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Abstract—Nowadays, many Internet users make use of Peer-
to-Peer (P2P) systems to download electronic content including
music, movies, software, etc. Growing popularity in P2P based
protocol implementations for file sharing purposes caused that
the P2P traffic exceeds Web traffic and in accordance with to
many statistics, P2P systems produce a more than 50% of the
whole Internet traffic. Therefore, P2P systems provide remark-
able income for Internet Service Providers (ISP). However, at the
same time P2P systems generates many problems related to traffic
engineering, optimization, network congestion. In this paper we
focus on the problem of flow optimization in P2P file sharing
systems. Corresponding to BitTorrent-based systems behaviour,
the optimization of P2P flows is very complex and in this work
we consider different heuristic strategies for content distribution
and moreover we propose a new evolutionary algorithm (EA)
for this problem. We compare results of the algorithms against
optimal results yielded by CPLEX solver for networks including
10 peers and relation to random algorithm for 100-node systems.
According to numerical experiments, the EA provides solutions
close to optimal for small instances and all of the heuristics
exhibit a superior performance over random search.
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I. INTRODUCTION

FOR AT LEAST the past decade we have been experienced

an explosion and extremely growing popularity in Peer-

to-Peer systems (P2P) based applications for content distri-

bution purposes. Now the P2P are widely used mechanisms

to share resources via Internet. Very popular systems were

designed to share CPU (Seti@Home, XtremWeb, Entropia),

publish files (Napster, Gnutella, Kazaa, BitTorrent), realize

Internet based telephony (Skype) or Internet television (Joost).

Furthermore some systems were designed to share disk space

(Intermemory [6], PAST [9], OceanStore [16]). In accordance

to many statistics P2P is still producing more traffic in the

Internet then all other applications combined. Its average

proportion during the measurement period regionally varies

between more than 40% in the Middle East and about 80%
in Eastern Europe [1], [13], [14], [25]. Many Internet Service

Providers (ISP) and other telecommunication operators cope

with the problem how to decrease costs generated by the P2P

systems [1]. On the whole it would be decisive to reduce

this load simultaneously maintaining the performance of P2P

systems at acceptable level, particularly for the reason that
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Fig. 1. Client-Server vs. Peer-to-Peer architectures.

P2P traffic is expected to stay the largest share of Internet for

next years [7].

A P2P system is defined as a system, in which each

node acts both as a server (producer that provides data to

other nodes) and as a client (consumer that retrieves data

from other nodes, Fig. 1). P2P systems usually are built as

overlay networks, i.e. they work on the top of underlying

computer network. Peer-to-Peer systems can be divided into

two categories: unstructured - the content stored on a given

peer is unrelated and does not have any specific structure

and structured - mainly based on Distributed Hash Tables

(DHT) that provide a global view of data distributed among

many peers independent of actual location. Unstructured P2P

systems can be: centralized - a central server that stores only

information (e.g. IP addresses) of peers where some content

is available (e.g. Napster), pure - the system contains no

central server and relies on flooding the information on desired

content over the network (e.g. Gnutella 0.4 and Freenet) and

hybrid - using a hierarchy of superpeers - servers that store

content available to the connected peers together with their IP

address (e.g. Gnutella 0.6 and JXTA) [25].

In this paper we focus on offline optimization of flows

in P2P systems. We are aware of the fact that many P2P

systems are very dynamic and stochastic, so offline modelling

of such systems can be viewed as inaccurate. However, it is a

common research approach that difficult and dynamic systems

are reduced to simpler cases to enable creation of models

that can be solved optimally in a reasonable time. Thus,

some benchmarks that allow us to estimate performance of

real systems can be obtained. Since the Integer Programming

formulation of the flow optimization in P2P systems is very

complex, only for very small networks we can use exact

algorithms based on the branch-and-cut method [26], [27].

Therefore, in this work we propose an effective heuristic

algorithm based on evolutionary approach for optimization of

flows in P2P file sharing systems and present 4 hesuristics
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which realize different strategies for content distribution which

we previously described in [17].

The remainder of this paper is organized as follows. In

the next section we discuss the related work on analysis

and optimization of P2P systems. Section III includes the

Integer Programming optimization model of flows in P2P

systems. In Section IV we describe heuristic searches with

their pseudocodes: Random Strategy, Cost Selection Strategy,

Transfer Cost Strategy and Shortest Transfer First. Our Evo-

lutionary Algorithm is presented in Section V. Section VI

contains results of experiments. Finally, concluding remarks

are provided in the last Section.

II. RELATED WORK

Killian et al. consider the overlay network content distri-

bution problem [15]. All content is organized in the form of

unit-sized tokens - files can be represented as sets of tokens.

The distributed schedule of tokens proceeds as a sequence of

time-steps. There is a capacity constraint set on each overlay

arc, i.e. only a limited number of tokens can be assigned to an

arc for each time-step. Two optimization problems are formu-

lated: Fast Overlay Content Distribution (FOCD) and Efficient

Overlay Content Distribution (EOCD). The goal of the former

problem is to provide a satisfying distribution schedule of

minimum number of time-steps. The latter problem aims at

minimizing the number of tokens’ moves. Both problems are

proved to be NP-complete. An Integer Program formulation of

EOCD is presented. Various online approximation algorithms

for distributed version of overlay content distribution problem

are proposed and tested.

Authors of [10] consider the problem of transferring a large

volume of data to a set of clients in the shortest possible

time. A cooperative scenario under a simple bandwidth model

is solved in an optimal solution involving communication

on a hypercube-like overlay network. Also non-cooperative

scenarios based on the principle of barter are discussed.

In paper [34] the performance characteristics of 2nd gen-

eration P2P applications, e.g., BitTorrent (BT) is examined

including: construction of a deterministic model, analytical

calculations of the average delay, proposition of a branching

process model for a P2P system in the transient regime,

and presentation of a steady state analysis for a P2P service

capacity based on Markov chain model. Authors also evaluate

some traces obtained from real BitTorrent network.

In [31] several protocols developed for P2P based file distri-

bution are proposed. Moreover, authors introduce a centrally

scheduled file distribution (CSFD) protocol, to minimize the

total elapsed time of a one-sender-multiple-receiver file distri-

bution task is proposed. A discrete-event simulator is applied

to study the performance of CSFD and other approaches (e.g.

BitTorrent).

Authors of [3] propose several routing algorithms to dis-

tribute data blocks on a network with limited diameter and

maximum degree. The time scale of the system is divided

into steps. A special attention is put on upload policy - a

randomized approach is proposed and examined.

Authors of [20] propose a probabilistic model of coupon

replication systems in order to study a P2P file swarming

system based on BitTorrent. Markov processes are used to

find necessary and sufficient stability conditions.

In [30] a new selection strategy for BitTorrent-like P2P

systems is proposed. The major objective is to reduce the

download time of BitTorrent. The proposed approach is based

on the greedy strategy that a peer assigns each missing piece a

weight according to total number of neighbour’s downloaded

pieces. Next, the peer selects the missing piece with the highest

priority for next download. The simulation run on a discrete-

event simulator shows that the new strategy can improve more

than 15% average download time and reduce in average 60%

total elapsed time comparing to the BitTorrent system.

There are some works that examine the problem of P2P-

based streaming content distribution in overlay networks e.g.

[2], [5], [29], [36]. The common assumption of these works

that significantly simplifies the analysis is that the content

is distributed via a multicast tree, i.e. all subsequent blocks

(pieces) of the same content stream are transported on the

same paths. Thus, there is no need to model the time scale of

P2P system as subsequent time steps and to incorporate to the

model the constraint on block possession. In contrast, the parts

of non-streaming content can be distributed in P2P systems

autonomously, i.e. different blocks can follow different paths

in the overlay network, what yields additional constraints in

the model.

In our previous works [26], [27] we proposed a generic

approach to offline modelling of flows in P2P systems. We

focus exclusively on P2P file sharing systems. We show how

various constraints following from real P2P systems can be

formulated. The formulations can be applied for designing and

optimization of P2P systems. To illustrate our approach we

present results obtained from CPLEX solver. These works are

extended with more details and new aspects of P2P systems

and/or algorithms in our previous papers [17], [18], [28]

To find more information on additional aspects of P2P

systems refer to [25].

III. PROBLEM FORMULATION

The problem of flows in P2P systems was formulated in our

previous works [26], [27]. Therefore, in this section we only

briefly describe the most important elements of the model. Our

formulation follows from previous works on this subject [2],

[3], [4], [10], [15], [19], [20], [22], [23], [31], [32], [34].

The main issue in formulating an offline model of P2P

system is stochastic nature of these systems. Therefore, in this

work we assume that the time scale of the P2P system is di-

vided into time slots that can be interpreted also as subsequent

iterations of the systems. For the sake of simplicity each time

slot has the same length. All actions of the system completed

in the previous iteration are available in the beginning of the

next time slot. For instance, if block b was transferred to vertex

(peer) v in time slot t, then all other peers can try to get this

block from v in time slot t+ 1. This assumption is based on

the fact that there is an indexing system that provides detailed

information on the current availability of blocks in the system.

Our model is not limited to one exact implementation of the

index, i.e. both a centralized (e.g. similar to BitTorrent [8]) or

decentralized (e.g. DHT [25]) approaches can be used.
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Data (content) to be transmitted in the P2P system is

divided into blocks (pieces) of the same length, e.g. 256

KB. We assume that the transfer of one block is completed

within one time slot. Furthermore, each peer participating

the transfer wants to receive all data, so each block must

be delivered to each node (peer). We consider an overlay

network and each peer has a limited upload and download

capacity. We do not take into account capacity constraints on

overlay links. According to analysis presented in [36], node

capacity constraint is sufficient in overlay networks. Moreover,

the underlay core network of the overlay usually is considered

as over-provisioned and the only bottlenecks are access links

[2], [22], [31].

As the optimization objective we use the cost of transfer.

Currently used P2P systems mostly ignore the underlying

Internet topology and ISP link costs, since they are designed to

randomly choose logical neighbors [33]. Thus, there are many

cross-continental downloads that can potentially congest back-

bone networks. To estimate the transfer cost, it is necessary

to provide an effective mechanism for localization of peers by

using for instance [12], [35]: IP location databases, IP prefix,

traceroute records, hop number and RTT (round-trip time). To

denote the cost of one block transfer between peers w and

v we use constant cwv, which can be understood as number

of hops between w and v, number of ISPs between w and v,

RTT between w and v, distance in kilometres between w and

v, cost of cross-ISP transfers, etc.

The optimization model of the P2P transfer is formulated as

an Integer Program (IP) with binary variables. The objective

is to transfer to each node (peer) all blocks in a given number

of iterations (time slots) minimizing the transfer cost. We use

the notation proposed in [24].

Basic flow problem in P2P file sharing systems:

indices

b = 1, 2, ..., B blocks (chunks, pieces of content)

w, v = 1, 2, ..., V vertices (peers, network nodes)

t = 1, 2, ..., T time slots (iterations)

constants
gbv = 1 if block b is located in node v before the P2P

transfer starts (v is the seed); 0 otherwise (binary)

cwv defines transfer cost of one block between from peer

w to v

uv upload capacity of peer v in each time slot (integer)

dv download capacity of peer v in each time slot (integer)

M large number

variable
ybwvt = 1 if transfer of block b to node v from node w

starts in iteration t; 0 otherwise (binary variable)

objective

minimize F =
∑

b

∑

w

∑

v

∑

t

ybwvtcwv (1)

constraints

gbv +
∑

w

∑

t

ybwvt = 1 b = 1, ..., B v = 1, ..., V (2)

∑

v

ybwvt ≤ M(gbw +
∑

i<t

∑

s

ybswi) b = 1, ..., B

w = 1, ..., V t = 1, ..., T (3)
∑

b

∑

v

ybwvi ≤ uw w = 1, ..., V t = 1, ..., T (4)

∑

b

∑

w

ybwvi ≤ dv v = 1, ..., V t = 1, ..., T (5)

In accordance to flow cost optimization the main goal of

that, the problem objective (1) is addressed to assign the flows

in the cheapest way. The result of optimization - y vector

represents sequence of blocks transfers in the P2P network.

To meet the requirement that each block must be transported

to each network node we introduce the condition (2). It refers

to completion constraints. Thus, either peer v posses block

b before P2P process starts (gbv = 1) or block b must be

downloaded by peer v from any peer w exactly once during

P2P transfer (
∑

w

∑
t
ybwvt = 1). It is possible to download

block b from peer w in time slot t if and if only the block b is

located in peer w before time slot t. To meet the possession and

precedence requirement, formula (3) is introduced. Constraint

(3) satisfies the key feature of P2P systems. Note that the

right-hand side of possession and precedence inequality is a

sum of constant gbw = 1 (equals to 1 if block b is located

in node w) and
∑

i<t

∑
s
ybswi (=1 if block b is transferred

to node w from any node s in any iteration i preceding the

current time slot t). Consequently, the right hand side of (3)

equals 1 only if it is possible for node w to upload block b in

time slot t. Note that the constant M in (3) must be at least

equal to V − 1 in view of the fact that peer w might upload

each block at most V − 1 times in case w is the seed. For any

node different than seed it can upload at most V −2 transfers.

Maximum upload rate in each time slot t defines constraint

(4). Given formula assures that the number of blocks uploaded

by node w cannot exceed a given threshold uw. Additionally,

the maximum download rate of node v constraints (5) is

introduced by analogy to (4). Formulas (4) and (5) arise from

the assumption that each node (peer) has a limited capacity of

access link to the network.

The model is sufficient to mirror only the major characteris-

tics of the BitTorrent-like P2P system. However, for additional

constraints that can be incorporated to the model please refer

to our previous works [17], [18], [26], [27], [28].

IV. HEURISTIC ALGORITHMS

This section is devoted to brief description of heuristic

algorithms that we developed in order to simulate BitTorrent-

like P2P system. Our approaches follow mainly from the

BitTorrent file sharing protocol. However, some simplifications

had to be made in order to adjust the heuristics to the

optimization problem presented in the previous section and

previous works. Since the goal of our research is to examine

different strategies for P2P flows assignment and compare
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them to evolutionary algorithm and optimal results, we do

not simulate more details of the systems than modelled in

Section III.

A. Random Strategy (RS)

Mostly randomized algorithm is presented in the pseu-

docode below:

1 procedure RANDOM STRATEGY

2 INITIALIZE t=1;

3 while TransferIsNotCompleted do

4 while IsTransferPossible(t) do

5 v=selectRandomPeerToDownload(t)

6 b=selectRandomBlockToDownload(v,t)

7 w=selectRandomPeerToUpload(b,v,t)

8 TransferBlock(b,w,v,t)

9 end while

10 t=t+1;

11 end while

12 end procedure

First of all, simulations refer to synchronous model, thus the

system works in iterations. All of the presented algorithms

consist of main loop as it is shown in lines 3-11. Flow is

assigned until TransferIsNotCompleted and completion

constraint is not satisfied. For exact time slot t algorithm

performs transfers until the transfer is possible (inner loop

4-9) then system state proceeds to the next time slot. To

model the stochastic nature of BitTorrent-like P2P system the

RS heuristic randomly select the download peer v among all

feasible peers (line 5). A download peer v is feasible if it

can download at least one block from other peer satisfying all

constraints of the system. Next, a block b to be transferred is

also chosen randomly among all feasible blocks (line 6). It is

possible to download block b if at least one node can upload

this block to v under all constraints of the system. Finally,

the uploading peer w is randomly selected among all feasible

upload peers (line 7). Function TransferBlock(b, w, v, t)
(line 8) transfers block b from w to v in time slot t and

updates state of the P2P system (upload and download limits

and possession of the block). Note that, the main loop of

the algorithm (lines 3-11) provides meeting requirement of

completion but the last time slot (maximum t stated as T in

the model demonstrated in previous section) is not defined.

The total P2P processed time may varies in dependence on

current blocks’ transfer performance.

B. Cost Selection Strategy (CSS)

The third approach - Cost Selection Strategy (CSS) - takes

into account transfer costs.

1 procedure COST SELECTION STRATEGY

2 INITIALIZE t=1;

3 while TransferIsNotCompleted do

4 while IsTransferPossible(t) do

5 v=selectRandomPeerToDownload(t)

6 b=selectRandomBlockToDownload(v,t)

7 w=selectCheapestPeerToUpload(b,v,t)

8 TransferBlock(b,w,v,t)

9 end while

10 t=t+1;

11 end while

12 end procedure

The block b to be transferred is selected at random (line 6),

but the closest (in terms of the cost), feasible peer w is chosen

for upload the block b (line 7).

C. Transfer Cost Strategy (TCS)

The modification of CSS can be modelled as Transfer Cost

Strategy (TCS). The pseudocode of TCS is presented below:

1 procedure TRANSFER COST STRATEGY

2 INITIALIZE t=1;

3 while TransferIsNotCompleted do

4 while IsTransferPossible(t) do

5 v=selectRandomPeerToDownload(t)

6 w=selectCheapestPeerToUpload(v,t)

7 b=selectRandomBlockToDownload(w,v,t)

8 TransferBlock(b,w,v,t)

9 end while

10 t=t+1;

11 end while

12 end procedure

In contrary to CSS, the TCS algorithm models case in

which randomly selected peer from the (list of feasible peers,

in line 5) gets the cheapest possible connection to any up-

loading node w (function in line 6). Eventually block b to

be transferred is selected randomly (line 7). Note that, the

sequence of functions selectCheapestPeerToUpload and

selectRandomBlockToDownload changed and due to that

fact functionalities of both of them are modified also.

D. Shortest Transfer First (STF)

The last of the described algorithm - Shortest Transfer First

(STF) - realizes the cheapest possible transfer by cheapest

possible transfer synchronously in global meaning. Practically,

the STF is unable to be implemented in real BitTorrent-like

system because P2P architecture is characterized by decen-

tralized form. However we propose the STF strategy to obtain

benchmark results.

1 procedure SHORTEST TRANSFER FIRST

2 INITIALIZE t=1;

3 while TransferIsNotCompleted do

4 while IsTransferPossible(t) do

5 (w,v)=selectPeersToCheapestTransfer(t)

6 b=selectRandomBlockToDownload(w,v,t)

7 TransferBlock(b,w,v,t)

8 end while

9 t=t+1;

10 end while

11 end procedure

Function selectPeersToCheapestT ransfer in line 5 re-

turns pair of nodes: uploading w and downloading v that

transfer of any block is feasible in time slot t. To finalize

transfer, block b is selected randomly from the list of all block

which are possible to be proceeded between peers w and v

(line 6).

V. EVOLUTIONARY ALGORITHM

Major issue when designing evolutionary algorithms is to

cast a solution into a single specimen [21]. Representation of

the solution must be simple and created in a way that allows

creating further solutions in a evolutionary process called
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Fig. 2. Chromosome coding (single solution).

Fig. 3. Crossover operation.

crossover. In this section authors suggest a two dimensional

data structure modelling the entire process of exchanging

blocks. Root of the model is a list of data structures called

”Iteration”. ”Iteration” consists of list containing specific trans-

fers that were executed in this iteration. Fig. 2 explains this

concept.

This approach is very simple and allows to create child

solution from several parent solutions. Crossover is performed

on 2 or more parent solutions, and creates one child solution.

When creating new solution, next downloads from specific

iteration from the parents are taken and inserted to the same

iteration in child solution after checking if they fit all the

constraints. Fig. 3 generally explains the crossover in the single

iteration.

Order of inserting transfers from parent donors doesn’t have

to be specified as presented above. In the beginning of the

crossover a random decision is made, whether to take one

download from one parent and move to the next parent, or

each time choose donor randomly.

With these settings results of improvement in next genera-

tions of solutions were best. It’s obvious that not all transfers

are suitable and doesn’t fit the constraints. In the process

of adding new transfer there is a third party function that

checks all the constraints, if transfer is correct, it is added

to child solution, otherwise discarded. There is no guarantee

that created solution will cover all transfers needed. There was

a need to create a function that will complete the new solution.

Completing function takes turns and revises iterations one by

one and adds one transfer to each. Once it reaches the last

iteration, it comes back to the beginning. Function works till

solution is complete or it is impossible to add next transfer.

Adding a transfer can be executed in two ways. The transfer

with lowest possible cost in current moment can be inserted,

or a random transfer. Decision which one to chose is made

randomly. The odds of picking the best - lowest cost transfer is

80% and random 20%. The same completing function is used

to create base solutions to start population, because the task

is the same - create a correct, complete solution. In contrary

to completing solution which is a result of crossover, when

creating new solution the odds of inserting the best - lowest

cost transfer is 20% and random 80%. All other procedures

are performed in the same way.

It is obvious that crossover is performed with certain amount

of randomness. It eliminates a need to enrich and differentiate

pool of solutions using additional mutation. In this case

completing function has two tasks: fill the missing transfers

in order to create correct solution, and bring diversity to

population of solutions.

Other evolutionary operators are a matter of user’s choice. In

this work we tested the following combinations of operators:

4 selection methods (roulette, strongest, youngest, random),

3 breeding methods (strongest, youngest, random) and 3

removing methods (oldest, weakest, hybrid).

Variety of problems solvable by evolutionary algorithms is

very wide. Thus it’s obvious that algorithm must be adapted

to the problem. Besides the problem coding and crossover

described above, authors suggested following modifications

that improved quality of solutions of the considered problem

in a great way.

First, we introduce a kind of global mutation operator

called shot. Evolutionary algorithm base on executing a certain

amount of iterations, during which population breeds and

some specimens die and generation after generation solutions

improve. During many experiments with the evolutionary

algorithm authors spotted that solution’s quality no longer

improves after performing about 1000 iterations on one popu-

lation. The improvement is lesser even after 500 iterations.

Therefore, authors suggested performing less iterations on

many start populations. Creating one start population and

performing few hundreds iterations on it was called a shot.

This solution combined with inserting best specimen (solution)

into next start populations gave extreme improvement in

solution’s quality and prevented optimization from stopping

in local minimum of objective function.

Another modification is related to sections - nodes are di-

vided into sections based on their distance between each other

or having same ISP. While choosing transfers during creating,

crossing over and completing solutions, sections mechanism

prevents algorithm from picking transfers that aren’t develop-

mental. I.e. transferring block from remote section while it’s

present in the same section or closer, or transferring block

from other ISP when it’s present in a node that belongs to the

TABLE I
CUSTOMIZABLE PARAMETERS OF THE EA

Parameter Min Max

Start population count 30 300

Parents count 2 10

Population to reproduce [%] 10 100

Population to remove [%] 0 80

Iterations per shot 10 100000

Shots 1 1000
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same ISP. Sections mechanism prevents high cost transfers and

as an effect, reduces cost of entire solution.

Customizable parameters of the algorithm are listed in

Table I, together with range they can be set in.

VI. EXPERIMENTATION RESULTS

To solve the model (1)-(5) in optimal way we apply CPLEX

11.0 solver [11]. The evolutionary algorithm and all heuristics

were implemented in C#, Visual Studio 2008.

The methodology of tests was similar to [26], [27]. To

compare results of the evolutionary algorithm and heuristics

against optimal results, we had to limit sizes of the problem

instances in order to obtain optimal results approximately in

one hour. After several experiments we decide to test networks

consisting of 10 vertices (peers), 3 blocks to be transferred

and 4 time slots. According to [12] we assume that peers are

located in large cities worldwide. Unnecessary P2P transfers

crossing different ISPs, countries and continents increase the

operating cost of an ISP significantly [1], [12]. To examine

this fact, we set the cost of one block transfer between two

peers located in two cities just as the distance in kilometres

between these two cites. We consider three networks: E5A5

- 5 peers in Europe and 5 peers in North America, E7A3 - 7

peers in Europe and 3 peers in North America, and E10 - 10

peers in Europe.

In the next part of our experiments we run for larger net-

works consisting of 100 peers, with 50 blocks to be transferred

and the number of time slots set to 40. Two networks were

considered: E50A50 (50 peers in Europe and 50 peers in North

America) and E50A30A20 (50 peers in Europe, 30 peers in

North America and 20 peers in Asia). First, authors carried out

tests to tune the algorithm and determine best configuration of

parameters. Test were made for 20 10-node networks. The best

Fig. 4. Results dependency on iterations and shots.

TABLE II
BEST CONFIGURATION OF THE EA

Parameter Value

Start population count 100

Parents count 2

Population to reproduce [%] 50

Population to remove [%] 20

Iterations per shot 300

Shots 40

Selection type Strongest

Breeding type Random

Removing type Weakest

TABLE III
AVERAGE PERCENTAGE DISTANCE IN RELATION TO OPTIMAL RESULTS

Scenarios EA RS CSS TCS SFT

E5A5 2.91% 80.8% 27.4% 16.4% 116%
E7A3 2.43% 66.9% 16.9% 14.4% 70.2%
E10 1.53% 48.3% 22.6% 21.1% 24.5%

TABLE IV
AVERAGE PERCENTAGE GAP TO RANDOM STRATEGY RESULTS

Scenarios EA CSS TCS SFT

E50A50 (a) 72.7% 52.5% 64.5% 56.2%
E50A50 (r) 74.1% 61.7% 68.1% 67.9%
E50A50 (s) 74.6% 59.2% 65.0% 79.8%

Fig. 5. Comparision of algorithms for 100-node scenarios with different
types of access links.

configuration is reported in Table II. Fig. 4 shows the cost as

a function of iteration and shots number.

The next goal of experiments was to compare the EA

and heuristics against optimal results generated by CPLEX

solver. In Table III we report an average percentage gap

between algorithms in relation to the optimal results 3 different

scenarios (about 30 networks was tested for each scenario).

The EA provides results close to optimal - the average gap is

about 2%, moreover it exhibits a superior performance over

other heuristics. The EA outperforms RS by about 78%, CSS

by 25%, TCS by 14% and STF by over than 113%. Each

heuristic was repeated with 100000 iterations.

Experimentations on 100-node networks were additionally

divided into three basic categories concerning features of

access links in the systems: network with asymmetric links

(derived from ADSL concept), symmetric (the same upload

and download limits) and random (proportional number of

symmetric and asymmetric links). Table IV presents an aver-

age percentage gap of heuristics solutions to results obtained

by Random Strategy (bold values are best). The EA provided

with the best results for scenarios with asymmetric (a) and

random (r) links but for systems with symmetric access links

(s) the best heuristic is STF. The general trend for E50A50

systems is shown in Fig. 5. Furthermore, it should be noted

that the execution time of EA for 10-node networks was

about 1 minute, RS, CSS, TCS and STF worked about 20-25

seconds, while the CPLEX solver in many cases needed more

than 1 hour. In contrast, the execution time of EA for 100-

node networks took about 1 hour while for other heuristics

was approximately equal to 20 minutes (100 repetitions of

algorithms).
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VII. CONCLUDING REMARKS

Distribution of blocks in P2P network is a sophisticated

problem, that is really difficult to model so it has resemblance

to actual networks. However, model used in this work is realis-

tic and is very useful in optimization process. We proposed a

new evolutionary algorithm solving the P2P flow optimization

problem and compared it to random based heuristics with cost

selection strategies. Results of the EA are very close to optimal

results for small instances. Either the algorithm or heuristics

- comparing to branch-and-cut algorithm - need less compu-

tational time and can be applied for much larger networks.

Experimentations show that, it is worthy implementing some

mechanisms from evolutionary algorithm or cost strategies in

P2P file sharing applications therefore transport costs might

be reduced to about 50-80 percent than randomized flow

assignment. Eventually, presented algorithms may be useful

in planning distribution of i.e. updates to software using

BitTorrent, which is most efficient way of exchanging data

especially when number of participating nodes is enormous.
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