
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 4, PP. 331–338

Manuscript received May 27, 2010; revised November 2010. DOI: 10.2478/v10177-010-0043-y

Some Contraction Methods for Locating

and Finding All the DC Operating Points

of Diode-Transistor Circuits
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Abstract—The paper is focused on the analysis of diode-
transistor circuits having multiple DC solutions (operating points)
and brings two methods enabling us to find all the solutions.
The first method contracts and eliminates some hyperrectangular
regions where the solutions are sought. It is based on the
idea of framing of the nonlinear functions appearing in the
mathematical description of the circuit by linear ones and exploits
the Woodbury formula in matrix theory. The other method finds
quickly and easily preliminary bounds on the location of all
the solutions. The method employs some monotonic functions
and generates convergent sequences leading to a shrinked hy-
perrectangle that contains all the solutions. Both the proposed
methods are rigorously proved. They constitute the core of an
algorithm which efficiently finds all the DC operating points of
diode-transistor circuits. It is illustrated via numerical examples.
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I. INTRODUCTION

C
IRCUITS having multiple DC solutions (operating

points) are common and often encountered in electronic

devices. Therefore computing all the DC solutions is a basic

question of the analysis and design of nonlinear circuits.

Even though there is a wide variety of nonlinear circuits, the

transistor ones occupy a special place in electronics. Finding

all the DC solutions is a difficult task in circuit simulations.

Numerous methods have been proposed for tackling this

problem over the last few decades [1]–[22]. Unfortunately, the

methods are very time-consuming and enable us to efficiently

analyse only rather small size circuits. Among the various

methods concerning this problem, the most commonly used

are based on piecewise-linear approximations and computation

techniques e.g. [1]–[3], [5], [7]–[14].

The circuits described by the equations containing original

smooth (not piecewise-linear) nonlinearities are more difficult

for the analysis. Only a few methods have been proposed in

this area, e.g. [15]–[23]. The paper [15] offers a simulator to

find the multiple DC solutions, based on the Newton homotopy

method, employing the transient analysis of SPICE. In [16] a

new approach to interval method is developed and applied to

finding the set of all real solutions of nonlinear simultaneous
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equations. A method based on transfer characteristics and

driving point characteristics for the analysis of circuits having

multiple DC operating points is proposed in [17]. The work

[18] offers an algorithm that employs an interval analysis, the

dual simplex method and the contraction method. Threading

homotopy is developed in [19] for finding multiple operating

points automatically. An approach based on the partitioning

of the original circuit in subcircuits and the construction of an

oriented dependency graph is proposed in [21].

Not all of the described above methods guarantee finding

all the DC solutions, although as a rule they find them.

The idea of successive contraction, division and elimination

of some hyperrectangular regions, where the solutions are

sought [4]–[6], [8], [20], [22], [23], is very useful in this field

and enables us to find all the DC solutions both in piecewise-

linear and smooth (not piecewise-linear) circuits. This paper

proposes a method enabling us to contract the hyperrectangular

regions. The method employs the idea of framing the nonlinear

function by linear ones [8] and utilizes the Woodbury formula

in matrix theory [24]. Furthermore, a method is proposed for

finding preliminary bounds on the location of all the solutions

quickly and easily. Both the methods form the core of an

algorithm which guarantees finding all the DC solutions. This

algorithm is efficient and enables us to analyse larger circuits

without piecewise-linear approximation.

Let us consider a circuit consisting of linear resistors,

diodes, bipolar transistors, and independent voltage sources.

The transistors are characterized by the Ebers-Moll model

with small contact resistors RE , RC , RB . The circuit can be

described by the Sandberg-Willson equation [25]

f̂(v)+Av − b = 0 (1)

where v = [v1 . . . vn]
T , b = [b1 . . . bn]

T , A = [aij ]n×n,

f̂(v) = [f̂1(v1) . . . f̂n(vn)]
T , where f̂i(vi), i = 1, . . . , n, are

the currents flowing through the diodes included in the Ebers-

Moll model and individual ones. The function f̂i(vi) that is

usually specified by Ki(e
λvi − 1) will be approximated as

follows

f̂i(vi) =

{

∆ivi for vi < w

Ki(e
λvi − 1) for vi ≥ w

(2)

where w = 0.25 and ∆i = 1
w
Ki(e

λw − 1). Thus, for

vi < w the graph of the function is a straight line with

very small slope ∆i. It can be proved that under very slight
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Fig. 1. Framing of the nonlinear function f̂i(vi).

restrictions the diagonal elements of the matrix A are positive

(aii > 0, i = 1, . . . , n).

We wish to find all the solutions to the equation (1) which

satisfy the constraints: −E ≤ vi ≤ E, ii ≤ Ii, i = 1, . . . , n,

where E is the sum of all voltage sources acting in the

circuit, whereas Ii is the forward burnout current of i-th

diode. Hence, taking into account the equation (2), we obtain

l̃i ≤ vi ≤ ũi, where l̃i = −E, ũi = min
{

E, 1
λ
ln
(

Ii
Ki

= 1
)

}

,

i = 1, . . . , n. Thus, we seek all the solutions to equation

(1) in the n-dimentional rectangular (hyperrectangular) region

[l̃, ũ] = [l̃1, ũ1] × . . . × [l̃n, ũn], l̃i ≤ vi ≤ ũi , i = 1, . . . , n.

To find all the solutions, we apply the idea of successive

contraction, division, and elimination as follows. We shrink the

region using a contraction method so that the new one contains

the same solutions. If the shrinked region is not sufficiently

small, we divide it into two regions and next contract each of

them. On the basis of theoretical considerations and numerical

experiments the division procedure has been elaborated as

follows. We select these sides of the hyperrectangle which

either include the point vi = w = 0.25 or are located to

the right of this point and choose the largest of them. If the

chosen side contains the point vi = w, then this point is used

for the division. Otherwise, the division is executed at the

middle point of this side. The process is continued until a

region having the largest size for vi > w smaller than 10−3V

is obtained. We identify such sizes as points and check whether

the region contains a solution to equation (1). During this

process some regions containing no solutions are identified

and discarded as described in Section II.

A crucial point of this approach is the contraction procedure.

An efficient contraction method is proposed in Section II.

Section III offers a method enabling us to find the preliminary

bounds on the location of all the solutions. Two numerical

examples are given in Section IV. The conclusion is formulated

in Section V.

II. A CONTRACTION METHOD

Our objective is to develop an efficient contraction method.

For this purpose we take into account the matrix equation (1),

consisting of n scalar equations having the form

f̂i(vi) +

n
∑

j=1

aijvi = bi, i = 1, . . . , n. (3)

Consider a hyperrectangular region [l, u] = [l1, u1] × . . .

×[ln, un], (li ≤ vi ≤ ui, i = 1, . . . , n) and select a subset of

the set of equations (3) for which ui ≤ w. Without any loss

of generality we assume that this subset consists of the first m

equations of the set (3). Consequently, the following equations

f̂1(v1) = ∆1v1, . . . , f̂m(vm) = ∆mvm hold. In such a case

equation (1) can be rearranged to give

(A1 +∆)v1 +A2v2 = b1,

f̂2(v2) +A3v1 +A4v2 = b2, (4)

where v1 = [v1 . . . vm]T , v2 = [vm+1 . . . vn]
T , A1, A2, A3,

A4, are submatrices of A, ∆ = diag(∆1, . . . ,∆m),
b1 = [b1 . . . bm]T , b2 = [bm+1 . . . bn]

T ,

f̂2(v2) = [f̂m+1(vm+1) . . . f̂n(vn)]
T .

By pivoting in succession on the diagonal elements of

matrix (A1 +∆) we rearrange equations (4) to

v1 + Â2v2 = b̂1, (5)

f̂2(v2) + Â4v2 = b̂2. (6)

Next we frame all the scalar functions, appeared in the

equation (6), f̂i(vi) for vi ∈ [li, ui], i = m + 1, . . . , n, using

two parallel straight lines, similarly as in [8], (see Fig. 1).

Having determined all the slopes sm+1, . . . , sn and all the

offsets c−m+1, . . . , c
−

n , c
+
m+1, . . . , c

+
n we from the matrix

M4 = diag(sm+1, . . . , sn) and vectors

c− = [c−m+1, . . . , c
−

n ]
T , c+ = [c+m+1, . . . , c

+
n ]

T . Let v∗ be an

arbitrary solution of the set of equations (3), belonging to the

region [l, u]. Any component v∗i of v∗ (i = m + 1, . . . , n)
can be considered as a point that lies on the straight line

yi = sivi + ci, where c−i ≤ ci ≤ c+i . Hence, the equation

(6) can be replaced by the linear equation

M 4v2 + c+ Â4v2 − b̂2 = 0, (7)

where components ci (i = m + 1, . . . , n) of the vector

c = [cm+1, . . . , cn]
T are unknown, but the bounds c−i , c

+
i on

them are given. We replace the equation (6) by the equation

(7) finding
[

1 Â2

0 M4 + Â4

] [

v1

v2

]

=

[

b̂1

b̂2

]

−

[

0
c

]

, (8)

where c− ≤ c ≤ c+. Since

[

1 Â2

0 M4 + Â4

]−1

=

[

1 B

0 K

]

, (9)

where B = −Â2(M4 + Â4)
−1, K = (M 4 + Â4)

−1, then

v = k −Hc, (10)

where H =

[

B

K

]

= [hij ]n×(n−m), v =
[

vT1 v
T
2

]T
=

=
[

v1 . . . vn
]T

, k = [k1 . . . kn]
T =

[

b̂1 +Bb̂2

Kb̂2

]

. Using
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the equation (10) we find new bounds on v∗, such that

p−i ≤ v∗i ≤ p+i , i = 1, . . . , n, where

p−i = ki −

n−m
∑

j=1

hijϕj , ϕj =

{

c−m+j if hij ≤ 0

c+m+j if hij > 0
,

p+i = ki −

n−m
∑

j=1

hijδj , δj =

{

c+m+j if hij ≤ 0

c−m+j if hij > 0
.

Next we define l1i = max{li, p
−

i }, u1
i = min{ui, p

+
i }

and form the region [l1,u1] ⊂ [l,u], (l1 = [l11 . . . l
1
n]

T ,

u1 = [u1
1 . . . u

1
n]

T ) containing the same solutions as [l,u].
Next we can use the determined bounds on v2 to further

improve the bounds on v1 applying in a similar way equation

(5). The contraction is continued, leading to regions [l2,u2],
[l3,u3],. . . .

If at any stage of the contraction process the lower bound

overlaps the upper bound, for at least one component, i.e.

l
µ
k > u

µ
k for some µ and k, then we conclude that the region

[l,u] contains no solution.

Note that the method requires the inversion of the matrix

(M 4 + Â4) having the degree r × r where r = n − m

is smaller than n. We repeat this procedure as long as the

region is noticeably contracted. If at any step an overlapping

occurs, the region is discarded. The more overlappings, the

more efficient is the method.

The method can be further improved as follows. When a

single region is contracted, usually only some elements of

the r × r diagonal matrix M 4 change going from one step

to another. Frequently it occurs that only a single diagonal

element changes. To compute the inversion (M4 + Â4)
−1

efficiently, we apply the Woodbury formula [24], as it is

mentioned in [22].

Let us consider an r × r matrix Q having given in-

version Q−1 = [Qij ]r×r and a diagonal r × r ma-

trix D with a single unequal to zero element dk i.e.,

D =diag(0, . . . , 0, dk, 0, . . . , 0). We express matrix D in

the form D = RS−1V , where R = [0 . . . 01k0 . . . 0]
T ,

S−1 = dk, V = RT and apply the Woodbury formula [24]

(Q+RS−1V )−1 = Q−1−Q−1R(S+V Q−1R)−1V Q−1.

(11)

Hence, we obtain

(Q+D)−1 = Q−1−







Q1k

...

Qrk






(d−1

k +Qkk)
−1[Qk1 . . . Qkr].

(12)

Equation (12) significantly improves computing the inversion

of matrix (Q+D).
Generally, the matrix D contains γ ≤ r unequal to zero

diagonal elements located at the crossing of k1, k2, . . . , kγ
rows and columns. In such a case the Woodbury formula leads

to the equation

(Q+D)−1 = Q−1 −







Q1k1
. . . Q1kγ

...
...
...
...

...

Qrk1
. . . Qrkγ






×

×













d−1
k1

. . .

d−1
kγ






+







Qk1k1
. . . Qk1kγ

...
...
...
... . . .

Qkγk1
. . . Qkγkγ













−1

×

×







Qk11 . . . Qk1r

...
...
...
...

...

Qkγ1 . . . Qkγr






(13)

Using a direct method of inversion of an r × r matrix we

execute r3 multiplications. Applying the Woodbury formula

(13), we need γ3 multiplications for finding the inversion of

the matrix having the size γ × γ, γr(r + γ) multiplications

needed for finding the product of the matrices which appear

on the right hand side of equation (13), and γ inversions of

dki
(i = 1, . . . , γ). To determine γ so that the total number

of multiplications required by the direct method is the same

as using the Woodbury formula, we form the equation

r3 − γ3 − γr(r + γ)− γ = 0

and substitute γ = ξr. Hence, there follows the equation

ξ3 + ξ2 + ξ − 1 = 0, where the small term 1
r3
γ has been

neglected. The equation has the solution ξ = 0.543. Thus,

if γ < 0.543r, the Woodbury formula requires a smaller

number of multiplications than the direct method. In the

implementation of this approach, the Woodbury formula is

applied when the number of diagonal elements of the matrix

M4, which are changed going from one step to another, is

less than or equal to 0.5r.

Thus, the method developed in this section requires finding

inversions of matrices having degree r = n − m, smaller

than n, and improves computing these inversions using the

above described procedure, based on Woodbury’s formula.

Numerical examples show that it speeds up the computations

20-25%.

The contraction method, developed in this section, has been

applied in the procedure of successive contraction, division and

elimination as described in Section I. The algorithm operating

in this way will be called the algorithm A.

III. FINDING A REGION CONTAINING ALL THE

SOLUTIONS

The algoritm A enables us to find all the DC solutions in the

hyperrectangular region [l̃, ũ].The efficiency of this algorithm

would be considerably improved if the preliminary bounds on

the location of all the solutions, inside the region [l̃, ũ], could

be found quickly and easily. The method developed in this

section accomplishes this aim. It is based on the idea of the

monotonic function [26] and the mathematical backgrounds

briefly described below.

A. Mathematical Backgrounds

Definition 1

Let us consider a function g(x) mapping Rn onto

Rn. Function g(x) is called a monotonic function when

g(x1) ≤ g(x2) implies that x1 ≤ x2 for arbitrary x1 and

x2, where the inequalities hold for all components.
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Definition 2

Let us consider a function f(x) mapping R1 onto R1.

Function f(x) is called a strictly monotonically increasing

function if f(x1) < f(x2) whenever, x1 < x2 , for arbitrary

x1 and x2.

The following lemma will be proved.

Lemma 1

Let f (x) = [f1(x1) . . . fn(xn)]
T be a vector function

with fi(xi) being a strictly monotonically increasing function

mapping R1 onto R1 (i = 1, . . . , n) and C = [cij ]n×n be the

matrix that satisfies the conditions:

cii > 0, cij ≤ 0 for i 6= j, i, j = 1, . . . , n,
(14)

n
∑

j=1

cij ≥ 0, i = 1, . . . , n. (15)

Then the function

g(x) = f (x) +Cx (16)

is a monotonic function.

Proof

The matrix C that satisfies the conditions (14) and (15)

belongs to the class P0( [25] Theorem 7). Hence, according to

the Sandberg-Willson theorem ( [25] Theorem 3), the equation

g(x) = d (17)

has a unique solution for each d ∈ Rn.

For arbitrary n-vectors d1 and d2 such that d1 ≤ d2 , it holds

f(x1)− f (x2) +C(x1 − x2) ≤ 0, (18)

where x1 (x2) is the unique solution of the equation

g(x) = d1 (g(x) = d2). Since fi(xi) , i = 1, . . . , n , are

strictly monotonically increasing functions, then

f (x1)− f(x2) = M(x1 − x2), (19)

where M=diag(m1, . . . ,mn), mi > 0, i = 1, . . . , n. Com-

bining (18) and (19) yields

K(x1 − x2) ≤ 0, (20)

where K = [kij ]n×n = (M +C), kii > 0, kij ≤ 0 for i 6= j,

i, j = 1, . . . , n,

n
∑

j=1

kij > 0, i = 1, . . . , n. According to the

Collatz theorem [26], p. 45, the matrix K is monotonic (and

in particular detK 6= 0), hence, we obtain x1 − x2 ≤ 0.

B. Preliminaries

Since we are interested in the solutions belonging to the

region [l̃, ũ] , the function f̂ (v) can be changed outside this
region. Let the modified function be as follows

fi(vi) =







f̂i(vi) for l̃i ≤ vi ≤ ũi

f̂i(ũi) + (f̂ ′

i(ũi) + γi)(vi − ũi) for vi > ũi

f̂i(l̃i) + (f̂ ′

i(l̃i) + ηi)(vi − l̃i) for vi < l̃i
(21)

i = 1, . . . , n,

where γi and ηi are nonnegative constants chosen in the way

described at the end of this section. Each function fi(vi) is

strictly monotonically increasing, mapping R1 onto R1.

Let E = [eij ]n×n be a matrix obtained from the matrix A

by replacing all its positive off-diagonal elements by zeros.

Thus, the matrix E satisfies the following conditions

eii = aii > 0, i = 1, . . . , n, (22)

eij ≤ 0, i 6= j, i, j = 1, . . . , n. (23)

The matrix composed of the positive off-diagonal elements of

the matrix A and the other elements set to zero will be labeled

P . Hence, the matrix P is given by

P = A−E. (24)

For the matrix E we compute

βi =

n
∑

j=1

eij i = 1, . . . , n (25)

and define

∂i =

{

−βi if βi ≤ 0
0 if βi > 0.

(26)

Next we form matrices C = [cij ]n×n and N = [nij ]n×n, as

follows:

C = E + diag(∂1, . . . , ∂n), (27)

N = −diag(∂1, . . . , ∂n). (28)

The matrix C satisfies the conditions (14) and (15).

N is a diagonal matrix having nonpositive diagonal elements

(−∂i), i = 1, . . . , n. As a result the matrix A is decomposed

into three matrices

A = C +N + P . (29)

Next we write the equation

f(v) + (C +N + P )v − b = 0, (30)

which has the same solutions, in the region [l̃, ũ], as the

equation (1).

Let us consider the function

g(x)−w(y, z), (31)

where x = [x1 . . . xn]
T , y = [y1 . . . yn]

T , z = [z1 . . . zn]
T

are elements of Rn,

g(x) = f(x) +Cx (32)

is a monotonic function

w(y, z) = b−Ny − Pz, (33)

where b is the vector which appears in equation (30), N is

the diagonal matrix (28) with nonpositive diagonal elements,

P is the matrix (24) having all nonnegative elements.
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C. Contraction of the Bounds on the Solutions

Let v∗ be an arbitrary solution of the equation (30), then

g(v∗)−w(v∗,v∗) = f(v∗)+(C+N+P )v∗−b = 0, (34)

or

g(v∗) = w(v∗,v∗). (35)

If there exist l(0) ∈ Rn and u(0) ∈ Rn, such that

l(0) ≤ l̃, u(0) ≥ ũ, (36)

g(l(0)) ≤ w(l(0),u(0)), (37)

g(u(0)) ≥ w(u(0), l(0)), (38)

then for any solution v∗ ∈ [l(0),u(0)] of the equation (30) we

may write

w(l(0),u(0)) ≤ w(v∗,v∗) ≤ w(u(0), l(0)). (39)

Since g is a monotonic function (see Lemma 1), the relation

(39) implies that

l
(1) = g−1(w(l(0),u(0))) ≤ g−1(w(v∗,v∗)) ≤

≤ g−1(w(u(0), l(0))) = u(1). (40)

On the basis of (35) we get

g−1(w(v∗,v∗)) = v∗. (41)

Substituting (41) into (39) and taking into account (40)

yields

l(1) ≤ v∗ ≤ u(1). (42)

Since v∗ is an arbitrary solution belonging to the region

[l(0),u(0)], the relation (42) states that the region [l(1),u(1)]
contains all the solutions belonging to the region [l(0),u(0)].
Using (40) we may write

g(l(1)) = w(l(0),u(0)). (43)

Since g is a monotonic function then equation (43) and

inequality (37) imply that

l(1) ≥ l(0). (44)

Similarly, using the equation

g(u(1)) = w(u(0), l(0)). (45)

we prove that

u(1) ≤ u(0). (46)

Furthermore, g(l(1)) ≤ w(l(1),u(1)), g(u(1)) ≥ w(u(1), l(1)).
Continuing this process, the sequences {l(j)} and {u(j)} are

generated, where

l(j) = g−1(w(l(j−1),u(j−1))),

u(j) = g−1(w(u(j−1), l(j−1))),

l(j) ≤ v∗ ≤ u(j). (47)

The bounds l
(j)

and u(j) are determined solving the

equations g(l(j)) = w(l(j−1),u(j−1)) and g(u(j)) =
= w(u(j−1), l(j−1)) using the Newton-Raphson algorithm.

The sequence {l(j)} is monotonically increasing and bounded

from above, whereas {u(j)} is monotonically decreasing

and bounded from below. Consequently, both sequences are

convergent, lim
j→∞

l(j) = l∗ , lim
j→∞

u(j) = u∗. Furthermore,

taking into account (47) we may write

l∗ ≤ v∗ ≤ u∗. (48)

Thus, we obtain region [l∗,u∗] ⊂ [l(j),u(j)] containing all the

solutions belonging to [l̃, ũ]. Hence, the region [lnew,unew]
where lnew = [lnew1 , . . . , lnewn ]T , unew = [unew

1 , . . . , unew
n ]T

and lnewi =max{l̃i, l
∗

i }, unew
i =min{ũi, u

∗

i }, i = 1, . . . , n is

a contracted region containing all the solutions belonging to

[l̃, ũ].

A crucial point of this approach is finding of the initial

bounds l(0), u(0) on the solutions, satisfying the constraints

(36)–(38). Below, it is shown that for arbitrary l(0) < l̃ and

u(0) > ũ the restrictions (37)–(38) can be always satisfied

choosing appropriate constants γi and ηi.

Yes

,n,,i K1=

No

Choose arbitrary ( )
ll
~

<0 and ( )
uu
~>0

and determine 0≥iγ and 0≥iη for n,,i K1=

using equations (49) and (51)

0=j

Using the Newton-Raphson algorithm find the solution

( )1+= j
lx of the equation ( ) ( ) ( )( )jj , ulwxg = and the

solution ( )1+= j
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Fig. 2. Flowchart of the method for finding the bounds on the solutions of
equation (1).
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Fig. 3. The circuit for Example 1.

D. Procedure for Finding γi and ηi

To satisfy the conditions (37)–(38) we can choose arbitrarily

l(0) < l̃ and u(0) > ũ and next select γi and ηi (see equation

(21)) as follows:

γi =

{

γ̂i if γ̂i > 0
0 if γ̂i ≤ 0,

(49)

where

γ̂i =
1

u
(0)
i − ũi

(

bi − f̂i(ũi)− f̂ ′

i(ũi)(u
(0)
i − ũi)+

−
n
∑

j=1

(cij + nij)u
(0)
j −

n
∑

j=1

pij l
(0)
j

)

, (50)

ηi =

{

η̂i if η̂i > 0
0 if η̂i ≤ 0,

(51)

where

η̂i =
1

l̃i − l
(0)
i

(

f̂i(l̃i) + f̂ ′

i(l̃i)(l
(0)
i − l̃i)+

+

n
∑

j=1

(cij + nij)l
(0)
j +

n
∑

j=1

piju
(0)
j − bi

)

. (52)

Thus, γi and ηi depend on arbitrarily chosen l(0) < l̃

and u(0) > ũ. Numerical experiments show that the choice

l(0) and u(0) has little influence on the convergence of the

contraction procedure.

The flowchart of this method is shown in Fig. 2.

To illustrate the efficiency of the method for finding the

bounds on the location of all the solutions, developed in this

section, we consider a numerical example.

Example 1

Let us consider the benchmark circuit (e.g. [8], [11]) shown

in Fig. 3. The diodes and transistors are characterized by the

Ebers-Moll model with the following parameters: αF = 0.99,

αR = 0.5, Ki = 10.10fA (i = 1, 3, . . . , 11), Ki = 20.00fA

(i = 2, 4, . . . , 12), Ki = 10.00fA (i = 13, . . . , 15),
λ = 38.6635V−1.

Using the method developed in this section, with E = 12V,

Ii = 100mA (i = 1, . . . , 15), we find the bounds on the

TABLE I
BOUNDS ON THE SOLUTIONS

Lower bounds Upper bounds Lower bounds Upper bounds
on the solu- on the solu- determined by determined by
tions provided tions provided the computed the computed
by the contra- by the contra- solutions [V] solutions [V]
ction method ction method
[V] [V]

v1 -4.387 0.712 0.038 0.706
v2 -12.000 0.686 -10.337 0.664
v3 -4.731 0.716 0.408 0.709
v4 -12.000 0.691 -7.631 0.671
v5 -1.367 0.721 0.103 0.720
v6 -12.000 0.649 -11.031 0.636
v7 -0.176 0.693 0.404 0.691
v8 -12.000 0.656 -9.219 0.589
v9 -1.367 0.721 0.103 0.720
v10 -12.000 0.649 -11.031 0.636
v11 -0.176 0.693 0.404 0.691
v12 -12.000 0.656 -9.219 0.589
v13 -5.789 0.658 -0.366 0.642
v14 -2.103 0.658 -0.025 0.645
v15 -2.103 0.658 -0.025 0.645

solutions, shown in the first and second columns of Table 1.

This circuit has 11 DC solutions, bounded by the numbers

shown in the third and fourth columns of Table I. The

bounds obtained by the proposed method very well frame the

solutions, which confirms efficiency of the method.

The method for finding the bounds on the location of all

the solutions, proposed in this section, has been merged into

the algorithm A as the preliminary procedure. The algorithm

formed in this way will be called the algorithm B.

IV. NUMERICAL EXAMPLES

The algorithms A and B have been implemented in Delphi

and tested on a set of 25 circuits. The computations have

been executed using PC Pentium Core 2 Duo E6400. For the

Example 1 the time consumed by the algorithm B is 15ms,

whereas the time consumed by the algorithm A is 94ms.

Two other examples are given underneath.

Example 2

Let us consider the circuit containing 15 transistors, shown

in Fig. 4. The transistors are characterized by the Ebers-Moll

model with the following parameters: αF = 0.99, αR = 0.5,

Ki = 7.1202fA (i = 1, 3, . . . , 29), Ki = 14.0980fA

(i = 2, 4, . . . , 30), RE = RC = RB = 0, λ = 38.6635V−1.

To find all the DC solutions we apply the algorithm B with

E = 6.5V, Ii = 80mA (i = 1, . . . , 30) finding 3 solutions:

v(1) = [0.688 −0.629 0.629 −3.534 0.688 0.006 0.688
− 2.788 0.198 −1.123 0.688 −0.000 0.636 −3.333 0.701
− 0.041 0.696 0.689 0.725 0.427 0.680 −0.000 −0.689
0.000 0.673 −0.000 −1.432 −4.350 0.678 −0.835]T

v(2) = [0.688 −0.629 0.629 −3.538 0.688 −0.011 0.671
− 2.810 0.668 −0.546 0.671 −0.000 0.647 −2.839 0.672
− 1.197 0.657 −0.125 0.708 −0.539 0.654 −0.000 0.125
− 0.000 0.684 −0.000 −0.490 −3.409 0.678 −0.835]T

v(3) = [0.688 −0.629 0.629 −3.540 0.688 −0.253 0.429
− 2.960 0.690 0.624 0.525 −0.000 0.659 −2.565 −0.211
− 2.290 0.655 −0.673 0.690 −1.193 0.532 −0.000 0.672
− 0.000 0.688 −0.000 0.141 −2.779 0.678 −0.835]T
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The time consumed by the algorithm B is 5.97s. The

algorithm A gives the same solutions in 9.91s.

Example 3

Let us consider the circuit containing 15 transistors and

5 diodes, shown in Fig. 5. The diodes and transistors are

characterized by the Ebers-Moll model with the following

parameters: αF = 0.99, αR = 0.5, Ki = 7.1202fA

(i = 1, 3, . . . , 29), Ki = 14.0980fA, (i = 2, 4, . . . , 30),
RE = RC = 10Ω, RB = 0, Ki = 7.049fA (i = 31, . . . , 35),
λ = 38.6635V−1. To find all the DC solutions we apply the

TABLE II
VOLTAGES AT THE SELECTED NODES CORRESPONDING TO THE

DETERMINED SOLUTIONS

Number
of the VA[V] VB[V] VC [V] VD[V] VE [V]
solution

1 0.051 0.061 0.737 0.848 0.052
2 2.093 0.120 0.789 3.603 0.647
3 2.093 0.078 0.789 3.603 0.624
4 2.093 0.743 0.789 3.603 0.677
5 3.419 0.743 0.160 4.750 0.691
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algorithm B with E = 7.5V, Ii = 15mA (i = 1, . . . , 35)
finding 5 solutions, each represented by 35-dimension vector.

The voltages at the nodes A, B, C, D, E corresponding to

these solutions are listed in Table II.

The time consumed by the algorithm B is 38.47s. The

algorithm A gives the same solutions in 56.84s.

It should be stressed that the complexity of all the known

methods, which guarantee finding all the DC solutions, dra-

matically increases as the size of the circuit grows. This is

why the benchmark transistor circuits discussed in the world

literature are rather simple, described by a set up to 20

equations. The circuit in Example 2 is described by a set of

30 equations and the circuit in Example 3 by a set of 35

equations.

The largest diode-transistor practical circuit which can be

efficiently analysed by the proposed in this paper algorithm is

described by a set of 50 equations.

V. CONCLUSION

Both methods proposed in this paper lead to a procedure

for finding all the DC solutions of diode-transistor circuits.

The first method considerably contracts and eliminates many

hyperrectangular regions in which the solutions are sought.

The other one significantly shrinks the preliminary region

containing all the solutions. A lot of numerical examples

show that the proposed approach is efficient and enables us to

analyse larger circuits.
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