harmonic/percussive separation was applied, because it
is characteristic for musical genre. At final stage, the evaluation of
various strategies of merging Support Vector Machines (SVMs)
was performed on well known in MIR community - GTZAN
dataset. Even though, the model was trained on natural images,
the results achieved in this study were close to the state-of-the-art.

Keywords—music information retrieval, deep learning, genre
classification, convolutional neural networks, transfer learning

I. INTRODUCTION

THE enormous growth of unstructured data, including

music data, encourages to searching for methods of

effective indexing, classification or clustering. In music data

case, these tasks are in interest of Music Information Retrieval.

The first studies were performed in the 60s of 20th century

[1], however intensive development can be notified at the

beginning of the 21st century - in year 2000 International So-

ciety of Music Information Retrieval (ISMIR) was established

and in the year 2005 the competition in MIR tasks called

Music Information Retrieval Evaluation eXchange (MIREX)

was launched. At now (MIREX 2014) algorithms are evaluated

in 17 different categories such as melody extraction, cover

song identification, or query by singing [2]–[5]. It is worth

to mention that MIR is a highly interdisciplinary field that

involves not only many parts of computer science and signal

processing, but also non-technical disciplines such as music

theory, musicology or psychology. As mentioned before, giant

amounts of unstructured data also apply to music databases.

Spotify1 posses about 24 million users, every fourth pays $10

monthly for unlimited, free of advertisements, access to music

database containing about 20 million songs. Spotify adds

approximately 20 000 songs per day2. This business‘s need

Authors are with the Institute of Radioelectronics, Faculty of Electronics
and Information Technology, Warsaw University of Technology, Nowowiejska
15/19, 00-665 Warsaw, Poland (e-mail: g.gwardys@ire.pw.edu.pl,
d.grzywczak@ire.pw.edu.pl).

1http://spotify.com
2http://press.spotify.com/us/information/

of dealing with a huge amount of audio files and academic

interest in Signal Processing, Machine Learning and lastly

Feature Learning resulted with many interesting systems.

II. MUSIC REPRESENTATION

A. Engineered Features

Engineered features or low-level features are simple rep-

resentation of complex, unstructured data (which include im-

ages, videos or audio). They describe features of signal in

time or frequency, rather than its semantic content. These

kind of features are quite universal, because the same feature

extraction algorithm can be used to many types of data.

There are plenty of different kinds of engineered features for

music representation, the most popular are: spectrogram, zero

crossing rate, spectral centroid, fundamental frequency [6], [7].

There are also more sophisticated features for music repre-

sentation such as Chromagrams or Mel Frequency Cepstrum

Coeffcients (MFCC).
Because MFCC is perceptually motivated (Mel scale is

a perceptual scale of pitches), they are better adopted to

represent audio signal and they are commonly used in speech

recognition [8]. But still this is a ready ’recipe’ for feature

extraction, not a tailor-made one for a given data distribution

or task.
Chromagram (or Harmonic Pitch Class Profile) describes

intensiveness of each of 12 semitones in octave, basing on fre-

quency spectrum, so it is also perceptually motivated method

for music description. This feature can be used for chord

recognition [9], but also in music similarity [10] or cover

identification [11].

B. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specific types

of Artificial Neural Networks. They were introduced by Ku-

nihiko Fukushima in 1980 in [12], [13] and later improved,

especially by Y. LeCun [12], [14]. They are very successful,

because of:

• taking into account correlations of neighbouring data

• weight sharing that allows to perform effective training

• large amounts of data and GPU implementations

• bunch of tricks such as dropout, ReLU, local contrast

normalization, max pooling

One of most famous CNN architecture was LeNet5 [14]

which was used for handwritten character recognition on

MNIST database with great result 0.7% error rate.

Recently, CNN are used in many tasks, such as segmenta-

tion 3D volumetric images [15], scene parsing [16], action
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recognition from videos [17] or object detection [18]. The

most spectacular results CNN achieved in image classification

competition.

Large Scale Visual Recognition Challenge (ILSVRC) is an

annual competition in image recognition [19]. In year 2012

one of tasks was to choose 5 most probably classes of image

form 1000. Whole image dataset which was available in this

competition contained more than 1 million images. Winners

in this category were A. Krizhevsky, I. Sutskever and G. E.

Hinton as SuperVision Team. They used large convolutional

neural network for image classification, achieving spectacular

success with 15,3% error rate compared to 26,2% error rate

being the second best result [20]. This result began a revolution

in image classification and again drew attention to the neural

network methods. In year 2012 SuperVision was the only team

using CNN for image classification, in year 2013 many other

implementations of neural networks appeared and in ILSVRC

2014 almost all teams used CNN for image classification.

Winning CNN, which is presented in figure 1, has eight lay-

ers. First five layers are convolutional ones and the remaining

ones are fully connected. Whole network has 650 000 neurons

and 60 million parameters. To train such a huge network,

several tricks have been proposed [21]. First improvement is

non-saturation activation function f(x) = max(0, x) which

is called Rectified Linear Unit (ReLU). This significantly

decreases number of iteration during learning process. The

second trick is dropout technique consisting of randomly

removing out output of neurons. This method makes training

longer, but prevents overfitting, and makes network to learn

robust features. The next idea is local response normalization.

In this approach, activity of neuron (after applying ReLU

function) is normalized by adjacent activation neuron activ-

ities, which reduces error rate. Another trick is artificially

extending dataset by extracting random patches and making

reflection. Last trick is overlapping maxpooling layers between

convolutional layers, which slightly reduces error rate and

overfitting. Input signal for this network is raw RGB image

with size 256 x 256 pixels with subtracted mean of the dataset.

Whole network was implemented on two GPUs (GTX 580

3GB) and training of whole network took about a week [21].

SuperVision not only created great classification algorithm,

but also some hierarchical representation of images. Each layer

of network represent some features of images, from low-level

signal features for low layers to high-level semantic features

for high layers. These set of features create some universal

representation of images, which can be used in many tasks.

III. TRANSFER LEARNING

In classical machine learning techniques training data and

test data are from the same dataset and have similar distribu-

tion. As an example, we can check in MNIST database [22],

[14], one can not recognize if given image belongs to test or

training set. But in most real-world applications it is difficult

or even impossible to collect enough training data, because of

high cost of data collecting, small number of potential training

samples, short period of validity of data or long time of model

training. To solve this problem transfer learning is used.

Basing on S. Jialin Pan and Q. Y. Survey [23], definition

of transfer learning helps to improve the learning of the target

predictive function fT for target task TT in target domain DT

using the knowledge in source domain DS and source task

TS , where DS 6= DT or TS 6= TT . According to [23], transfer

learning can be divided into three categories:

• inductive transfer learning is used when target task TT

is different from source task TS , labeled data in target

domain is available regardless of whether the labeled

source data is available or not;

• transductive transfer learning is used when target task TT

is equal to source task TS , labeled data in target domain

is not available and source domain DS and target domain

DT are different;

• unsupervised transfer learning is used when task TT is

different from source task TS , there is no labeled data in

target and source domain.

There are several different approaches in transfer learning:

• instance-transfer - reusing source data during learning

target predictive function fT , it can be used in inductive

and transductive transfer learning;

• feature-representation-transfer - creating good feature

representation in target domain, it can be used in every

type of transfer learning;

• parameter-transfer - reusing parameters or distribution of

model for source task, it can be used in inductive transfer

learning;

• relational-knowledge-transfer - using relations between

source and target data, it can be used in inductive transfer

learning.

Transfer learning can be used in many real applications

such as text classification [24], spam filtering [25], image

classification [26] or even face verification [27].

IV. OUR APPROACH

In this paper, inductive transfer learning using feature

representation transfer was performed. Because of lack of

infrastructure (GPU with at least 6GB memory) we decided

to reuse already trained ILSVRC CNN model computed using

CAFFE framework [28]. We generated image of frequency

spectrogram for each music track. To achieve better results

we decided to use harmonic/percussive separation, which is

described in subsection IV-A, and generate frequency spec-

trograms for each component. To fit ILSVRC model to new

data we decided to use two different methods: fine-tuning and

Support Vector Machines (SVM) features classification which

are described respectively in subsection IV-B and IV-C.

A. Harmonics and Percussion Separation

Harmonics and Percussion separation was performed in pro-

posed system, due to the significant improvement in classifica-

tion accuracy. Ono et al [29] made an intuitive observation that

percussive components form vertical ridges with a broadband

frequency response, while stationary components or stable

harmonic make horizontal ridges on the spectrogram.

The harmonic events can be treated as outliers in the

frequency spectrum at a given time frame. Similarly, the
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Fig. 1. ILSVRC winning CNN topology

Fig. 2. Original Spectrogram

Fig. 3. Harmonic Spectrogram with visible horizontal ridges

Fig. 4. Percussive Spectrogram with visible vertical ridges

percussive events can be treated as outliers across time in a

given frequency bin. This leads to a concept of using median

filters separately in the horizontal and vertical directions for

harmonic/percussive separation.Examples of spectrogram for

are presented in figures 2, 4, 3

B. Fine-tuning

Fine-tuning in neural networks is a process where already

trained model parameters are adjusted to data. Fine-tuning can

be performed on the whole network or on some subset of

parameters (e.g. one networks layer) without changing. This

approach can be used to adjust network parameters to new,

unseen data with different distribution than training set or

when network architecture have to be partially changed (e.g.

number of output labels have to be increased). Using this

idea, new model, adopted to new data or task can be trained

with low computational effort, because model weights are well

initiated and only some parts of model have to be updated. In

this paper fine-tuning of the last layer of the ILSVRC network

model was performed.

C. SVM Features Classification

This approach features extracted from spectrogram images

from penultimate layer of ILSVRC network model were used

for SVM training. The proposed system, presented in figure

5, can be summarized to next steps:

1) Audio file normalization - simple data normalization

2) Harmonics and Percussive Separation - to improve clas-

sification rate, we increase number of data

3) Performing Short Time Fourier Transform (STFT) for

all three versions (original, harmonic and percussive) -

to achieved tree spectrogram images

4) Spectrograms are forwarded through CNN and features

extraction from penultimate layer of network - 4096

dimensional vector for each image

5) Training separate SVMs for all three versions

6) Merging results, final classification

V. EXPERIMENTS AND RESULTS

The evaluation was performed on 1000 music tracks from

GTZAN dataset, that includes 10 musical genres (100 music

tracks for each genre):

• Metal

• Jazz

• Pop

• Reggae

• Blues
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Fig. 5. Authors architecture of system for genre classification

• Classical

• HipHop

• Rock

• Country

• Disco

GTZAN dataset was divided into training dataset (900 music

tracks) and testing dataset (100 music tracks). Both training

and testing datasets are balanced - that means there are equal

numbers of music tracks from each musical genre. Fine-

tuning was performed for each type of spectrogram (original,

harmonic, percussive). In each configuration, fine-tuning was

stopped after 3000 iterations and model with the best mode

with best result on training data set was chosen. Results

and confusion matrix from fine-tuning test set evaluation are

presented respectively on table I and II. Results from each

classifier were combined according to the formula result =
0.5lftp +0.5lftall where lftp are likelihoods from percussive fine-

tuned network and l
ft
all are likelihoods from whole song fine-

tuned network. Best result for fine-tuning was 72%, which

was achieved for combining percussive and original likelihood

where harmonic likelihood weight is equal to 0.

SVM method was applied in similar way. Separate SVM

classificator was trained for each type of spectrogram. Best

results were achieved for Radial Basis Function kernel. Two

methods of merging results from three separate SVMs were

evaluated. The adding class likelihoods turned out to be

slightly better (by 2%) than multiplying. Results from each

classifier were combined according to the formula result =
0.1lsvmh + 0.4lsvmp + 0.5lsvmall where lsvmh are likelihoods

from harmonics SVM classifier, lsvmp are likelihoods from

percussive SVM classifier and lsvmall are likelihoods from whole

song SVM classifier.Finally, the classification rate for merging

all three SVMs reached 78% - 10% improvement comparing

to version trained only on original spectrograms.

VI. CONCLUSION

This study presents a successful application of CNNs to a

MIR task such as Genre Recognition. The presented system

can be classified as inductive transfer learning, because model

trained on more than 1 million natural images (ILSVRC-2012)

was used.

In the first stage of research fine-tuning approach was used

to fit last layer of CNN to new data with 68 % accuracy. To im-

prove results harmonic/percussive separation was performed.

Results from each fine-tuned model were merged which gave

4 % improvement in accuracy.

In the second stage of research SVM features classification

was used, instead of fine-tuning. Separate classificator for each

type of spectrogram was trained and results from each classi-

ficator were merged. This approach achieved 78 % accuracy

which is already close to the state-of-the-art results, despite

the fact there is used model trained on natural images was

used, not on specific spectrograms.

In further works, authors would like to explore CNNs in

other Music Information Retrieval tasks, both by finetuning

ILSVRC-2012 model and making new CNN model
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TABLE I
CLASSIFICATION RATES FOR FINE-TUNING

Type Classification Rate (%)
Original Spectrograms 68

Harmonic Spectrograms 55
Percussive Spectrograms 65

Harmonic + Percussive Spectrograms 65
Original + Harmonic + Percussive Spectrograms 72

TABLE II
CONFUSION MATRIX FOR FINE-TUNING, WHERE THE INPUT CONSISTS OF ORIGINAL SPECTROGRAMS/HARMONIC SPECTROGRAMS/PERCUSSIVE

SPECTROGRAMS/HARMONIC AND PERCUSSIVE SPECTROGRAMS/ORIGINAL AND HARMONIC AND PERCUSSIVE SPECTROGRAMS

Genre Metal Jazz Pop Reggae Blues Classical HipHop Rock Country Disco
Metal 9/9/9/9/9 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 1/1/0/0/0 0/0/0/0/0 0/0/1/1/0 0/0/0/0/1
Jazz 0/0/0/0/0 7/5/8/8/8 0/0/0/0/0 1/1/0/0/0 1/1/0/0/1 1/2/1/1/1 0/0/0/0/0 0/0/0/0/0 0/1/1/1/0 0/0/0/0/0
Pop 0/1/1/1/0 0/0/0/0/0 5/3/7/7/8 0/1/0/0/0 0/0/0/0/0 0/0/0/0/0 4/3/2/2/1 0/1/0/0/0 1/0/0/0/1 0/1/0/0/0

Reggae 0/0/0/0/0 0/0/0/0/0 0/0/1/1/0 7/5/6/6/7 0/1/1/1/0 0/0/0/0/0 2/2/0/0/1 0/0/0/0/0 0/0/0/0/0 1/2/2/2/2
Blues 1/1/2/2/2 0/1/1/1/1 0/0/0/0/0 1/0/1/1/0 5/4/4/4/5 1/0/0/0/1 0/1/0/0/0 0/2/2/2/0 0/1/0/0/0 2/0/0/0/1

Classical 0/0/0/0/0 0/0/1/1/1 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 10/8/8/8/9 0/0/0/0/0 0/1/0/0/0 0/1/1/1/0 0/0/0/0/0
HipHop 1/1/1/1/1 0/0/0/0/0 0/1/3/3/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 9/8/6/6/9 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0

Rock 0/0/1/1/1 0/0/0/0/0 0/0/0/0/0 1/1/1/1/1 0/0/0/0/0 0/0/0/0/0 1/3/1/1/1 6/5/5/5/6 0/0/0/0/0 2/1/2/2/1
Country 0/0/0/0/0 0/1/1/1/0 0/0/0/0/0 3/4/2/2/2 1/0/0/0/1 0/0/0/0/0 2/1/1/1/2 0/0/0/0/0 4/4/5/5/5 0/0/1/1/0

Disco 1/1/0/0/0 0/0/0/0/0 0/0/0/0/0 2/2/1/1/1 0/0/0/0/0 0/0/0/0/0 0/1/1/1/2 1/1/1/1/1 0/1/0/0/0 6/4/7/7/6

TABLE III
CLASSIFICATION RATES FOR SVM FEATURES CLASSIFICATION

Type Classification Rate (%)
Original Spectrograms 68

Harmonic Spectrograms 59
Percussive Spectrograms 64

Harmonic + Percussive Spectrograms 69
Original + Harmonic + Percussive Spectrograms 78

TABLE IV
CONFUSION MATRIX FOR SVM FEATURES CLASSIFICATION, WHERE THE INPUT CONSISTS OF ORIGINAL SPECTROGRAMS/HARMONIC

SPECTROGRAMS/PERCUSSIVE SPECTROGRAMS/HARMONIC AND PERCUSSIVE SPECTROGRAMS/ORIGINAL AND HARMONIC AND PERCUSSIVE

SPECTROGRAMS

Genre Metal Jazz Pop Reggae Blues Classical HipHop Rock Country Disco
Metal 9/10/9/9/9 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/1/1/0 1/0/0/0/1
Jazz 0/0/0/0/0 6/6/6/6/6 0/0/0/0/0 0/0/0/0/0 2/1/0/1/2 1/1/1/1/1 0/0/0/0/0 1/1/1/1/1 0/1/2/1/0 0/0/0/0/0
Pop 0/0/0/0/0 0/0/0/0/0 8/7/7/7/8 0/1/0/1/0 0/0/0/0/0 0/0/0/0/0 1/1/1/1/1 0/1/1/1/0 1/0/0/0/1 0/0/1/0/0
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HipHop 1/1/1/1/1 0/0/0/0/0 2/2/2/1/2 0/0/1/1/0 1/0/0/0/0 0/0/0/0/0 6/7/5/7/7 0/0/0/0/0 0/0/0/0/0 0/0/1/0/0

Rock 0/0/1/1/1 0/1/0/0/0 1/0/0/0/0 0/1/1/1/0 1/2/0/1/0 0/0/0/0/0 1/1/1/1/1 6/4/5/5/8 0/1/1/1/0 1/0/1/0/0
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