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It can be viewed, using the terminology formulated in [6], 
as a dynamic two-port described by two sets of variables: of 

port voltages { }1 2,v v  and currents { }1 2,i i , and by a set of 

algebraic and non-algebraic relations between their elements. 

So denoting the latter set by a bold-faced 
H
f , meaning a 

vector, we can write 
 

( ) ( ) ( ) ( )( )1 2 1 2
=, , , 0

H
v t v t i t i tf  (1a) 

 

or shortly, without showing a continuous time variable t in the 
expression, as 
 

( )1 2 1 2 , , , =0H v v i if  (1b) 

 

where 0  means a zero vector. 

Equation (1b) constitutes an implicit form of the 
constitutive relation of an amplifier H in Fig. 1. In what 
follows, we assume that its explicit form can be derived 
uniquely from (1b). 

An example of the explicit form of the constitutive relation 
of an element closely related to that in Fig. 1 was given in [6] 
(see page 1026 therein). That is for an algebraic n-port called 
in [6] an x-controlled voltage source, where x stands for a 
vector of controlling variables. Specialized for n=2 (two ports) 
with a controlling variable being the voltage at the port 1, it 
reads as 
 

( )
1

2 1

0i

v f v

=


=
 (2) 

 

where f denotes an ordinary function, not necessarily a linear 
one.  

Note now that if the amplifier of Fig. 1 were a memoryless 
element its description by (2) would constitute an adequate 
model for it. Also, observe that, to allow in such a model for H 
of Fig. 1 being a dynamic element (with memory), we need 
only to modify slightly (2). Simply, we then rewrite the 
second equation in (2) in a more general form as shown below 
 

( )
1

2 1

0i

v H v

=


=
 (3) 

 

with H meaning now a generally non-algebraic operator 
(describing the dynamic phenomena). 
 

Remarks: 
1. The explicit forms of the constitutive relations of 

amplifiers: without and with memory (a dynamic one) 
considered in this paper are given, respectively, by (2) and 
(3). 

2. Note that knowing (3) we can detail (1b). Then, we get 

 

 ( )
( )

1

1 2 1 2

2 1

0
 , , ,

0
H

i
v v i i

v H v

   
= =   −   

f . (4) 

 

3. Note that all the forms of the amplifier constitutive 
relations presented are “truly internal” relations, relating to 
each other exclusively amplifier port variables. For these 
relations, a place of application of an input signal to a 
network, in which a given amplifier is embedded, is of 
absolutely no importance. 

4. Note that similar means of amplifier modeling as given by 
(2) or (3) were used without referring to notion of the 
constitutive relation, in many papers, for example see the 
most recent works [5], [10], [11]. Here, we provide 
however a general framework for all these particular 
results published in the literature up to now. 

 
In what follows, we specialize our general model of an 

amplifier given by (3) to the case of a weakly nonlinear 
amplifier. That is we specialize it to such an amplifier for 

which the operator ( )1H v  in the second equation in (3) can 

be expanded in a Volterra [4] series giving 
 

( ) ( )
2 1 1 1

1
1

... ( , ..., ) ( )
n

n

H n k k
k

n

v H v h v t dτ τ τ τ
∞ ∞∞

=
= −∞ −∞

= = Π −∑ ∫ ∫ . (5) 

 

In (5), 
( )

1
( ,..., )

n

H n
h τ τ  means the amplifier nonlinear 

impulse response of the n-th order. 
Furthermore, the term “weakly nonlinear” means that the 

series (5) can be well approximated by its first three 
components for the values of amplitudes and frequencies of 

the voltage signals ( )1
v t  that are used in practice at the 

amplifier port 1. In other words, we assume that we can 
successfully use in the analysis (not exceeding a certain 
amount of error) the following truncated expansion: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3

2 1 2 2 2 2 2 2
...

H H H H H H
v H v v v v v v v= = + + + ≅ + +  (6a) 

 

with 
 

( ) ( ) ( )
2 1 1

1
... ( , ..., ) ( )

n
n n

H H n k k
k

v t h v t dτ τ τ τ
∞ ∞

=
−∞ −∞

= Π −∫ ∫  (6b) 

 

for 1 2 3, , , ...n = . For simplicity of notation, the time variable 

t is dropped in (6a). Moreover, it is clear from (6a) and (6b) 

that 
( ) ( )
2 1 2( ) ( )
n n

H Hv tv v= , n=1,2,3,…, are the partial responses in 

the voltage ( )2
v t  that are associated with the corresponding 

orders n of amplifier nonlinearities. Further, the second 
subscript “H” in these partial responses indicates that they are 
calculated according to the formula of an amplifier 
constitutive relation (they regard the amplifier constitutive 
relation). 
 

Remarks: 
1. Note that the Volterra series given by (6a) and (6b) does 

not play in (3) its usual role of an input-output 

 i2 

v2 

i1 

v1 

H 

 
 

Fig. 1.  Amplifier as a two-port circuit element. 

  

ANDRZEJ BORYS178



representation for a nonlinear circuit or system. In (3), it is 
a part of this constitutive relation of a circuit element 
called a weakly nonlinear amplifier. And it is important to 
be aware of this fact because a constitutive relation, from 
its nature, is an “internal” description. 

2. The implicit constitutive relation of a weakly nonlinear 
amplifier given by (3), (6a), and (6b) is that relation one 
needs to derive its in-network and input-output type 
descriptions (defined in [3]). Derivation of these 
descriptions is the objective of the next section. 

III. IN-NETWORK AND INPUT-OUTPUT TYPE DESCRIPTIONS OF 

A WEAKLY NONLINEAR AMPLIFIER 

In [3], in-network and input-output type descriptions of 
nonlinear circuit elements were defined and illustrated for 
some basic two-terminal elements by presenting their detailed 
derivations. More complicated elements, as for example multi-
port ones, were not dealt with. Here, we consider the latter on 
an example of a weakly nonlinear amplifier (being a two-port 
element). 

We can observe that the fundamental difference between 
amplifier’s in-network and input-output type descriptions is 
the following: 
1. In an in-network type description, none of the port 

variables is its input signal. That is in this case the input 
signal is applied to a place different from any of the 
element’s ports. 

2. In an input-output type description, one port variable is its 
input signal, and the second one is its output signal. 

(This follows immediately from the application of definitions 
given in [3] to a two-port circuit element.) 

We present derivation of the in-network type description of 
a weakly nonlinear amplifier first. So for this, we assume now 
that this amplifier (denoted as well by H as in Fig. 1) is 

embedded in a network to which an input voltage signal ( )i
v t  

is applied at a port 1 2,i ≠  (for convenience, we assume here 

that ports of H embedded in a network are numbered in the 
same way as shown in Fig. 1). Furthermore, we assume that 

the port voltages ( )1
v t  and ( )2

v t  in this network can be 

expressed by a Volterra series related to the input voltage 

signal ( )i
v t . That is we can express ( )1

v t  and ( )2
v t  as 

 

( ) ( ) ( ) ( )1 2 3

1 1 1 1 1
...

i i i i
v H v v v v= = + + +  (7a) 

 

with 
 

( ) ( ) ( )
1 1 1

1
... ( , ..., ) ( )

n
n n

i n i k k
k

v t h v t dτ τ τ τ
∞ ∞

=
−∞ −∞

= Π −∫ ∫  (7b) 

 

and 
 

( ) ( ) ( ) ( )1 2 3

2 2 2 2 2
...

i i i i
v H v v v v= = + + +  (8a) 

 

with 
 

( ) ( ) ( )
2 1 1

1
... ( , ..., ) ( )

n
n n

i n i k k
k

v t h v t dτ τ τ τ
∞ ∞

=
−∞ −∞

= Π −∫ ∫  (8b) 

respectively, for 1 2 3, , , ...n = . In (7a), ( )1 iH v  denotes an 

operator describing the relation existing in a network 

considered between the port voltage ( )1
v t  (can be viewed as 

an output signal in this relation) and the port voltage ( )i
v t  

(which is the network input signal, so also the input signal in 
this relation). At this point, we point also out a fundamental 

difference existing between H and 
1

H : the first operator 

depends exclusively upon the amplifier’s parameters, contrary 
to the second one, which depends, generally, upon all the 
network’s parameters (that is of the embedded amplifier and 

of the network part connected to it). Further, ( )2 i
H v  from (8a) 

is defined similarly, and differs also similarly from H, as 

( )1 iH v . Moreover, 
( ) ( ) ( )1 1

n n

i i
v v t=  and 

( ) ( ) ( )2 2

n n

i i
v v t= , 

n=1,2,3,…, denote the partial responses in the voltages ( )1v t  

and ( )2v t , respectively, that are associated with the 

corresponding orders of the network nonlinearities (as the 
whole) and are related to the network input signal placed at 
port i. We say also that they are of degree n with respect to the 

variable 
iv . The time variable t is dropped in (7a) and (8a) for 

simplicity of notation. Furthermore, 
( )

11 ( ,..., )
n

n
h τ τ  and 

( )
12 ( ,..., )

n

n
h τ τ  mean the network nonlinear impulse responses 

of the n-th order for the relations between ports 1 and i, and 2 
and i, respectively. 

 Before going further, let’s observe that the second 
equation of the amplifier implicit constitutive relation (3) is 
expressed now by (6a) and (6b). Furthermore, note that 
according to a rule given in [3], to get the element’s in-
network type description, we have to introduce its terminal or 
port variables related with the network input signal into its 

constitutive equation. So substituting the voltages ( )1
v t  and 

( )2
v t  given by the expressions on the right-hand sides of (7a) 

and (8a), we get 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2 3

2 2 2 2

1 1 2

1 1 1 1 1

3 2 1

1 1 1 1 2 1 1

2 1 2

1 1 1 2 1 2 1 2

3 1

1 2 3 1 1

i i i

H i i

i H i

i i i

H i

v t v t v t v t

h v t v t

v t d h v t

v t v t v t d d

h v t

τ τ τ

τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ

∞

−∞

∞ ∞

−∞ −∞

∞ ∞

− −∞ −∞

= + + + =

= − + − +

 + − + + − + 

 + − + − + − + +  

+ − +

∫

∫ ∫

∫ ∫

...

( ) ( ) ( )

( ) .. ( , ) ( )

( ) .. ( ) ( ) ..

( , , ) ( )

( ) ( ) ( )

( ) ( )

2 1 2

1 1 1 2 1 2

1 2

1 3 1 3 1 2 3

i i i

i i

v t v t v t

v t v t d d d

τ τ τ

τ τ τ τ τ

∞

∞

 + − + − + − + ⋅  

 ⋅ − + − + + 

∫

( ) .. ( ) ( ) ..

( ) ( ) .. ...

 (9) 

 

In the next step, comparison of the components of the same 

order (degree) with respect to the input signal 
iv  on both sides 
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of (9) gives 
 

( ) ( ) ( ) ( )1 1 1

2 1 1 1 1
( ) ( )

i H i
v t h v t dτ τ τ

∞

−∞

= −∫   (10a) 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 1 2 2

2 1 1 1 1 1 2

1 1

1 1 1 2 1 2

( ) ( ) ( , )

( ) ( )

i H i H

i i

v t h v t d h

v t v t d d

τ τ τ τ τ

τ τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

= − + ⋅

⋅ − −

∫ ∫ ∫
 (10b) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

3 1 3

2 1 1 1 1

2 1 2

1 2 1 1 1 2

2 1

1 1 1 2 1 2

3 1 1

1 2 3 1 1 1 2

1

1 3 1 2 3

( ) ( )

( , ) ( ) ( )

( ) ( )

( , , ) ( ) ( )

( )

i H i

H i i

i i

H i i

i

v t h v t d

h v t v t

v t v t d d

h v t v t

v t d d d

τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ τ

τ τ τ τ

∞

−∞

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= − +

+ − − +

+ − − +

+ − − ⋅

⋅ −

∫

∫ ∫

∫ ∫ ∫

 (10c) 

 

and so on. 
Consider now the first equation in (3). Obviously, its both 

sides can be also viewed as the Volterra series, as follows 
 

( ) ( ) ( )1 2 3

1 1 1 1
0 0 0... ...i i i i= + + + = + + +  (11) 

 

where the time variable t is dropped for simplicity of notation 

and 
( )
1

n
i , n=1,2,3,…, are the partial responses (of the 

corresponding orders n) in the current 
1
i . Furthermore, note 

that 
1
i  is independent of any other port variable of the 

amplifier. Also, observe that the current 
1
i  is independent of 

all the network port variables when the amplifier is embedded 
in it. In other words, equation (11) is exactly the same: as a 
part of the amplifier constitutive relation and as an equation 

relating the current ( )1i t  with the network input signal ( )i
v t . 

It follows from (11) that 
 

( ) ( ) ( )1 2 3

1 1 10,   0,  0,  ...i i i= = = . (12) 
 

Having (10a-c) and (12), we can now define the in-network 
type description of a nonlinear amplifier in the time domain as 
a series of pairs 
 

( ) ( )
( ) ( )

1

2

,  1 2 3, , , ...

n

i

n

i

i t
n

v t

 =


 (13) 

 

where 
( ) ( )1

n

i
i t  are given by (12) (the second subscript “i” is 

added here to for underlying the consideration of the case of 

an in-network type model) and 
( ) ( )2

n

i
v t  by (10a-c), for 

1 2 3, , , ...n = . And, as mentioned above, when we can restrict 

ourselves to the first three pairs in (13), we have an in-network 
type model for a weakly nonlinear amplifier. 
 
Remarks: 
1. Evidently, (13) represents an iterative process. That is we 

calculate first ( )1
2iv , then ( )2

2iv , and next ( )3
2iv , and so on. This 

process constitutes an iterative model of a nonlinear 
amplifier. 

2. It follows from (10a-c) that the order of calculations of the 
aforementioned terms is fixed in the amplifier in-network 
type model. 

 
Note that equations (10a-c) can be also written in another 

form when we express in them the partial responses 
( ) ( )1

n

i
v t , 

n=1,2,3,…, according to (7b). Then, we get 
 

( ) ( ) ( ) ( )1 1 1

2 1 1 1 1( ) ( ) ( )i H a i a av t h h v t d dτ τ τ τ τ τ
∞ ∞

−∞ −∞

= − −∫ ∫   (14a) 

 

( ) ( ) ( ) ( )

( ) ( )

( )

2 1 2

2 1 1 1

2 1

2 1 1 2 1

1

1 1 2 1 2

( ) ( , ) ( )

( ) ( , ) ( )

( ) ( ) ( )

i H a b i a

i b a b H a

b i a i b a b

v t h h v t

v t d d d h h

h v t v t d d d d

τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

= − − ⋅

⋅ − − + ⋅

⋅ − − − −

∫ ∫ ∫

∫ ∫ ∫ ∫
 (14b) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 1 3

2 1 1 1

1 1 1

2 1 2

1 2 1 1 1

2 1

2 2 1 1

( ) ( , , ) ( )

( ) ( )

( , ) ( ) ( , ) ( )

( ) ( ) ( , ) ( )

(

i H a b c i a

i b i c a b c

H a b c i a

i b i c a b c

i

v t h h v t

v t v t d d d d

h h h v t

v t v t h h

v t

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞

= − − ⋅

⋅ − − − − +

+ − − ⋅

⋅ − − − − + ⋅

⋅ −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

]
( )

( ) ( ) ( )

1 1 2

3

1 2 1 2 3

1 1 1

1 1 1 1 2

3 1 2 3

) ( ) ( )

( , , )

( ) ( ) ( ) ( ) ( )

( )

a i b i c

a b c H

a b c i a i b

i c a b c

v t v t

d d d d d h

h h h v t v t

v t d d d d d d

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

∞ ∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞ −∞

− − − − − ⋅

⋅ + + ⋅

⋅ − − − − ⋅

⋅ − −

∫ ∫ ∫ ∫ ∫ ∫

 (14c) 

 

and so on. 
Derivation of the input-output type description [3] for the 

nonlinear amplifier is much simpler. In this case, the input 

signal ( )i
v t  is applied directly at the amplifier port 1 (see Fig. 

1). So the counterparts of (14a-c) are achieved directly from 

(6a) and (b) by substitution of ( ) ( )1 i
v t v t=  and dropping the 

second index “H” by the symbols of partial responses 
(indicating thereby that they regard the amplifier input-output 
type model). For completeness, we provide also the 
corresponding expressions 
 

( ) ( ) ( )1 1

2 1 1 1
( ) ( )

H i
v t h v t dτ τ τ

∞

−∞

= −∫   (15a) 
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( ) ( ) ( )2 2

2 1 2 1 2 1 2
( , ) ( ) ( )

H i i
v t h v t v t d dτ τ τ τ τ τ

∞

−∞

= − −∫  (15b) 

 

( ) ( ) ( )3 3

2 1 2 3 1 2

3 1 2 3

( , , ) ( ) ( )

( )

H i i

i

v t h v t v t

v t d d d

τ τ τ τ τ

τ τ τ τ

∞

−∞

= − − ⋅

⋅ −

∫  (15c) 

 

and so on. And finally, the whole input-output type model of 
the amplifier is given by 
 

( ) ( )
( ) ( )
1

2

,  1 2 3, , , ...

n

n

i t
n

v t


=



 (16) 

 

where now 
( ) ( )1

n
i t  are given by (12), but 

( ) ( )2

n
v t  by (15a-c), 

for 1 2 3, , , ...n = . 
 

Remarks: 
1. Relation (16), similarly as (13), represents an iterative 

process. So this process constitutes an iterative model of a 
nonlinear amplifier. 

2. It follows from (15a-c) that the order of calculations of the 

terms 
( ) ( )2

n
v t , 1 2 3, , , ...n = , is not fixed in the amplifier 

input-output type model. 
 

It is interesting to note that the input signal ( )i
v t  can be 

also expressed as the following Volterra series 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3
0 0... ...

i i i i i
v t v t v t v t v t= + + + = + + +  (17) 

 

where 
( )n
i
v , n=1,2,3,…, mean the partial responses (of the 

corresponding orders n) in the voltage 
i
v . And (17) can be 

used to derive the amplifier input-output type description from 
its in-network type one. To this end, we assume that the input 
signal 

i
v  is applied directly at port 1 (see Fig. 1) what together 

with (17) allows us to write 
 

( ) ( )1 1

1
( ) ( ) ( )

i i i
v t v t v t= =  (18a) 

 

( ) ( )2 2

1 0( ) ( )i iv t v t= =  (18b) 

 

( ) ( )3 3

1
0( ) ( )

i i
v t v t= =  (18c) 
 

and so on. Applying then (18a-c) in (10a-c), we get really the 
expressions occurring on the right hand sides of (15a-c). 

Finally in this section, note also that in the case of linear 
circuits there is no need for introducing their in-network type 
descriptions. This is evident, for example, from consideration 
of a linear amplifier that is described by (10a) or (15a) and of 

which all the partial responses 
( ) ( )2

n

i
v t  or 

( ) ( )2

n
v t  for 2n ≥ , 

and 
( ) ( )1

n

i
i t  or 

( ) ( )1

n
i t  for 1n ≥  are identically equal to zero. 

The form of the right hand sides of (10a) and (15a) is the 
same. 

IV. IN-NETWORK AND INPUT-OUTPUT TYPE DESCRIPTIONS IN 

MULTI-FREQUENCY DOMAINS 

To transform the expressions given by (10a-c), (13), (14a-
c), (15a-c), and (16) into the multi-frequency domains, it is 
necessary to introduce in them artificial auxiliary time 
variables. For this purpose, we apply a standard procedure 
used in this area, as described, for instance, in [4], [9]. That is, 
for example, we apply 
 

( ) ( ) ( ) ( ) ( )2 2 2 1,..,
n n n

nv v t v t t= →   (19a) 

 

n=1, 2, 3,…, for voltages on the left hand sides of (15a-c) and 
 

 ( ) ( ) ( )1,..,
nn n

i i i nv v t v t t= →   (19b) 

 
with 
 

( ) ( ) ( ) ( )1 1,..,
n

i n i i nv t t v t v t= ⋅⋅⋅  (19c) 

 

for powers of 
iv  which occur on the right-hand sides of (15a-

c). In (19a-c), 
1,.., n
t t  mean the artificial auxiliary time 

variables, and 1, 2,3,...n = . 

Having the artificial auxiliary time variables introduced 
(where needed) in all the aforementioned expressions, we 
apply in the next step the so-called multidimensional Fourier 
transforms [1], [4], [7] to them. These Fourier transforms, for 
the successive indices 1, 2,3,...n = , are defined by 

 

( ) ( )

1 1

1 1 1

( ,..., ) ... ( ,..., )

 exp( 2 ( ... ))

n n

n n

n n n

G f f g t t

j f t f t dt dtπ

∞ ∞

−∞ −∞

= ⋅

⋅ − + + ⋅⋅⋅

∫ ∫  (20) 

 

where 
( )

1
( ,..., )

n

n
G f f  means the n-dimensional Fourier 

transform of a function 
1

( )
( ,..., )

n

n
g t t  having n arguments 

being artificial auxiliary time variables. Moreover, 
1
, ..., nf f  in 

(20) are the frequencies from the n-dimensional frequency 
space.  

Because lack of space, we omit here the details of 
derivations. We present only the results, which are as follows.  

So from (10a-e), we get 
 

( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 1 1 1 1i H iV f H f V f=  (21a) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2

2 1 2 1 2 1 1 2

2 1 1

1 2 1 1 1 2

, ,

,

i H i

H i i

V f f H f f V f f

H f f V f V f

= + +

+
 (21b) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 1 3

2 1 2 3 1 2 3 1 1 2 3

2 1 2

1 2 3 1 1 1 2 3

2 2 1

1 2 3 1 1 2 1 3

3 1 1 1

1 2 3 1 1 1 2 1 3

, , , ,

, ,

, ,

, ,

i H i

H i i

H i i

H i i i

V f f f H f f f V f f f

H f f f V f V f f

H f f f V f f V f

H f f f V f V f V f

= + + +

+ + +

+ + +

+

 (21c) 
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and so on. In (21a-c), 
1
f , 

2
f , and 

3
f  represent the frequency 

variables in the corresponding multidimensional frequency 

spaces. That is 
1
f  belongs to the one-dimensional frequency 

space, 
1
f  and 

2
f  belong to the two-dimensional frequency 

space, 
1
f , 

2
f , and 

3
f  belong to the three-dimensional 

frequency space, and so on. Moreover, ( )1
HH  and ( )1

1iV , ( )2
HH  

and ( )2
1iV , ( )3

HH  and ( )3
1iV , and so on denote the one-, two-, and 

three-dimensional, and so on, respectively, Fourier transforms 
of the corresponding impulse responses and partial voltage 
responses of the successive orders, occurring in (21a-c). They 

depend upon the frequencies 
1
f , 

2
f , and 

3
f  as indicated. 

( )1
HH , ( )2

HH , ( )3
HH , and so on, are also called the nonlinear 

transfer functions of the corresponding orders 1, 2,3,...n =  (for 

n=1 meaning a standard linear transfer function).  
Furthermore from (13), we have 

 

( ) ( )
( ) ( )

1 1

2 1

,  1 2 3
, ...,

, , , ...
, ...,

n

i n

n

i n

I f f
n

V f f


=



 (22) 

 

where ( ) ( )1 1
, ...,

n

i n
I f f  and ( ) ( )1 1

, ...,
n

i n
V f f , 1, 2,3,...n = , denote 

the successive n-dimensional Fourier transforms of the partial 
responses in the corresponding port current and voltage 
regarding the amplifier in-network type model. 

And from (14a-c), we obtain 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 1 1 1 1 1i H iV f H f H f V f=  (23a) 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1 2

2 1 2 1 2 1 1 2

2 1 1

1 2 1 1 1 2 1 2

, ,

,

i H

H i i

V f f H f f H f f

H f f H f H f V f V f

= + +

+ 

 (23b) 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 1 3

2 1 2 3 1 2 3 1 1 2 3

2 1 2

1 2 3 1 1 1 2 3

2 2 1 3

1 2 3 1 1 2 1 3 1 2 3

1 1 1

1 1 1 2 1 3 1 2 3

, , , ,

, ,

, , , ,

i H

H

H H

i i i

V f f f H f f f H f f f

H f f f H f H f f

H f f f H f f H f H f f f

H f H f H f V f V f V f

= + + +

+ + +

+ + ⋅

⋅ 

 (23c) 

 

where ( )
1

n
H  stands for the n-dimensional Fourier transform of 

the network nonlinear impulse response 
( )
1

n
h , 1, 2,3,...n = . 

Moreover, 
iV  stands for the one-dimensional Fourier 

transform of the input signal 
iv . 

 From (15a-c), we get 
 

( ) ( ) ( ) ( ) ( )1 1

2 1 1 1H iV f H f V f=  (24a) 

 

( ) ( ) ( ) ( ) ( ) ( )2 2

2 1 2 1 2 1 2, ,H i iV f f H f f V f V f=  (24b) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

2 1 2 3 1 2 3 1 2 3, , , ,H i i iV f f f H f f f V f V f V f=  . (24c) 

And finally, we have from (16) 
 

( ) ( )
( ) ( )

1 1

2 1

,  1 2 3
, ...,

, , , ...
, ...,

n

n

n

n

I f f
n

V f f


=



 (25) 

 

where ( ) ( )1 1
, ...,

n

n
I f f  and ( ) ( )1 1

, ...,
n

n
V f f , 1, 2,3,...n = , denote 

the successive n-dimensional Fourier transforms of the partial 
responses in the corresponding port current and voltage 
regarding the amplifier input-output type model. 

V. APPLICATIONS OF IN-NETWORK TYPE MODEL OF 

NONLINEAR AMPLIFIER 

In-network type model of a nonlinear amplifier is destined 
for calculations of nonlinear transfer functions of circuits 
(networks) containing such an element. In the previous 
section, we developed two versions of this model. The first 
one, given by (21a-c), is suited to computer-aided calculations, 
for example, as an element stamp to be built in a computer 
program of nonlinear analysis [2], [12]. On the other hand, the 
second version, given by (23a-c), is suited to “hand and 
pencil” calculations (such as, for example, those presented in 
[5], [10], [11]). Here, we will present some remarks only on 
the latter. 

First, observe that (23a-c) show transparently the 
dependence of the in-network type model of a nonlinear 
amplifier upon its context. This dependence is through the 

nonlinear transfer functions ( ) ( )1

1 1H f , ( ) ( )2

1 1 2,H f f , 

( ) ( )3

1 1 2 3, ,H f f f . We show now, on two illustrative examples, 

how the aforementioned model changes with changes in 
network topology. 

In first example, we consider the topology of a cascade 
connection of two circuit blocks, as shown in Fig. 2, in two 
versions. 

In first version, let 
1

H  in Fig. 2 denote a purely linear 

circuit (for example, a strictly linear amplifier preceding a 
weakly nonlinear one). The nonlinear transfer functions of 
higher orders ( 2n ≥ ) of such a circuit are identically equal to 

zero, what simplifies (23b) and (23c) to  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1

2 1 2 1 2 1 1 1 2 1 2, ,i H i iV f f H f f H f H f V f V f=  (26) 

 

and 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 3 1 1

2 1 2 3 1 2 3 1 1 1 2

1

1 3 1 2 3

, , , ,i H

i i i

V f f f H f f f H f H f

H f V f V f V f

= ⋅

⋅
 (27) 

 

respectively. Obviously, the form of (23a) does not change in 
this case. 

 

H1 

vi 

ii i2 

v2 

i1 

v1 

H 

 
 
Fig. 2.  Cascade connection of two circuit blocks. 
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In second version, let 
1

H  in Fig. 2 denote a nonlinear 

circuit of which nonlinear transfer functions of higher orders 
( 2n ≥ ) are not identically equal to zero (at least those of the 

orders n=2 and n=3). Then, the form of expressions one uses 
is exactly that given by (23a-c). 
 In second example, we consider another fundamental 
topology, a feedback structure, as shown in Fig. 3. 

In Fig. 3, the voltages 
i
v , 

1
v , and 

2
v  denote the port 

voltages, at the corresponding ports: i, 1, and 2. The feedback 
block K stands for a linear dynamic circuit (a linear circuit 
with memory) so it is fully characterized by its (linear) 

transfer function ( )K f , with f meaning a frequency variable. 

The nonlinear transfer functions 
( )1
1

H , ( )2
1

H , and ( )3
1

H  can 

be calculated for the feedback structure of Fig. 3 using one of 
the well-known methods published in the literature [4], [8]. 
The details of these derivations are omitted here. We present 
only the final results: 
 

( ) ( ) ( ) ( ) ( )
1

1 1 1

1 1

1

1 H

H f
H f K f

=
+

 (28a) 

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 1 2 1 2

1 1 2 1

1 2 1 2

1 1

1 1 2 2

,
,

1

1

1 1

H

H

H H

H f f K f f
H f f

H f f K f f

H f K f H f K f

− +
= ⋅

 + + + 

⋅
   + +   

 (28b) 

 

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ){

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

3

1 1 2 3

1 2 3

1

1 2 3 1 2 3

1 1

1 1 2 2

3

1 2 31

3 3

2 2

1 2 3 1 2 1 2

1

1 2 1 2

2 2

1 2 3 2 3 2 3

1

2 3 2 3

, ,

1

1

1 1

1
, ,

1

, ,

1

, ,

1

H

H H

H

H

H H

H

H H

H

H f f f

K f f f

H f f f K f f f

H f K f H f K f

H f f f
H f K f

H f f f H f f K f f

H f f K f f

H f f f H f f K f f

H f f K f f

=

+ +
= ⋅

 + + + + + 

⋅ ⋅
   + +   

⋅ − +
 + 

+ +
+ +

 + + + 

+ +
+

 + + +





    

 (28c) 

 

Applying (28a-c) in (23a-c) gives 
 

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( ) ( )

1 1

1 2 1 1

2 1 1

1 1 1
1

i H

i H

V f H f
H f

V f H f K f
= =

+
 (29a) 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2 1 2

2 1 2

1 2

2

1 2

1

1 2 1 2

1 1

1 1 2 2

,
,

,

1

1

1 1

i

i i

H

H

H H

V f f
H f f

V f V f

H f f

H f f K f f

H f K f H f K f

= =

= ⋅
 + + + 

⋅
   + +   

 (29b) 

 

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ){

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3

3 2 1 2 3

2 1 2 3

1 2 3

1

1 2 3 1 2 3

1 1

1 1 2 2

3

1 2 31

3 3

2 2

1 2 3 1 2 1 2

1

1 2 1 2

2 2

1 2 3 2 3 2 3

, ,
, ,

1

1

1

1 1

1
, ,

1

, ,

1

, ,

1

i

i i i

H

H H

H

H

H H

H

H H

V f f f
H f f f

V f V f V f

H f f f K f f f

H f K f H f K f

H f f f
H f K f

H f f f H f f K f f

H f f K f f

H f f f H f f K f f

= =

= ⋅
 + + + + + 

⋅ ⋅
   + +   

⋅ −
 + 

+ +
− −

 + + + 

+ +
−

+ ( ) ( ) ( )1

2 3 2 3HH f f K f f





 + +   

 (29c) 

 
Finally, note that the right hand sides of (29a-c) are the 

expressions determining the first three nonlinear transfer 

functions ( )1
2

H , ( )2
2H , and ( )3

2
H  of the whole feedback structure 

of Fig. 3, from port i to port 2. 
 

Remarks: 
1. The nonlinear transfer functions (29a-c) represent the 

input-output type description (in the multi-frequency 
domains) of the whole feedback configuration of Fig. 3.  

2. Similarly, the nonlinear transfer functions ( )1
1H , ( )2

1
H , and 

( )3
1

H  describing the “context” network of the amplifier H 

in Fig. 3, and given by (28a-c), represent the input-output 
type model, too. Because they regard the relation existing 

between the (output) port voltage 
1v  and the (input) 

voltage 
iv . 

3. The examples presented above show how the in-network 
and input-output types of descriptions are involved with 
each other. 

 

_ 

+ 

vf 

K 

vi 
v2 v1 

H 

 
 

Fig. 3.  Feedback topology consisting of a nonlinear amplifier H and a linear 

block K. 
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Characteristic for the descriptions (models) developed here 
for a (weakly) nonlinear amplifier is that they are general, 
opposite to those presented in [5], [10], [11]. So they can be 
applied not only to calculations of harmonic distortion, but 
also of any other nonlinear distortion measure, as for example 
intermodulation distortion, signal compression, cross 
modulation etc. Each of these measures has own peculiarities, 
which however can be exploited in a way for making their 
calculations more effective. We illustrate this point in the next 
section sowing how to simplify the harmonic distortion 
calculations in the feedback structure of Fig. 3. 

VI. SPECIALIZATION OF GENERAL RELATIONS FOR HARMONIC 

DISTORTION AND FEEDBACK STRUCTURE OF FIG. 3 

As known [4], the Volterra series can be expressed in a 
more convenient form for circuit analysis by using in it 
nonlinear transfer functions instead of nonlinear impulse 
responses. So applying this approach to (8a) and (8b), we get 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1

2 2 1 1 1 1

2

2 1 2 1 2 1 2 1 2

2

2 1 2 3 1 2

3 1 2 3 1 2 3

exp( 2 )

, exp( 2 ( ))

, ,

  exp( 2 ( )) ...   .  

i

i i

i i

i

v t H f V f j f t df

H f f V f V f j f t f t df df

H f f f V f V f

V f j f t f t f t df df df

π

π

π

∞

−∞

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= +

+ + +

+ ⋅

⋅ + + +

∫

∫ ∫

∫ ∫ ∫

 (30)  

 

Then, we assume that the input signal ( )i
v t  in the feedback 

structure of Fig. 3 has the following form 
 

( ) ( ) ( ) ( )exp 2
i i o i i o
v t A j f t V f A f fπ δ= ⇔ = −  (31) 

 

where a relation with its ordinary (one-dimensional) Fourier 

transform ( )iV f  is shown, too. 
iA  in (31) is a real number 

and means the amplitude of this harmonic signal, but 

( )2
o o
f ω π=  means its frequency (and 

oω  its angular 

frequency). Furthermore, δ  means the Dirac impulse and f is 

the current frequency in its Fourier transform. 

Applying (31) in (30) with ( )1
2

H , ( )2
2

H , and ( )3
2

H  given by 

(29a-c), we obtain 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2

2 1 2

3

3
...   .  

f o i f o i

f o i

v t a j v t a j v t

a j v t

ω ω

ω

= + +

+ +
 (32) 

 

where the coefficients ( )1 f oa jω , ( )2 f oa jω , and ( )3 f oa jω  

are given by 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1

1

1 2 1
1

H o

f o o

H o o

H f
a j H f

H f K f
ω = =

+
 (33a) 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2

2
1 1

,

                      ,

1 1 2 2

f o o o

H o o

H o o H o o

a j H f f

H f f

H f K f H f K f

ω = =

=
   + +   

 (33b) 
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( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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( ) ( ) ( )

3

3 2

3
1 1

2 2

3

1

2 2

1

, ,

1

1 1 3 3

2 , , 2
, ,

1 2 2

,2 , 2
    .

1 2 2

f o o o o

H o o H o o

H o o H o o o

H o o o

H o o

H o o H o o o

H o o

a j H f f f

H f K f H f K f

H f f H f f K f
H f f f

H f K f

H f f H f f K f

H f K f

ω = =

= ⋅
   + +   

⋅ − −
 + 




− 
 +   

 (33c) 

 

Note that (32) is a power series like representation found by 
Palumbo and Pennisi [10] to be a very useful tool in harmonic 
distortion analysis of analog dynamic weakly nonlinear 
circuits. Moreover, (33a-c) are the expressions for the closed-
loop nonlinear coefficients (so called in [10]) of a feedback 
structure in Fig. 3. 
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