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Abstract—In just a few years, gene expression microarrays
have rapidly become a standard experimental tool in the bio-
logical and medical research. Microarray experiments are being
increasingly carried out to address the wide range of problems,
including the cluster analysis. The estimation of the number of
clusters in datasets is one of the main problems of clustering
microarrays. As a supplement to the existing methods we suggest
the use of a density based clustering technique DBSCAN that
automatically defines the number of clusters. The DBSCAN and
other existing methods were compared using the microarray data
from two datasets used for diagnosis of leukemia and lung cancer.
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I. INTRODUCTION

IN SPITE of a very quick development of medicine within

the last decade, finding the course of the disease for

a person diagnosed with cancer can often be puzzling. A

definitive diagnosis of cancer involves biopsy, and examin-

ing the cells under a microscope. Although the analysis of

morphologic characteristics of biopsy specimen is still the

standard diagnostic method, it gives very limited information

and clearly misses out on a lot of important tumor aspects

such as capacity for invasion, and development of resistance

mechanisms to certain treatment agents. This often leads to

the merging of together different subtypes into one diagnostic

class.

To appropriately classify tumor subtypes, the molecular

diagnostic methods are needed, such as microarrays. A major

advantage of a microarray is a huge amount of molecular

information that can be extracted and integrated to find com-

mon patterns within a group of samples. Microarrays could

be used in combination with other diagnostic methods to

add more information about the tumor specimen by looking

at thousands of genes concurrently. Microarray experiments

are being increasingly carried out in biological and medical

research to address the wide range of problems, including the

cluster analysis. Recent studies show [4][1] that the analysis of

microarray data can help in discovering cancer subclasses. In

the medical application of microarray-based cancer diagnosis,

the definition of a new tumor would be based on clustering

results. Inaccurate cluster assignment could lead to wrong

diagnoses and unsuitable treatment protocol.

Numerous clustering algorithms have been applied in the

microarray data analysis. The most commonly used methods,
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such as k-means [12], partitioning around medoids (PAM) [8]

or self-organizing maps (SOM) [9] require the specification

of the number of clusters in advance. However, the correct

estimation of the number of clusters is often a challenging task,

especially in the case of complex, multivariate and noisy data

from microarray experiments. Furthermore, a major drawback

of methods with fixed number of clusters is the fact that they

force every sample to be assigned to a cluster, regardless to the

quality of the resulting dataset partitioning. In this paper we

propose the usage of Density Based Clustering of Applications

with Noise (DBSCAN) [3] for microarray data clustering. As

the DBSCAN algorithm automatically defines the number of

clusters and allows the assignment of outlier samples to a

separate noise cluster, it seems to be well suited for gene

microarray-based studies. Here we compare the DBSCAN

performance with other frequently used clustering algorithms

on the basis of the real gene expression data.

II. MICROARRAYS

In the microarray experiments, the information about the

genes activity is obtained. Genes consist of deoxyribonucleic

acid (DNA). DNA contains the code, or blueprint, used to

synthesize a protein. Genes vary in size, depending on the sizes

of the proteins for which they code. Each DNA molecule is a

long double helix that resembles a spiral staircase containing

millions of steps.

Microarrays depend on the basic principle: complementary

sequences of nucleotides hybridize to one another. For ex-

ample, one strand of the DNA molecule with the sequence

TCATGC will hybridize to another strand with the sequence

AGTACG to form a double-stranded DNA. The information

about the gen activity is obtained from the concentration of

corresponding messenger RNA (mRNA) which is the molecule

produced when a gene is expressed. DNA microarray profiling

uses a small, flat chip that has thousands of single-stranded

DNA embedded on its surface. The mRNA extracted from the

cell is applied to the chip, where it sticks to the complementary

pieces of DNA. Each region of the array, checking the presence

of specific nucleotide sequence in the sample, is called a probe.

The information about the level of the gene activity is obtained

by the fluorescent marker added to the mRNA in the sample.

In the array scanning process, for each probe the fluorescence

intensity of the marker excited by the laser light is measured

and stored as pixel intensity levels in the image. The resulting

image is used to observe different patterns of gene expression

between different tumors.

The main two technologies based on such an overall

scheme are complementary DNA (cDNA) microarrays and the
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high-density oligonucleotide microarrays. In the first case, the

long DNA sequences, chosen from a clone library and ampli-

fied by the polymerase chain reaction (PCR), are spotted on a

glass slide [13]. In this experiment, microarrays are hybridized

with RNA from two sources labeled with different fluors. The

two color channels are referred to by convention as red and

green. The fluorescent red and green cDNA samples are then

applied to a microarray. Computer programs calculate the red

to green fluorescence ratio in each spot. The calculated ratio

for each spot on the array reflects the relative expression of a

given gene in the two samples. The latter type of microarrays

are produced by Affymetrix and sold as GeneChip. In this

microarrays, the probes are made up of a number of short,

fixed length fragments called oligonucleotides. The nucleotide

sequences are synthesized using photolithography on silicon

substrate [11]. In the contrary to the first technique, in high-

density oligonucleotide microarrays the absolute expression

level in one cell population is measured.

After the image preprocessing, the data from a microarray

experiments may be presented in the form of a matrix. Each

element of the matrix addressed by an indexes i, j is a value

proportional to relative or absolute (depending on type of used

microarray) level of the ith gene in the jth sample. A single

column of the matrix corresponds to the expression profile of

all genes in the sample. Each row represents the expression

pattern of one gene over all samples. In all of the microarray

experiments, the resulting array has much more rows than

columns. In consequence, a single microarray can measure the

expression level of thousands of genes at the same time, while

the number of the arrays used in the experiment is typically

lower than one hundred.

III. CLUSTER ANALYSIS

Clustering is a basic multivariative technique that groups

a number of samples into clusters on the basis of a specific

similarity/dissimilarity measure. Cluster analysis approaches

entail making several choices, such as what algorithm to use

in determining the cluster solution, which metric to use to

quantify the similarity/dissimilarity among pairs of samples,

and how many clusters to include in the solution. From a

large number of clustering algorithms, the most common

are k-means [12], partitioning around medoids (PAM) [8],

self-organizing maps (SOM) [9] and hierarchical clustering

[7]. All clustering algorithms use a similarity/dissimilarity

measurement between samples to compare the patterns. There

are dozens of the available metrics, for example: Manhattan

distance, Euclidian distance, Pearsons correlation coefficient,

or averaged dot product. Regardless of the selected algorithm

and the metrics, the main aspect of the clustering problem

is to accurately estimate the number of clusters in a dataset.

Typical clustering algorithms [12] [8] [9] require the number

of clusters as an input parameter. For those methods, the

most common approach to estimate the number of clusters

is based on finding the K clusters in a dataset that provides

the strongest significant evidence against the hypothesis that

there are no clusters (K = 1). Numerous methods have been

proposed for testing the hypothesis that K = 1 and estimating

the number of clusters in a dataset [8] [10] [14] [2] [5]. For

example, Kaufman and Rousseeuw [8] suggest selecting the

number of clusters basing on the silhouette plot. The silhouette

width of ith sample in a dataset is defined as:

sili = (bi − ai)/max(ai, bi), (1)

where ai denotes the average dissimilarity between i and all

other samples in the cluster to which i belongs, and bi is the

minimum average dissimilarity of i to other samples in other

clusters. For a given number of clusters K , the overall average

silhouette width for the clustering is simply the average of sili
over all samples i,

asil =
∑

i

sili/n. (2)

Kaufman and Rousseeuw suggest estimating the number of

clusters K by that which gives the largest average silhouette

width, asil.

Other type of clustering methods, are those which do not

specify the number of clusters prior to running the algorithm,

like for example Quality Threshold (QT) clustering [6] and

DBSCAN [3].

The focus of the QT algorithm is to find the large clusters

that have a quality guarantee. The method requires two param-

eters; MinPts that is the minimum number of samples in any

cluster; d that is a cluster diameter, which means that any two

samples in a cluster have a jackknife correlation value that is at

least 1−d. The cluster diameter can range from 0 to 2, because

the jackknife correlation lies in the interval [-1,1]. For each

sample in the dataset, the group is formed with the samples

that have the greatest jackknife correlation with it. The number

of candidate clusters is equal to the number of samples, and

many candidate clusters overlap. At this point, the largest

cluster is selected and retained. The samples it contains are

not considered and the entire procedure is repeated on the

smaller set. A termination criterion is to stop when the largest

remaining cluster has fewer than minPts samples.

DBSCAN algorithm is a clustering method that uses density

of the samples as a parameter guiding the clustering procedure.

The method requires two parameters; MinPts that is the

minimum number of samples in any cluster; Eps that is the

maximum distance of the sample to at least one other sample

within the same cluster.

In the first step, all samples are divided into three groups;

core points that is samples with at least MinPts samples

within Eps; border points that is samples that have at least

one core point within Eps; noise - all the remaining samples.

In the second step, the clusters are constructed by starting from

any unclustered core point, that is a seed for a new cluster,

and iteratively checking all the neighbors within Eps. If the

neighbor is a core point as well, then its neighbors are checked,

too. The border points are just added to the cluster without

verifying their neighbors.

In DBSCAN method a two parameters have to be defined.

While MinPts is naturally defined as the minimum size

of the cluster wanted to be discovered, choosing appropriate

Eps value is not obvious. The DBSCAN authors proposed

the approach for determining the parameter Eps. For a given
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Fig. 1. The example of sorted k-dist graph.

MinPts they defined a function k-dist mapping each point to

the distance from its kth nearest neighbor. When sorting the

points of the database in descending order of their k-dist values

and choosing arbitrary Eps value, the resulting noise cluster

size is no greater than the number of points with greater k-

dist value than Eps. In other words, the sorted k-dist function

enables to estimate the Eps value on the basis of the assumed

percentage of noise in the dataset. The example of sorted k-

dist graph is presented in Fig. 1. For instance, for prespecified

20% of noise in the dataset, Eps value used for clustering

should be approximate to 0.28 basing on the curve in Fig. 1.

IV. EXPERIMENTAL SECTION

In this paper, our main concern is to estimate the number

of clusters in a dataset. We decided to analyze the DBSCAN

properties, in comparison to the three other clustering methods,

which are widely used for clustering gene expression data. The

algorithms belong to two categories in respect of the ability to

automatically define the number of clusters. The first category

includes two algorithms which use the number of cluster as an

input parameter: k-means and SOM. Latter category, besides

the DBSCAN, consists of the second described method which

does not require the number of clusters the QT algorithm.

To estimate the number of clusters produced by k-means

and SOM we used the average silhouette width parameter

described above. We have tested those four algorithms on the

real gene expression data.

To assess the quality of algorithms, we need some objective

external criteria. Since the DBSCAN and QT define the noise

cluster, while k-means and SOM does not, comparing of

the results is difficult. In order to compare clustering results

against the true class information, we employ the number of

bad classified samples (b) and the number of noise samples

(n). Second value (n) is defined only for DBSCAN and QT,

because k-means and SOM does not define the noise cluster.
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Fig. 2. Leukemia dataset.
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Fig. 3. Lung cancer dataset.

A. Microarray Data

The algorithms were applied to gene expression data

from two recently published microarray studies: the leukemia

dataset [4], and the lung cancer dataset [1]. The leukemia

dataset comes from the study of gene expression in the three

types of acute leukemia: B-cell acute lymphoblastic leukemia

(ALLB), T-cell acute lymphoblastic leukemia (ALLT) and

acute myeloid leukemia (AML). The gene expression levels

were measured using Affymetrix high-density oligonucleotide

microarrays containing 6817 human genes. The data consist

of 38 cases of ALL B-cell, 9 cases of ALL T-cell and 25

cases of AML. According to [4], three preprocessing steps

were applied to the data. First, a floor of 100 and a ceiling of

16000 was set; second, the data were filtered to include only

genes with max/min > 5 and (max −min) > 500, where

min and max corresponds to the minimum and maximum

value in a single row, indicating a single gene; and third,

the data were transformed to base 10 logarithms. The lung

cancer dataset comes from a study of gene expression in

the five types of lung cancer. The gene expression levels
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were measured using Affymetrix high-density oligonucleotide

microarrays containing 12600 human genes. The data consist

of 139 cases of lung adenocarcinoma (AD), 21 cases of

squamous cell lung carcinoma (SQLC), 20 cases of pulmonary

carcinoids (PL), 6 cases of smallcell lung carcinoma (SCLC)

and 17 cases of normal lung (NL). The preprocessing steps

performed to the data were the same as in case of leukemia

dataset described above.

Microarray experiments allow to determine the expression

levels of thousands of genes, however a nearly constant expres-

sion level of gene for all samples is a common situation. Those

genes are not likely to be useful in cluster analysis; therefore,

we exclude the low variance genes from the clustering process.

In this paper, the 200 most variable genes were used to analyze

the leukemia, and the 500 most variable genes were used for

the lung cancer dataset. For visualization purposes we use

a well known dimension reduction method called principal

component analyze (PCA). A visualization of the samples

distribution from the leukemia and the lung cancer datasets on

the plane of the two first principal components is presented in

Fig. 2 and 3.

B. Results

The four methods: k-means, SOM, QT and DBSCAN were

applied to estimate the number of clusters for each of the

two microarray datasets. The experimental results are listed

in Table 1. Fig. 4 and 5 display the clustering results on the

plane of the two first principal components for leukemia and

lung cancer datasets respectively. For more details, in Table 2

the number of badly classified samples (b) and the number of

noise samples (n) calculated for both datasets are presented.

The numbers in brackets in Table 2 show the number of

badly classified samples while k-means and SOM clustering

algorithms performed with the correct number of clusters. The

DBSCAN and QT uses the same value of minPts parameter:

5 for the leukemia dataset and 3 for the lung cancer dataset.

Lesser value of minPts used in the lung cancer dataset

is necessary to discover a small SCLC class. In DBSCAN

method, we estimate the Eps value assuming 20% of the noise

to the all samples ratio, which corresponds to Eps equal to

20.0 and 3.5 in the leukemia and the lung cancer datasets

respectively. Similar results were obtained with Eps value

calculated from the range of 15% to 25% of the noise to the

all samples ratio. In QT method, the best results were obtained

with the jackknife correlation threshold 0.7 in both datasets.

Changing the threshold in QT from 0.65 to 0.75 does not

change the number or size of clusters.

All the methods estimate correctly the presumed number

of classes for leukemia dataset, but only DBSCAN does not

mismatch the samples from different classes. The results show

TABLE I
ESTIMATING THE NUMBER OF CLUSTERS FROM MICROARRAY DATA

k-means SOM QT DBSCAN Correct

Leukemia 3 3 3 3 3

Lung cancer 2 2 4 4 5
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(c) QT
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(d) DBSCAN

Fig. 4. Results of different clustering algorithms for leukemia dataset.
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(b) SOM
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(c) QT
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(d) DBSCAN

Fig. 5. Results of different clustering algorithms for lung cancer dataset.

TABLE II
THE NUMBER OF BADLY CLASSIFIED SAMPLES (B) AND NUMBER OF

NOISE SAMPLES (N) FOR TWO MICROARRAY DATASETS

Leukemia Lung cancer

B N B N

k-means 2 - 44(76) -

SOM 3 - 50(95) -

QT 1 5 2 151

DBSCAN 0 5 14 29

that clustering of lung cancer dataset was a much difficult

task than leukemia dataset for all of the methods. In this

studies, DBSCAN and QT performs significantly better than

the k-means and the SOM, that merged a different clusters

to finally produce only two out of five existing groups. The

experimental results show that the k-means and SOM are very

sensitive to the outliers. The main disadvantage of the k-means

and SOM approach is the assigning of every sample to a

cluster.

The QT algorithm has a problem to define a large and

vast cluster (AD group in the lung cancer dataset), because

every pair of samples in a cluster have to have enough

jackknife correlation value. If the prespecified jackknife cor-

relation threshold is smaller than 0.65, many small clusters

are created instead of one AD group. On the other hand, only

QT algorithm successfully discovers SCLC group in the lung

cancer dataset, matching correctly three out of six samples

from that group. The DBSCAN has an opposite problem.

While discovering a large cluster is not difficult, the density

based clustering does not successfully match small clusters

like SCLC group. It is noteworthy, that small SCLC group falls

into the noise cluster as outliers. In DBSCAN, the noise cluster

requires an additional inspection, while the outliers might form

an undiscovered group. In case of QT method, the noise cluster

is too large to proceed an additional investigation (over 150

samples). This is the main reason why DBSCAN results are

much better than the QT and the others.

V. CONCLUSIONS

This work reports the application of DBSCAN algorithm

that proved to be useful in determining the number of clusters

in a microarray experiments. The density based clustering

algorithm was confirmed to help in identification of the

correct clusters in the data set. The DBSCAN differs from

related works in several aspects. The density-based method

is insensitive to the shape of a cluster and to the outlier

effect. The DBSCAN successfully discovers all clusters in the

presented two microarray studies beside the smallest one in the

lung cancer dataset (SCLC). As it was shown, the small SCLC

group is a part of the noise cluster defined by the DBSCAN.

Only with the DBSCAN method, an additional investigation of

a noise cluster leads to the correct decision about the number

of clusters in the dataset. In the comparative studies, DBSCAN

was found to give better results than the three other methods.

The results show that DBSCAN may be considered as an

effective tool for microarray data analysis.
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