

emergence from the laboratory to the home of many of the
ideas and innovations investigated in the field of telemedicine
and telecare is the lack of a cheap and reliable instrument for
performing numerous and varied field investigations
particularly in the home.

The home is a very hostile and unpredictable environment in
comparison to the laboratory and it is difficult to manage
successful deployment of standard PC based solutions because
they are easily accessible and vulnerable to modification and
re-configuration. The standard PC and laptop with well known
operating systems invites interference by both expert and
novice.

We are unaware of any suitable off-the-shelf hardware and
software available in the market that could be used to support
such research needs that would not require extensive
modification and customisation. Therefore, this paper describes
the development of a 'gateway' device, which may be used as a
hub to download data from medical monitoring devices,
environmental sensors, gather information from psychological
surveys and schedule physiological tests, with the ability to
monitor the device remotely. This paper considers game
consoles (such as the Sony PlayStation 2 and 3, Microsoft
Xbox and Microsoft XBox 360) as a hardware platform for the
gateway device. We use the term „gateway device‟ to indicate
the use of a dedicated computer that is placed in a person‟s
home, place of work or even a moving vehicle and is used to
coordinate a number of other digital and electronic devices that
are connected to it. These gateway devices, provide the basis
for a flexible biomedical data acquisition and management
technology that can be deployed to all environments.

The programming language Java with an OSGi framework
was chosen as our software platform because of its suitability
for residential gateway devices and relative portability and
security ([3]; [4]; [5]). Much of our previous work and our
future investigations are focusing on the popular notion of the
smart home and [6] [7] and there are many reasons for
developing a cheap, reliable and resilient hardware and
software combinations that can be deployed to the field and in
particular the home environment for which the Java language
and OSGi framework appear most suitable.

The first half of this paper will proceed to describe
investigations undertaken in order to identify and satisfy the
base hardware requirements with two game consoles, (i) the
Sony PlayStation-2 (Sony Computer Entertainment,
PLAYSTATION 2, Australia) and (ii) Sony PlayStation-3
(Sony Computer Entertainment, PLAYSTATION 3, Australia)
and the relative strengths and weaknesses of each console. The
second half of the paper will outline investigations into the
software requirements and how the OSGi framework supports
or with modifications can support these requirements,
including an outline of our implementation.

II. REQUIREMENTS

The SmartData project aims to collect data with relatively
simple, off-the-shelf electronic devices that monitor heart rate,
physical activity, brain activity, temperature etc., and examine
this in the context of self- reported results from participant's
response to psychological surveys (such anxiety, emotion,
mood etc.) and certain physiological tests (reaction time, EEG

etc.). However, the data from such devices must be constantly
downloaded onto a desktop computer, and the effort required
to manually collate and analyse this data using conventional
methods such as paper-based forms makes such research
substantially time-consuming and expensive. Furthermore,
once a research program has been started, it can be very
difficult to change aspects of it during its progression,
especially if the participants are geographically displaced from
the main research site for long periods of time, as would be in
the case of truck drivers during long road trips.

It is apparent that a device is required that could be placed in
a participant's home, work or vehicle to act as a hub or gateway
to collect data and feed it back to the researchers in a central
location. This “gateway device” must be capable of gathering
data non-intrusively and allow participants to provide response
to electronic surveys to support psychological profiling. In
order to monitor participants‟ progress without physical access
to the gateway device for long periods (sometimes up to a few
weeks), the device would need to be controlled remotely, able
to download updates, as well as subsequently upload research
data after the research program commences.

It was also a requirement that the device should be readily
available and easily obtainable. Even better if the device was a
commodity while not an immediate or interesting target for
hackers or denial of service attacks. It has been noted in the
literature as devices for collecting important physiological and
psychological data become more prevalent and critical to
quality of life then the consequences of connectivity to the
Internet and the inherent dangers of hacking and denial of
service increase [8]. It was also a requirement that the device
was able to work with minima of support equipment, be self
contained and able to work with a standard TV: on the basis
that all homes are likely to have a TV set. The requirements
support the ambition of a device that can be readily deployed
worldwide to all field situations, so no legitimate scientific
investigation is hampered by lack of electronic resources and
does not place a burden on potential participants and scientific
endeavor to source additional monitors or anything but the
standard power supply of the locality.

The use of a PC as a solution was ruled out because it is too
hard to control the operating system versioning, software
updates and numerous other malicious pieces of software
which can find their way on to PC once connected to the
Internet. As it was a requirement to connect to the Internet
standard operating systems like Microsoft XP or Vista are too
hard to maintain in a know configuration. Often Microsoft
itself will install updates and changes in the background. This
feature can be disabled but it is easily enabled too. It is also too
easy for participants and others to interfere with these common
operating systems. A piece of instrumentation for scientific
investigation needs to be as secure as possible and in a known
state of configuration to ensure reliable and repeatable
measurement.

It is therefore logical to look for a more resilient operating
system and a less well known platform that is less inviting and
therefore through obscurity and lack of interest protected from
many of the configuration management issues encountered with
PC based hardware.

C. ARMSTRONG, D. KAVANAGH, S. LAL, P. ROSSITER88

A. Hardware

The above requirements suggest a basic architecture of the
proposed system, which would be similar to that in Figure 1.

Internet Connection

Gateway Device

SmartData Server

SmartData LabParticipant Home

2/3G GSM Modem

Internet

 Fig. 1. Architecture of SmartData system

The type of software required to collect the data from such

external devices and to allow updates to program schedules, is
specialized and built on top of an OSGi based framework, and
was developed by the SmartData project to support it
requirements: in awareness that many of these requirements
were generic to support field based investigations and future
research in the field. We wanted to reduce the time needed for
software testing during development by requiring that the target
device support a full Java Standard Edition runtime
environment and not have the software satisfy stringent
performance requirements. This means that the device cannot
be a resource-constrained system and should be capable of
running a 32-bit, pre-emptive, multitasking operating system
with virtual memory management and memory protection. The
device had to be cheap to be deployed in large numbers but
customisable to permit the SmartData software to run. There
was a strong desire for the device to be able to connect to
participant's television sets to reduce the costs associated with
purchasing separate display units. A simple way to connect the
monitoring devices using a common peripheral technology
such as Universal Serial Bus (USB) is required: many of the
commercially available sensors and activity monitor devices
need to be worn or carried by the participant whilst they are not
at home, and then connected to the gateway at a later time for
data transfer to a remote server One example of such as an
activity monitoring device is the Actigraph GT1M Monitor,
which collects and records body movements [9]. Large data
sets would be derived so the device needs secondary storage. It
is also important to be able to lock down the device so that
participants could not misuse the device or interfere with its
normal operation.

B. Software Platform

As this box will be deployed “out in the field” and has to be
kept running for long periods, a software platform with high
reliability that could be updated whilst the system is still
running is required. Software with relative portability was also
desirable in order to deploy the same or similar software on
later gateway devices to be modified for deployment in trucks
as well as to collect „real field‟ driving data. We wanted
flexibility to change hardware platforms and operating systems
where we deemed it to be necessary. Java was chosen over
languages such as C/C++ because it tends to be more portable,
provides fine granularity of in-process security through the

Java Permissions Application Programming Interface (API),
and it's lack of direct pointer-access can help reduce common
programming errors that are fatal to program execution (such
as null pointer exceptions and dangling pointer dereferences)
and cause security issues such as buffer overflow exploits [10].

Java also served as a base for the OSGi platform, which was
designed to run on residential gateway devices that have
continuous uptime and need to be managed and updated
remotely, without user intervention. It extends Java to provide
a structure that can be used to build inter-changeable software
components that are loosely coupled in the form of services,
allow fine-grained security configurations, and can be updated
without restarting the framework [11]. There are multiple
vendors that implement the specification ([12]; [13]; [14];
[15]). This gives more flexibility in choosing an environment
that suited our research needs and makes it easier to switch
implementations later if required.

Java was also a convenient language and run time
environment already supported as a deployment and server
environment for wireless sensor motes (namely the TMote Sky
and TMote Invent [16]). The project intended to use these
motes to provide wireless sensors capable of performing a
number of tests, such as reaction time assessment tests.

III. SELECTING APPROPRIATE HARDWARE

We examined multiple computer-type devices suitable for
our needs. We first looked at an emerging field of devices used
such as home gateways which are Personal Video Recorders
(PVRs) for watching and recording broadcasted television
(TV) program and Set Top Units for watching digital TV and
subscription TV services. They are mass-produced and built to
interact with a TV, which makes them suitable for our
application. Unfortunately, many are tied to proprietary
platforms without much scope for modification, such as set top
units distributed with cable-TV services, and others are not on
the market for long enough so that we can make a firm
decision.

PC-based systems were also considered as they are
considerably cheap and have good software and peripheral
support due to widespread use. Apart from being able to
support a greater range of operating systems (such as Windows
or Linux, etc.) there is also good support for development due
to their widespread use. It has excellent backwards
compatibility, and there is a wide variety of vendors that
produce PC-based hardware, making it very difficult to be
“locked-in” to one manufacturer. It is also possible to source
hardware boards that have most peripherals integrated.

The main concern with PCs was how easily they could be
used by the participants to install another operating system,
whereas dedicated devices tend to require expert technical
skills in order to modify them. There is also considerable
variance amongst all the PC-based products in the market with
most products having short lifecycles before a new variant is
introduced, making it harder to predict performance if the
hardware needs to be frequently changed. Using newer
hardware means that we would need to thoroughly test new
software drivers, which in our experience are more unstable in
newer versions. This would be a more practical option in the
future if we could select products with long lifecycles, and a

COMBINING POPULAR GAME CONSOLES AND OSGI TO INVESTIGATE AUTONOMOUS IN-THE-FIELD BIOMEDICAL DATA ACQUISITION AND MANAGEMENT 89

simple method could be identified to “lock-down” the devices.
The last option being considered is game consoles. Similar

to PCs, they are relatively cheap due to mass production and
remain compatible with their software over the product
lifecycle. Their product lifecycles are quite long, for example,
the PlayStation One was available in Japan in December 1994
[17] and discontinued from March 2006 [18]. The PlayStation
2 was introduced in March 2000 [17] and continues to be
available, and the Microsoft Xbox was introduced in March
2000 [19] and discontinued in 2006. They also connect easily
to TV sets. Customisation is a big concern as most consoles are
proprietary and like set top units are not easily modifiable.
There is a risk of vendor “lock-in” because only one company
or organization typically manufactures each model. The only
commercially available consoles identified to allow
customisation without purchasing prohibitively expensive
Software Development Kits were the Sony PlayStation-2 and
PlayStation-3, both of which can run Linux with fairly
inexpensive modifications supported by the manufacturer. The
Xbox (Microsoft Xbox) was also a consideration as it has been
shown to run Linux, but it required a legally dubious and
unsupported “mod-chip” in order to boot Linux and changes to
its controller ports in order to access its USB hub. We ruled
this option out because we wanted minimal hardware changes
and less uncertain legal issues.

A. PlayStation 2

 The PlayStation-2 (PS2) features multi-core MIPS
architecture called the “Emotion Engine” (clocked at about
290MHz) with cores designed for handling image processing,
video-decompression and vector calculation [20]. There are
separate processors for handling graphics, audio and
PlayStation-1 games. It has about 32MB of RAM, composite
TV-OUT or RF-OUT, two controller ports with memory card
slots, and two USB 1.1 ports at the front.

Because of these powerful hardware features, many
technically advanced purchasers of the PS2 expressed an
interest in running Linux on their consoles. Due to the
copyright protection implemented by Sony to prevent pirated
games from being executed in the console, it was not possible
to simply create a bootable Linux disc, plug in a hard drive,
and install Linux. The cost of licensing an official development
kit for the PS2 is also prohibitive enough so that only
commercial game and application developers can afford to
purchase one.

Sony published a “PlayStation-2 Linux Kit” (Sony Computer
Entertainment, Sony PlayStation 2 Linux Kit) that was cheap
enough for purchase by consumers. The kit included a hard
disk, mouse and keyboard, a disc for booting GNU/Linux,
another disc containing a Red-Hat based GNU/Linux
distribution, a computer monitor adaptor and an expansion card
containing a network card and hard disk connector for
attaching the hard disk. The kit requires older hardware
versions of the PS2 that contains an expansion slot for plugging
in the add-on card (specifically models before the SCPH-
7000), which is something that does not appear on the newer
'slim' hardware and makes it impossible to use the PS2 Linux
kit [21] with newer hardware.

This kit contains versions of Linux and GNU software that is

outdated by today's standards (most sourced from the time the
kit was developed), running the Linux kernel 2.2 and a GNU
Compiler Collection (GCC) 2.95. This made it more difficult to
cross-compile and run newer software and more difficult to use
some of the newer hardware devices (such as the Actigraph)
that we intended to use. As the PlayStation-2 is a specialised
hardware platform with a unique variant of MIPS architecture
and peripherals, the official Linux and GNU maintainers do not
provide support.

Most of the software required for the research was compiled
directly on the PS2 hardware or by using a cross-compiler that
was obtained from the PlayStation-2 Linux Community website
[21].

The PS2's CPU architecture lacks two useful instructions, 'll'
and 'sc', which are used together to implement atomic swap-
and-load instructions for simple synchronisation primitives.
These instructions are used extensively in some open source
Java virtual machines for synchronisation between threads
instead of kernel based locks. For synchronisation that only
needs to last for a few CPU cycles (such as incrementing an
integer value), this type of locking is more efficient as it avoids
the overhead of a system call and context switch into
supervisor mode. It was determined not worthwhile to modify
the virtual machines and adapt them for system-call based
locking because these user-space locks were found to be used
extensively in their source code. Furthermore, it would
seriously degrade performance by adding many more system
calls for simple synchronisation needs. The Kaffe open-source
Java virtual machine [22] was the only one found to have been
specifically made compatible for the PS2, whilst others such as
JamVM and cacaovm, still relied on these specific locking
instructions found in normal MIPS architectures.

Another major problem identified was with software
performance. Most of the Java virtual machines trialled did not
support Just-In-Time compilation for the MIPS architecture, or
if they did (in the case of Kaffe), they did not have the support
for the PlayStation-2's unique architecture. This meant we had
to turn on the slower, C-based interpreter for all the virtual
machines trialled. This meant that the performance was
unacceptably slow and unable to even start up the OSGi
framework due to the small amount of RAM and slow
execution speed.

Assessing other virtual machines such as JamVM yielded
mixed results. The compiler tool-chain being used was too old
(GCC 3.x) to support newer code. We did consider the option
of modifying the source code of these programs so that they
could be compiled with the older GCC however this was
beyond the team‟s level of expertise.

One of our more significant reasons for not continuing with
the PS2 was the lack of available hardware. The Linux Kit is
only available for some regions now (having sold out in the
United States and other places) and no longer includes the add-
on card needed for network access and to plug in the hard disk;
it only has the DVDs and VGA cable. Because it requires the
older, larger PS2 and the discontinued expansion port, both
these parts need to be carefully located and purchased second
hand. This means that there is no guarantee that those parts will
be readily available to carry out the proposed research. Even if
the slim PS2 models with the cut-down Linux Kit could be

C. ARMSTRONG, D. KAVANAGH, S. LAL, P. ROSSITER90

used, there is no room or place to connect and mount a hard
disk inside the unit.

The main support for the kit was obtained from the
PlayStation-2 Linux Community Web Site [21]. Amateur
software developers managed to port the PlayStation-2 specific
changes to a GCC 3.3 and a Linux 2.4 kernel and published
their results on this website, but due to a lack of developer
resources, they have not been able to port the patch sets to
more recent GCC and kernel versions (Linux 2.6 and GCC
4.x). Additional updates to the kit from Sony for newer
software versions on the PS2 could not be found.

The official development kit was also not a viable option,
not only because of the cost alone, but also because an
agreement would need to be executed with Sony who would
have to approve the software we wanted to produce and force
us to print our own discs. The costs involved with the option
were considered too impractical for our project and so we
decided not to pursue it.

B. PlayStation 3

The PlayStation 3 (PS3) has a multi-core PowerPC based
Cell architecture designed for intensive multiprogramming and
graphics/vector calculation. It was built for complex three
dimensional computer games that need to perform intensive
physics and graphics calculations. It also has 256MB of
general purpose RAM and a further 256MB of graphics RAM.
Unlike the PS2, the PlayStation-3 comes with a built-in hard
disk drive, Bluetooth technology, wireless controllers, USB 2.0
ports and 802.11b/g Wi-Fi Wireless Networking adaptor [23].

The graphics output on the PS3 is also more flexible. The
PlayStation-2 required a PAL (Phase Alternating Line) or
NTSC (National Television System Committee) compatible
TV set or it was difficult to find computer monitors that
supported required “sync-on-green” [20], but the PS3 has
HDMI (High Definition Multimedia Interface) and composite
outputs. This allowed the connection of a digital computer
monitor via an HDMI-to-DVI adaptor as well as a High-
Definition or normal analogue television (PAL and NTSC).

GNU/Linux and other operating systems are supported
natively on the PlayStation-3 via the “OtherOS” facility in the
System Dashboard. This is set up by loading a bootloader
image file from a CD, DVD or USB flash drive with the PS3
Dashboard, which copies it into internal flash memory and uses
it to boot-strap the other operating system.

Similar to the PS2 RTE, Sony has implemented protection of
the graphics hardware through a “hypervisor”, which sits
between the PlayStation-3 hardware and the OtherOS. It still
allows access to the processor cores and main RAM, but only
provides a framebuffer for graphics output, not full graphics
acceleration as it does for games [23].

Running Java virtual machines on the PlayStation-3 has been
much more successful. IBM produces a pre-compiled version
of a Java 1.5 and 1.6 virtual machine for its PowerPC
architecture that runs directly on the PS3 [24], and JamVM is
also available. We had no problems using them to start up an
OSGi environment with the Knopflerfish and Equinox OSGi
implementations ([13]; [14]).

We were able to download and install most of the software
we required using pre-compiled packages for the distribution

that we were using (most packages came from the PowerPC
variant of each distribution). The PS3‟s Cell chip had enough
power to compile and run the Java VM and full-profile OSGi
framework too. Each distribution run a newer GCC 4.x variant
so there were no significant compilation issues.

The above makes the PlayStation-3 a more attractive option,
and it appears that Sony supports continued work on the Linux
kernel and some user-space utilities for running Linux on the
PS3 [23]. At this point in time, it is possible to compile
unmodified versions of the latest Linux 2.6 kernel for the
PlayStation-3. However, it isn't clear how long Sony will
continue to support Linux on the PS3, and they could easily
withdraw their support in the future. If Sony decided to do
this, we would have to reconsider the other hardware platforms
for our gateway device, such as PCs.

Initially, the PS3 was not a compelling option as it is more
expensive than the PS2. Even after pricing the extra hardware
and software that needed to be purchased for the PlayStation-2
to run Linux, the PS3 is still more expensive compared to the
PS2. The PS3 is not expected to become much cheaper for
some years. However, given the relative difficulty of finding
the necessary PS2 hardware, compared with immediate retail
availability of a PS3 system, the extra cost may be justified.

IV. HAL AND OSGI FOR DEVICE DETECTION

There is a need to collect data about research participants
using devices that are plugged into the gateway. The gateway
collects the data from the devices and stores it until it can be
uploaded to a laboratory server. Because this needs to be done
automatically (i.e. without the intervention of the participant or
the researcher), the system needs to be able to recognise the
devices when they are plugged in, load the drivers for them and
download and/or reconfigure them at the same time. Any
functions that need to be performed using the device will need
to be activated as well. This device management requirement is
a consistent issue for software designed to support autonomous
systems development and derives from the requirement, that
devices are self-configuring and self-managing, but more often
than not, current off-the-shelf software platform cannot or do
not support this requirement well. Device drivers frequently
need to be selected by the user and installed manually. Making
matters more difficult, users need instruction in how to use the
provided software in order to manipulate such devices.

In the case of the gateway device to support our field
research this major issue of device management was a focus for
our investigations. The aim was to utilise the chosen hardware
platform, the PS3, and augment it through software to satisfy
the requirements outlined earlier. The means to automate
device management were investigated which involved
combining the capabilities available from an implementation of
the Hardware Abstraction Layer (HAL) and an implementation
of the OSGi specification. The HAL provides rich device
information and events required to detect and distinguish
between devices and the OSGi provides an application
platform that permits devices to exist as dynamic services,
which can come and go at any time and automatically execute
the relevant application software. The integration of these two
components would create a software device management
capability for dynamic device discovery and automatic driver

COMBINING POPULAR GAME CONSOLES AND OSGI TO INVESTIGATE AUTONOMOUS IN-THE-FIELD BIOMEDICAL DATA ACQUISITION AND MANAGEMENT 91

connection, upon which we could build applications that
automatically retrieve the physiological, psychological and
environmental data and send it back to researchers in the
laboratory.

The initial research investigation was undertaken to learn
how an implementation of this concept in the form of device
driver(s) adapted as an OSGi services might be realised. We
then provide as an example purpose-built driver for a data
collection device as a demonstration of the utility of the
integrated software platform and how it may be deployed to a
hardware platform such as the PS3.

V. ESTABLISHING A SPECIFIC EXAMPLE DEVICE TO

INVESTIGATE DEVICE MANAGEMENT

Existing systems typically detect devices, load a driver
written for the device, and then expect the user to manipulate
the device themselves. For example, an activity monitor device
such as the Actigraph [9] a personal electronic device that
records the “activity” of a person who is wearing it. It is
usually necessary for the users to plug it in and wait for the
device to be detected. After that, the users have to activate a
program that is designed to download the data and send it back
to a remote site. This requirement that users are responsible for
knowing how to manipulate the device and remembering to
activate a specific process, both of these are unsuitable for
unobtrusive field based research. We do not want to have to
rely on participants remembering to upload their data, and
knowing how to do so. It would require the researcher to train
participants on how to use each device within the scope of the
research and limit easy deployment to the field of updated or
new sensor devices as research progresses. Furthermore, such
an approach requires that the system has the drivers pre-
installed before deployment. It is unacceptable to require that
the participants know how to install the drivers or even how to
activate the install process. An autonomous field based system
for our research cannot expect or rely on research participants
to do anything other than plug the Actigraph into the gateway.

Something more intelligent than the current driver models is
needed. The drivers on our chosen operating system
(GNU/Linux) classify devices into generic groups such as
“storage” or “serial” or “display, and then exposes them in
groups to the application programs. The operating system
makes no hard attempts to distinguish them based on their
more individual capabilities in its user-level interfaces to
application software.

For example, another useful sensor device used by the
project TMote like the Actigraph devices appear as “serial”
devices to the operating system, along with any serial ports on
the back of the system. It is worth noting before continuing that
the TMote device is a small electronic device that can be
customised with an operating system to control its own packet
radio device and monitor its sensors and button inputs. They
are used to form “mesh networks” of devices that communicate
between each other by relaying short messages over their radio
interface. They can be connected to our gateway through a
USB connection.

Each of these will be exposed as serial port devices to the
application programs. The problem for an application program
which may only know how to communicate with one type of

device (e.g. an Actigraph downloader), is how to pick the right
device from those connected to the system as it‟s unable to
differentiate between devices that appear as “serial” devices.

Operating system developers have tried to address this
problem by providing extra information (a.k.a. meta-data)
about devices to application developers. On Linux, this is a
combination of virtual files on the /proc and the /sys file
systems. This information can be difficult to parse, is often in
different formats and can be subject to change between kernel
versions.

The requirements for field based autonomous gateway
continue to change as well. There is ongoing research into the
best methods by which to conduct tests. As the research
continues to trial new methods, we need to be able to easily
adapt the system to new external peripherals: sensor devices
usually connected either using USB or Bluetooth connectivity.
We may need to do this even while the gateway is deployed.
Our driver model needs to allow the addition of new devices so
that we can utilise them immediately, without stopping the
running gateway.

A. Software Requirements for Device Management

The relevant software requirements extracted from the
considerations outlined above are listed as follows:

 the gateway shall be able to detect when external devices
are attached to the system

 shall be able to detect when external devices are removed
from the system

 shall attach the Drivers and software from a device when
it is attached to the system

 shall detach Drivers and software from a device when it is
detached from the system

 shall update any status display associated with external
devices when they are attached and detached from the
system.

There are also some other requirements that are useful to

include in the scope of this investigation to the support the
broader needs of autonomous data collection in the field:

 the gateway shall be able to download data from External
Data Collection Devices when they are directly plugged into
the gateway

 shall be able to reconfigure External Data Collection
Devices that support it

 shall be able to upload new firmware or software onto
External Data Collection Devices that support it

 shall be able to format and configure the secondary
storage of External Data Collection Devices that support it.

The capabilities of each device will be exposed on a device

by device basis; device capabilities will not necessarily be
made generic across a class of devices unless it is desirable to
do so e.g. it may be reasonable to have a generic process for
recording test results, but not use a common file format.

The requirements as outlined suggest the need for a highly
dynamic software environment, where drivers and client
software for devices can be loaded when they are connected,
and appropriately unloaded when they are detached again.
Devices need to be discovered automatically using appropriate

C. ARMSTRONG, D. KAVANAGH, S. LAL, P. ROSSITER92

meta-data to match the right drivers to the right devices.
Because research participants may not know much about the
devices we give them beyond what they do and how to plug
them in, the system needs to use this meta-data to locate and
automatically run the right programs for each device.

Finally, so that we can introduce new devices to the system
whilst it is deployed and update the software for those that are
already installed, we need to be able to add and replace drivers
from the system whilst it is running.

1) Software Platform Framework Considerations
OSGi [11] was selected as a programming model within the

Java environment as it supported our requirements for dynamic
service provision. It is a Java specification for a dynamic
environment that allows loading and unloading of software
components (known as “bundles”) as the Java virtual machine
is running. It separates components from each other in such a
way that promotes the use of carefully designed interfaces that
hide the implementation from the caller (decoupling).

This separation is achieved through the use of “import” and
“export” packages. The import packages are a list of Java
packages that the bundle requires to be provided by another
bundle. Export packages are a list of packages that a bundle
wants to make available to other bundles. A bundle can only
import packages that have been exported from another bundle
otherwise it remains “unresolved” and cannot start.
Consequently, a bundle can keep some of its code private to
other bundles, and similarly, a bundle may choose not to
import a package and hence won‟t be able to access it. This
achieves greater modularity and more explicit separation of
code through “information hiding”.

Bundles are “wired” together based on a pre-specified set of
dependencies, and communicate through services that may be
registered and consumed by a bundle when it is running.
Services may come and go at any time, they may consume
other services (forming service dependencies) and they may
expose meta-data about themselves as properties. A service is
just a Java object, published into the OSGi service registry
under an exported interface. A service may also publish a list
of “properties” that describe something about this particular
service. They are vital for distinguishing between different
services published under the same interface e.g. two serial port
services, COM1 and COM2, might be published under the
SerialPortDevice interface, but a property called “name” would
be used to distinguish them.

Using OSGi, we were able to program against a model that
allowed components to be upgraded, removed and added
from/to the system whilst it is still running. As components
may have dependencies on each other, the framework provides
the means for them to adapt to changes in their dependencies
by degrading or improving on their services. This means that
it‟s possible to update individual components whilst the
framework is in operation, only requiring that the dependant
services degrade their operation whilst the update is in
progress.

This dynamic model forces us to program in such a way that
our components were adaptable against the changes in the
system. We are able to write new software components, such as
drivers for a new medical research device such as the

Actigraph, and install them into the remotely deployed system
without having to restart it or shut it down. In combination with
a remote management system, this is desirable for autonomous
field deployment as it saves precious time and money in not
having to send equipment back to the laboratory to be updated.
This allows already deployed devices to be quickly updated or
corrected whilst in the field.

The OSGi standard also provides optional sub-specifications
for many services that are useful to our style of application,
including configuration management, deployment management,
per-component security and device management. It also has
more than one implementation available ([12]; [13], [14];
[15]), with a combination of open-source and commercial
providers implementing some or all of the core and optional
sub-specifications. Many of the components can be mixed and
matched across framework implementations, which gave us
maximum flexibility in how we configure our deployment
platform.

2) Using OSGi Device Access
OSGi contains a specification for device management called

the “Device Access Specification”. It defines a generic
driver/device model so that devices and drivers may be
exposed as OSGi services, and automatically linked together
based on a numerical matching algorithm. It deliberately
doesn‟t specify a device model so that different device models
can be supported. This model works well for devices, because
as devices can come and go, the services that represent them
can be added and removed too. As programmatic services, their
functionality can be exposed through a software interface to
other components in the framework. An implementation of the
specification provides an invisible helper service called the
“Device Manager” that provides the driver to device
refinement algorithm and process. When we refer to the Device
Access Specification, we are referring to the specification and a
corresponding implementation, such as Eclipse Equinox‟s
org.eclipse.equinox.device [13] bundle.

3) Hardware Abstract Layer
Hardware Abstraction Layer (HAL) [25] is a software

daemon that runs on GNU/Linux and similar UNIX-like
systems to provide meta-data about the devices connected to
the system and events for device attachment and detachment. It
aims to simplify the discovery of devices by software
programs. It can classify devices by their capabilities as well as
adding extra meta-data about each device, such as its
manufacturer and model. For example, if a device is a serial
device (such as a serial port or a USB Serial adapter), it will be
exposed with a capability of “serial”, regardless of how or
where it is connected, but it is also possible to distinguish it
further, if it is an RS232 port or an Actigraph. HAL provides a
device model for classifying devices, well-defined properties
for getting meta-data about devices, and a set of standard
events for different classes of devices. It additionally provides
extra functionality for manipulating some classes of devices
(e.g. mounting file-systems).

COMBINING POPULAR GAME CONSOLES AND OSGI TO INVESTIGATE AUTONOMOUS IN-THE-FIELD BIOMEDICAL DATA ACQUISITION AND MANAGEMENT 93

4) Capabilities and Limits

a) OSGi Device Access Specification

The Device Access Specification defines a limited
functionality for automatically wiring device services to driver
services through a matching algorithm. The default matching
algorithm works by asking each driver to test how well it can
refine a particular device. This algorithm is replaceable with
the use of a Driver Selector service, but it cannot be specified
on a per-driver or per-device basis (only for the whole system).

Each driver implements an interface that allows the Device
Manager to test device services for their suitability (the
“matching algorithm”) and to attach them to a selected device
service. They also provide a way for drivers to “refer” the
Device Manager to another driver that the driver considers
more suitable.

The driver and device services that are running in a
framework can be arranged in any number of topologies. The
OSGi Device Access Specification defines the following styles
of drivers that can be developed with its devices model ([26];
[27]; [28]):

 Base Driver – a driver that only exposes new device
services to the framework

 Refining Driver – a driver that consumes a device
service, refines its functionality and exposes a higher-level
device service

 Pure Consuming Driver – a driver that consumes the
functionality of a device service, but does not expose any
devices

 Network Driver – a driver that optionally consumes a
device, and exposes one or more device services
representing devices on a network

 Composite Driver – a driver that exposes the different
parts of a complex device as separate device services

 Referring Driver – a driver that participates in the
refining process, but hands out the ID of another driver that
should be used instead.

 Bridging Driver – a driver that exposes a device service
from one category but refines a device service from another
category

 Multiplexing Driver – a driver that consumes a number
of device services but only refines it to one aggregated
device service

The specification also provides for Driver Locator services,

which are specially written services that can download or
locate the driver for a device when given the device that needs
to be refined

5) OSGi Framework Implementation
An important infrastructure component is the OSGi framework
implementation. As the software for the gateway device was
being developed under the Eclipse Equinox framework ([13];
[15]). The base part of Eclipse Equinox provides the key
functionality needed for an OSGi environment as described
earlier.

a) Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) [25] uses the DBus
[29] inter-process communication system to publish a list of
“device objects” that correspond to each device in the system.
It usually gets its meta-data from a combination of system
devices, kernel device information (such as the /proc
filesystem) and specially written device information files which
get merged into the device information tree.

Because of the DBus session bus that HAL uses, each device
object behaves like an object in the object-oriented sense i.e.
they have properties that can be queried and changed, and there
are methods that perform a function. HAL‟s device objects
contain a rich set of properties that can be used to determine
their capabilities, get human-readable descriptions and work
out where they fit into the device tree. It also provides some
specific refinement classes for certain types of devices e.g.
volume devices can be manipulated via a “Mount” and
“Unmount” method.

DBus also provides for events from objects. HAL publishes

a number of useful events, not limited to:

 Attachment of a device from the system

 Detachment of a device from the system

 Lock/Unlock of device

 Device properties change

These are the types of events needed to support the core

requirements around device attachment and detachment.
Essentially the investigation planned to bridge these events and
the meta-data from HAL into the OSGi framework, using each
of these device objects as an OSGi device service. The rich
property set provided by HAL can be mirrored into the OSGi
service registry through service properties as well as through
accessor methods on the device interface itself.

B. Example Driver

In order to demonstrate the usefulness of the approach and
the utility of the developed software the investigation planned
to use the Actigraph “activity monitoring device” as a
representative sensor device. It has a configurable sample rate
and step counter, and uses a USB connection to download data
and upload a configuration. The USB communications utilise a
USB Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) chip, which exposes the device
as a virtual serial port to the computer, given the right drivers
are loaded into the operating system kernel.

This required the development or extension of three drivers:
a base driver for locating the devices in the system, a serial port
driver that detected serial port devices and exposed a serial
interface, and an Actigraph refining driver that uses a serial
interface for setting up and downloading data from an
Actigraph.

The base driver was implemented using a third-party dbus-
java component to communicate with a DBus daemon, upon
which HAL would be connected. The Java serial port driver
was implemented out of the RxTx [30] component which
provides serial port access to Java programs on many Unix
platforms (including Linux).

For the Actigraph, the driver needed to be implemented in

C. ARMSTRONG, D. KAVANAGH, S. LAL, P. ROSSITER94

Java from scratch. Unfortunately, there was no information
available on the protocol that the device used to communicate
with the computer, so it had to be reverse-engineer. This was
done using a serial port monitor program whilst running the
device‟s coupled software, ActiLife [9].

It is worth mentioning that an additional family or network
of sensor technology was also investigated and constructed
from TMote device for which an initial build of a refining
driver was considered. TMotes are wireless sensor network
devices which we were using for another type of physiological
testing. They are USB serial based like the Actigraph. We
needed to be able to detect when they were plugged in so that
we could launch an associated program, but we discovered that
we could perform this operation through a special script
addition to the HAL daemon.

1) Architecture of the OSGi-HAL
As can be seen in Figure 2, HAL mounts itself onto the D-

BUS daemon in order to provide access to device information
and signals when devices are attached and detached. Using
Java D-BUS, it is possible to connect into the D-BUS daemon
and provide Device types using the OSGi Device Access
Specification in a set of generic OSGi Base Drivers. These
Base Drivers expose Device interfaces that OSGi will attempt
to further refine, and from here can be built Refining Drivers
that expose a refined interface on a Device, or Consuming
Drivers which can be used by a software application to
manipulate a device.

Fig. 2. Architecture of OSGi and HAL components

For example, to build a Base Driver for connecting to serial

port devices that gets its information from HAL. It exposes a
Device interface that can be consumed as a raw serial port, or if
OSGi can find a Refining Driver that matches the device
attached to this serial port (through the match() method on the
Driver interface), it will load that driver instead. A serial driver
is placed above the refining driver for the Actigraph device,
and finally a consuming driver that uses the Actigraph driver to

download data and send it off to the remote server in the
laboratory.

C. Services Design (Runtime)

The OSGi Device Access Specification provides a method
for graphically describing the wiring between driver and device
services. This method and notation is used in the diagram
below in Figure 3 to show the different driver and device
classes and how they are to be wired together at runtime in the
case of the Actigraph.

HAL Base Driver

(org.forge.smartdata.device)

Hal Device Services

(HalDeviceService interface)

Serial Port Driver

(org.forge.smartdata.comm)

Actigraph Refining Driver

(org.forge.smartdata.device.actigraph)

Serial Port Device Services

(SerialPortDevice interface)

Tmote Detection Driver (obselete)

Actigraph Device Service

(ActigraphDeviceService Interface)

Actigraph Consuming Driver

Driver

Device

Key

ActigraphDataDownloader ActigraphStatusDisplay

«uses»
«uses»

«interface»

ActigraphDeviceService

Fig. 3. Driver Device Wiring

Each driver and device represented by a node in the diagram

above represents an OSGi service. When we publish a service
into the service registry, we use an interface for an instance of
that service. More than one service may be published under the
same interface, so they are distinguished through the use of
OSGi service properties, which are name-value pairs (usually
string types), attached to the service instance.

The wiring between drivers and devices shown above is
known as device refinement, because the driver uses the
functionality of the lower device service to expose a higher-
order device that refines its capabilities. This wiring takes
place via a matching algorithm in the Device Manager.

1) Automatic Driver and Device Matching
OSGi‟s Device Manager determines that a device is a device

service if it is published under an interface that is derived from
the OSGi Device interface and/or contains a
DRIVER_CATEGORY property. It detects drivers if they are
published under the OSGi Driver interface and distinguishes
them by their DRIVER_ID field, Figure 4.

2) Expandability
The current design provides for full enumeration of all the
devices in the system, which means that it should meet the
criteria for expandability to support new devices. By utilising
the Device Access Specification‟s matching algorithm with

COMBINING POPULAR GAME CONSOLES AND OSGI TO INVESTIGATE AUTONOMOUS IN-THE-FIELD BIOMEDICAL DATA ACQUISITION AND MANAGEMENT 95

specific codes describing the quality of a match, we can ensure
that new drivers can be added to the system for similar devices
without interference.

The current design provides for serial port drivers and a
consuming driver for the Actigraph device. It allows
expandability to support other classes of devices through the
publishing of meta-data as OSGi service properties in the
service registry. This means that new device classes (such

[(new driver AND unrefined devices > 0) OR

(new device AND drivers > 0)]

Idle

Match Driver

against device

idleDevices:Device[]

:Device

Refine Device

availableDrivers:Driver[]

[driver found]

matchedDrivers:Driver[]

Attach DriverPut back on idle queue
[no match]

Get existing Device

and Driver services

Fig. 4. Driver Detection

as storage devices or sensor devices) can easily be integrated
into the system as well.

VI. CONCLUSION

We examined the requirements of a proposed system to
obtain physiological and survey data from a real life
environment in drivers for the purposes of understanding
fatigue risk factors. Given the desire to conduct research with
willing participants outside the laboratory, we investigated the
need for a computer based device that could be placed in their
homes to collect physiological and survey data and the
requirements for such device to interface with their television,
allow the connection of external medical monitoring devices
and the secondary storage of acquired data sets. We also noted
that this type of autonomous system for collection of such data
in the field was a common theme in many areas of medical,
biomedical research. We also established the need for
middleware that could support remotely deployed gateways
and manage attached devices and our choice of Java and OSGi
to satisfy these needs.

We showed that our choice of a game console as a suitable
hardware device over similar devices such as personal video

recorders and set top boxes was due to their high availability
and stable platform details.

The PlayStation-2 (PS2) was shown as a potential option
because it could run Linux and allowed external hardware
devices to be attached and was relatively inexpensive.
However, the difficulty in attempting to compile software and
run it on this platform, the difficulty of finding the needed
second hand hardware, its poor performance, and lack of
support, all demonstrated that the PlayStation-2 would be an
inferior choice of platform. We chose the PlayStation-3 (PS3)
as an alternative to PlayStation-2 because it could run Linux
without having to modify the console or introduce an extra
“Linux kit”. It had greater hardware capabilities that increased
the flexibility of the type of software that could be run and how
this could be developed.

It was noted that whilst the PS3 was more expensive than the
PS2 (including the extra hardware and Linux kit) and that PS3
was not expected to drop in price considerably soon, it had
greater hardware availability, which may justify the extra price
paid for its use in our research. At the time of writing this
paper, the PS3 is our preferred computer system for the home
for remote data recording and collection.

The process of elaboration and development of a flexible
device management capability through a merger of OSGi and
HAL software to enable the chosen platform PS3 for our
gateway device to automatically manage peripheral devices
plugged into the remote system (gateway) and connect the right
applications to them was outlined.

A design was demonstrated in theory that utilises the HAL
and OSGI Device Access Specification to provide a framework
for device enumeration and events. This framework is
extensible, and provides sufficient meta-data for distinguishing
between devices. It also provides an automatic refining
structure so that devices are automatically connected with
drivers that can refine them and expose more specific device
services. This work would benefit from future additions to
HAL that detect new kinds of devices and provide better
information about existing devices, provided the architecture of
HAL doesn‟t significantly change.

The design was demonstrated through the specific
development of a driver chain for the Actigraph that
communicates over a virtual USB serial port using its own
communications protocol that a third party sensor can be easily
integrated into the gateway. By developing a generic serial port
refining driver that refines serial port devices in the system and
a specific Actigraph driver that layers on top of the serial port
driver. The Actigraph driver uses the serial port device services
to communicate with the Actigraph, read its status and
download its current data log. This successfully demonstrated
that the software and hardware combination that compose the
gateway provide a platform flexible enough to support multi-
level refining drivers for arbitrary devices that are
automatically connected to the device when it is attached to the
system, and conversely, disconnected from the device when it
is detached from the system.

This choice of the Actigraph proved generic enough to
provide a framework that would allow new devices to be
managed by the system by merely adding the right drivers.

Lastly, a custom graphical application component was built

C. ARMSTRONG, D. KAVANAGH, S. LAL, P. ROSSITER96

that uses the Actigraph device service to demonstrate that an
application could be built atop this framework of devices
services. The graphical application displays the status of the
Actigraph and the status of any download tasks.

ACKNOWLEDGEMENT

The SmartData project was supported under an Australian
Research Council grant (ARC Linkage grant No. LP0562407),
Australia. We thank Venuganan Santhakumar for technical
input.

REFERENCES

[1] Lal SKL & Craig A. 2005, „Reproducibility of the spectral components

of the electroencephalogram during driver fatigue‟, International Journal

of Psychophysiology, vol 55(2), pp137-43.

[2] Ting P et al. 2008, „Driver fatigue and highway driving: a simulator

study‟, Physiology and behaviour, vol 94, pp 448-453.

[3] Li X. and Zhang W. 2004, „The Design and Implementation of Home

Network System Using OSGi Compliant Middleware‟, IEEE

Transactions on Consumer Electronics, vol. 50, no. 2, May 2004.

[4] Zhang, H., Wang, F. and Yunfeng, A. 2005, „An OSGi and agent based

control system architecture for smart home‟, Proceedings of the 2005

IEEE Conference on Networking, Sensing and Control, pp13-18,

Beijing, China, 2005.

[5] Kirchof, M. and Linz, S. 2005, „Component-based development of Web-

enabled eHome services‟, Personal and Ubiquitous Computing, vol. 9,

issue 5, September 2005.

[6] Chan, M., et al. , „Smart homes – Current features and future

perspectives‟, Maturitas, 2009

[7] Chan, M.; Esteve, D.; Escriba, C. and Campo, E., „A review of

smarthomes – Present state and future challenges‟, Computer Methods

and Programs in Biomedicine 91 (2008), pp 55-81, 2008

[8] Lin, C.; Young, S. and Kuo, T., „A remote data access architecture for

home-monitoring health-care applications‟, ScienceDirect Medical

Engineering and Physics 29 (2007) pp 199-204, 2007

[9] Actigraph 2007, Actigraph GT1M Monitor / ActiTrainer and ActiLife

Lifestyle Monitor Software User Manual, Actigraph LLC, March 2007,

<http://www.theactigraph.com>.

[10] Van Hoff, A. 1997, „The case for Java as a programming language‟,

IEEE Internet Computing, vol. 1, issue 1, pp 51-56, Palo Alto, CA, USA.

[11] OSGi Alliance 2009, OSGi Alliance | About / The OSGi

Architecture, viewed 16 March 2009,

<http://www.osgi.org/About/WhatIsOSGi>.

[12] Apache 2009, Apache Felix, viewed 4 February 2009,

<http://felix.apache.org/site/index.html>.

[13] Eclipse 2009, Equinox, viewed 4 February 2009,

<http://www.eclipse.org/equinox/>.

[14] Knopflerfish 2008, Knopflerfish OSGi – open source OSGi service

platform, view 4 February 2009, <http://www.knopflerfish.org/>.

[15] ProSyst 2009, OSGi Framework Implementations – open source Equinox

and commercial – ProSyst, viewed 4 February 2009,

<http://www.prosyst.com/products/osgi_framework.html>.

[16] Sentilla Corporation, Sentilla, 2009 <http://www.sentilla.com/>

[17] Sony Computer Entertainment 2009, Business Development/Japan |

CORPORATE INFORMATION | Sony Computer Entertainment Inc.,

Sony Computer Entertainment, viewed 4 February 2009,

<http://www.scei.co.jp/corporate/data/bizdatajpn_e.html>.

[18] Sinclair 2006, „Sony stops making original PS‟, Gamespot, viewed

4 February 2009,

<http://au.gamespot.com/pages/news/story.php?sid=6146549>.

[19] Microsoft 2000, Xbox Brings “Future-Generation” Games to Life,

Microsoft Corporation, viewed 4 February 2009,

<http://www.microsoft.com/presspass/features/2000/03-10xbox.mspx>.

[20] Sony 2001, EE Overview, Sony Computer Entertainment Inc., version

5.0, published October 2001, Tokyo, Japan.

[21] Playstation 2 Linux Community 2007, Linux for PlayStation 2

Community: Linux for Playstation 2 FAQs, viewed 4 February 2009,

<http://playstation2-linux.com/faq.php>.

[22] Kaffe 2009, Kaffe.org, viewed 4 February 2009,

<http://www.kaffe.org/>.

[23] Sony Computer Entertainment 2 2008, Linux Kernel Overview,

viewed 19 March 2009,

<http://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-

docs/ps3-linux-docs-08.06.09/LinuxKernelOverview.html>

[24] IBM 2004, IBM developer kits for Java technology on Apple

PowerPC hardware, viewed 19 March 2009,

<http://www.ibm.com/developerworks/systems/library/es-apple.html>

[25] Freedesktop.org, freedesktop.org - Software/hal, 2009,

<http://www.freedesktop.org/wiki/Software/hal>

[26] OSGi 2007a, OSGi Service Platform: Service Compendium, Release 4,

Version 4.1, published April 2007, viewed 13 June 2009,

<http://www.osgi.org>.

[27] OSGi 2009a, OSGi Service Platform Core Specification: Release 4

Version 4.2 (Public Draft 10 March 2009), The OSGi Alliance,

viewed 07 June 2009,

<http://www.osgi.org/Specifications/Drafts>.

[28] OSGi 2009b, OSGi Service Platform Release 4: Version 4.2 – Early

Draft 3, published 7 March 2009, viewed 13 June 2009,

<http://www.osgi.org/Specifications/Drafts>.

[29] Freedesktop.org, freedesktop.org - Software/dbus, 2009,

<http://www.freedesktop.org/wiki/Software/dbus>

[30] Keane Jarvi, RXTX: The Prescription for Transmission, 2006,

<http://users.frii.com/jarvi/rxtx/intro.html>

COMBINING POPULAR GAME CONSOLES AND OSGI TO INVESTIGATE AUTONOMOUS IN-THE-FIELD BIOMEDICAL DATA ACQUISITION AND MANAGEMENT 97

http://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/ps3-linux-docs-08.06.09/LinuxKernelOverview.html
http://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/ps3-linux-docs-08.06.09/LinuxKernelOverview.html
http://www.ibm.com/developerworks/systems/library/es-apple.html

