
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 4, PP. 345–350

Manuscript received September 27, 2010; revised November 2010. DOI: 10.2478/v10177-010-0045-9

Modified Distributed Arithmetic Concept for

Implementations Targeted at Heterogeneous FPGAs
Mariusz Rawski

Abstract—Distributed Arithmetic (DA) plays an important role
in designing digital signal processing modules for FPGA architec-
tures. It allows replacing multiply-and-accumulate (MAC) opera-
tions with combinational blocks. The quality of implementations
based on DA strongly depends on efficiency of methods that
map combinational DA block into FPGA resources. Since modern
FPGAs have heterogeneous structure, there is a need for quality
algorithms to target these structures and the need for flexible
architecture exploration aiding in appropriate mapping. The
paper presents a modification of DA concept that allows for very
efficient implementation in heterogeneous FPGA architectures.

Keywords—Distributed arithmetic, FPGA, heterogeneous pro-
grammable structures.

I. INTRODUCTION

D
ISTRIBUTED ARITHMETIC (DA) is an important

technique to implement digital signal processing (DSP)

functions in Field Programmable Gate Arrays (FPGAs) [1].

It provides an approach for multiplier-less implementation

of DSP systems, since it is an algorithm that can perform

multiplication with use of lookup table (LUT) that stores

the precomputed values and can be read out easily, which

makes DA-based computation well suited for FPGA realiza-

tion, because the LUT is the basic component of FPGA. DA

specifically targets the sum of products computation that is

found in many of the important DSP filtering and frequency

transforming functions.

The major disadvantage of DA technique is that the size

of DA-LUT increases exponentially with the length of input.

Several efforts have been made to reduce the DA-LUT size

for efficient realization of DA-based designs. In [2] to use

offset-binary coding is proposed to reduce the DA-LUT size

by a factor of 2. Recently, a new DA-LUT architecture for

high-speed high-order has been introduced in [3], where the

major disadvantage of the FIR filters is vanished by using

carry lookahead adder and the tri-state buffer. On the other

side, some structures are introduced for efficient realization of

FIR filter. Recently, novel one- and two-dimensional systolic

structures are designed for computation of circular convolution

using DA [4], where the structures involve significantly less

area-delay complexity compared with the other existing DA-

based structures for circular convolution. In [5] modified

DA concept is used to obtain an area-time-power-efficient

implementation of FIR filter in FPGA.

This work was partly supported by the Ministry of Science and Higher
Education of Poland–research grant no. N N516 418538 for 2010-2012.

M. Rawski is with Institute of Telecommunications, Warsaw Univer-
sity of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:
rawski@tele.pw.edu.pl).

DA concept proves to be a powerful technique for imple-

menting MAC unit as a multiplierless algorithm. The effi-

ciency of implementations based on this concept and targeted

FPGAs strongly depends on implementation of DA-LUT.

These blocks have to be efficiently mapped onto FPGA’s logic

resources. With rapidly growing traditional FPGA industry,

heterogeneous logic blocks are often used in the actual FPGA

architectures such as Xillinx Virtex-5 and Altera Stratix III se-

ries. How to handle this kind of heterogeneous design network

to generate LUTs with different input sizes in the mapping is

a very important and practical problem. The existing CAD

tools are not well suited to utilize all possibilities that modern

heterogeneous programmable structures offer due to the lack

of appropriate synthesis methods. Typically, after the logic

synthesis stage, technology-dependent mapping methods are

used to map design into available resources [6], [7]. However,

such an approach is inefficient due to the fact that the quality

of postsynthesis mapping is highly dependent on the quality

of technology independent optimization step [8]. Recently,

efforts have been made to develop methods based on functional

decomposition that would allow for efficient utilization of

heterogeneous structure of FPGA. The method presented in

[9] is designed specifically to implement FIR filters using the

concept of distributed arithmetic. In [10] advanced synthesis

method based on functional decomposition was proposed that

utilizes embedded memory block as large LUTs.

In this paper a modified distributed arithmetic concept has

been proposed that is especially targeted at modern FPGA

devices with heterogeneous structure. Presented results prove

that application of this method allows to utilize heterogeneous

resources of programmable structures very efficiently.

II. PRELIMINARY INFORMATION

A. Architectures of Modern FPGAs

The technological advancements in Field Programmable

Gate Arrays in the past decade have opened new paths

for digital systems design engineers. The FPGA maintains

the advantages of custom functionality like an ASIC while

avoiding the high development costs and the inability to make

design modifications after production. The FPGA also adds

design flexibility and adaptability with optimal device utiliza-

tion while conserving both board space and system power.

An FPGA structure can be described as an array of LUT-

based programmable logic elements (cells) interconnected by

programmable connections. Each cell can implement a simple

logic function (of a limited number of inputs) defined by a

designer’s CAD tool. A typical programmable device has a

large number (64 to over 1 000 000) of such cells, that can be



346 M. RAWSKI

used to form complex digital circuits. The ability to manipulate

the logic at the gate level means that the designer can con-

struct a custom processor to efficiently implement the desired

function. The technological advancements in microelectronics

in the past decade have changed this picture by introducing

embedded specialized blocks into structure of FPGA chip.

Modern FPGA devices have very complex structure.

Today’s FPGAs are entire programmable systems on a chip

(SoC) which are able to cover an extremely wide range

of applications. The Altera Stratix III and Xilinx Virtex-5

families of devices, both using a 65 nm manufacture process,

can be used as examples of contemporary FPGAs. The basic

architecture of FPGAs has not changed dramatically since

their introduction in the 1980s. Early FPGAs used a logic

cell consisting of a 4-input lookup table (LUT) and register.

Present devices employ larger numbers of inputs (6-input for

Virtex-5 and 7-input for Stratix III) and have other associated

circuitry. Another enhancement extensively used in modern

FPGAs are specialized embedded blocks, serving to improve

delay, power and area if utilized by the application, but waste

area and power if unused. Early embedded blocks included

fast carry chains, memories, phase locked loops, delay locked

loops, boundary scan testing and multipliers. More recently,

multipliers have been replaced by digital signal processing

(DSP) blocks (which add support for logical operations,

shifting, addition, multiply-add, complex multiplication etc.),

allowing designers to use methodology known from DSP

programming. Some architectures even contain hardware

CPU cores.

Today’s FPGA are composed of:

• Main logic resources in form of configurable logic ele-

ments.

• Embedded RAM blocks – dedicated memory blocks that

can be used to implement in-chip data storage, FIFOs,

etc.

• Dedicated DSP modules containing hardware MACs that

are building blocks for digital filters and other digital

signal processing algorithms.

• Dedicated hardware CPU – although including dedicated

hardware CPU cores in FPGA chip can be considered

now somewhat old-fashioned, some relatively new

Virtex-5 FX FPGAs from Xilinx contain a hard

PowerPC core.

While mapping a design into logic elements is done by

logic synthesis procedures of CAD tools after technology-

independent logic optimization, the mapping into coarse-grain

structures such as multipliers, memories and DSP modules

is much more appropriately done at the RTL synthesis level

where these structures are more directly recognizable [11].

These specialized embedded blocks are available by describing

them in HDL code using special HDL constructs. CAD tools

identify these fragments of HDL code at high level synthesis

stage and automatically instantiate library element correspond-

ing to given specialized block. Usually, even slightly different

HDL description prevents CAD from proper identification of

a block.

As was already mentioned specialized embedded memory

blocks (EMB) make it possible to implement data storage

modules, such as shift registers or RAM blocks. In many cases,

though, the designer does not need such elements in design

or not all such resources are utilized. This chip area need not

be wasted, however, if the unused memory arrays are used

to implement logic. Configuring the arrays as ROM results

in large lookup-tables that might very efficiently implement

some logic circuits. The memories act as very large logic cell,

where the number of inputs is equal to the number of address

lines and the number of output is equal to the size of memory

word. Since the size of address and memory word of single

EMB can be configured in several different ways it can act as

logic cell of different sizes.

The basic building block of logic in the Stratix III architec-

ture is the adaptive logic module (ALM). Each ALM contains

a look-up table (LUT)-based resources that can be divided

between two combinational adaptive LUTs (ALUTs) and two

registers (Fig. 1a). Combinational ALUTs may have up to

eight inputs. An ALM can implement various combinations

of two functions, any function of up to six inputs and certain

seven-input functions. In addition to the adaptive LUT-based

resources, each ALM contains two programmable registers,

two dedicated full adders, a carry chain, a shared arithmetic

a)

ALUT

ALUT

2

3

4

1
D Q

CLK

regout(0)

6

7

8

5

Adder

D Q

CLK

Adder

combout(0)

regout(1)

combout(1)

6-input

LUT

6-input

LUT

b)

LUT

A6

A5

A3

A2

A1

A4 O6

O5

D6

D5

D3

D2

D1

D4

DX

LUT

A6

A5

A3

A2

A1

A4 O6

O5

C6

C5

C3

C2

C1

C4

CX

LUT

A6

A5

A3

A2

A1

A4 O6

O5

B6

B5

B3

B2

B1

B4

BX

LUT

A6

A5

A3

A2

A1

A4 O6

O5

A6

A5

A3

A2

A1

A4

AX

F7BMUX

F7AMUX

F8MUX

Arithmetic and

carry logic

D Q

CLK

CESR

D

DMUX

DQ

D Q

CLK

CESR

C

CMUX

CQ

D Q

CLK

CESR

B

BMUX

BQ

D Q

CLK

CESR

A

AMUX

AQ

CLK

SR

CE

COUT

CIN

Fig. 1. Logic unit in FPGAs: a) ALM of Stratix III, b) slice of Virtex-5.



MODIFIED DISTRIBUTED ARITHMETIC CONCEPT FOR IMPLEMENTATIONS TARGETED AT HETEROGENEOUS FPGAS 347

TABLE I
CONFIGURATIONS OF ALMS AND EMBEDDED MEMORY BLOCKS IN STRATIX III

ALM MLABs M9K Blocks M144K Blocks

2× [4× 1] (two independent 4-input LUTs) 6 × 8 13 × 1 14 × 8
[5× 1]&[3× 1] (5-input LUT and a 3-input LUT) 6 × 9 12 × 2 14 × 9
[5× 1]&[4× 1] (5-input LUT and a 4-input LUT with one inputs shared) 6 × 10 11 × 4 13 × 16
[5× 1]&[5× 1] (two 5-input LUTs with two inputs shared) 5 × 16 10 × 8 13 × 18
[6× 1] (6-input LUT) 5 × 18 10 × 9 12 × 32
[6× 1]&[6× 1] (two 6-input LUTs with four inputs shared) 5 ×20 9 × 16 12 × 36

9 × 18 11 × 64
8 × 32 11 × 72
8 × 36

TABLE II
CONFIGURATIONS OF SLICES AND EMBEDDED MEMORY BLOCKS IN VIRTEX-5

Slice Block RAM 18K Block RAM 36K

4× [5× 2] (four independent 5-input, 2-output LUTs) 14 × 1 15 × 1
4× [6× 1] (four independent 6-input LUTs) 13 × 2 14 × 2
2× [7× 1] (two independent 7-input LUTs) 12 × 4 13 × 4
[8× 1] (8-input LUT) 11 × 9 12 × 9

10 × 18 11 × 18
9 × 36 10 × 36

9 × 72

chain, and a register chain. This dedicated resources allow

efficiently implementing various arithmetic functions and shift

registers. TriMatrix embedded memory blocks provide three

different sizes of embedded SRAM: 640 bit (in ROM mode

only) or 320 bit memory logic array blocks (MLABs), 9 Kbit

M9K blocks, and 144 Kbit M144K blocks.

Table I presents configurations of logic elements and em-

bedded memory blocks of Stratix III as LUTs of various sizes

(number of inputs × number of outputs).

The elementary programmable logic blocks in Xilinx Virtex-

5 FPGAs are called slices and are organized in Configurable

Logic Blocks (CLBs). The CLBs are the main logic resources

for implementing sequential as well as combinatorial circuits.

Each CLB element is connected to a switch matrix for access

to the general routing matrix. A CLB element contains a

pair of slices. Each slice has four 6-input LUTs, embedded

multiplexers, carry logic, and four registers (Fig. 1b). The

function generators in Virtex-5 FPGAs are implemented as

six-input LUTs. There are six independent inputs (A1 to A6)

and two independent outputs (O5 and O6) for each of the four

function generators in a slice (A, B, C, and D). The function

generators can implement any arbitrarily defined six-input

Boolean function. Each function generator can also implement

two arbitrarily defined five-input Boolean functions, as long

as these two functions share common inputs. Signals from

the function generators can exit the slice (through A, B, C,

D output for O6 or AMUX, BMUX, CMUX, DMUX output

for O5), enter the XOR dedicated gate from an O6 output,

enter the carry-logic chain from an O5 output, enter the select

line of the carry-logic multiplexer from O6 output, feed the

D input of the storage element, or go to F7AMUX/F7BMUX

from O6 output.

In addition to the basic LUTs, slices contain three multiplex-

ers (F7AMUX, F7BMUX, and F8MUX). These multiplexers

are used to combine up to four function generators to provide

any function of seven or eight inputs in a slice. F7AMUX

and F7BMUX are used to generate seven input functions from

LUTs A and B, or C and D, while F8MUX is used to combine

all LUTs to generate eight input functions. Functions with

more than eight inputs can be implemented using multiple

slices. There are no direct connections between slices to form

function generators greater than eight inputs within a CLB or

between slices.

Virtex-5 CLBs also support distributed memory – each look-

up table can be configured to operate as a 64-bit memory.

Because of the structure of the Virtex-5 LUT, each LUT can

be configured as a 64x1 or 32x2 RAM. However, when the

slice is configured as RAM, it can no longer perform logic

functions.

The block RAM in Virtex-5 FPGAs stores up to 36K bits

of data and can be configured as either two independent 18

Kb RAMs, or one 36 Kb RAM. Each 36 Kb block RAM can

be configured as a 64K x 1 (when cascaded with an adjacent

36 Kb block RAM), 32K x 1, 16K x 2, 8K x 4, 4K x 9, 2K

x 18, or 1K x 36 memory. Each 18 Kb block RAM can be

configured as a 16K x 1, 8K x 2 , 4K x 4, 2K x 9, or 1K

x 18 memory. Each 36K block RAM can be set to simple

dual-port mode, doubling data width of the block RAM to 72

bits. The 18K block RAM can also be set to simple dual-port

mode, doubling data width to 36 bits. Simple dual-port mode

is defined as having one read-only port and one write-only

port with independent clocks.

Table II presents configurations of logic elements and em-

bedded memory blocks of Virtex-5 as LUTs of various sizes

(number of inputs × number of outputs).



348 M. RAWSKI

Such architecture of modern programmable FPGAs greatly

extends the space of possible solution during the process

of mapping the design into FPGA structure. Unfortunately

this heterogeneous structure of available logic resources also

greatly increases the complexity of mapping algorithms. The

existing CAD tools are not well suited to utilize all possibilities

that such modern programmable structures offer due to the

lack of appropriate logic synthesis methods.

B. Distributed Arithmetic

The distributed arithmetic is a method of computing the sum

of products:

y =
N−1
∑

n=0

c[n]× x[n]. (1)

In many applications, a general purpose multiplication is not

required. This is the case of filter implementation, if filter

coefficients are constant in time. The partial product term

x[n]×c[n] becomes multiplication with a constant. Then taking

into account the fact that the input variable x is a binary

number:

x[n] =
B−1
∑

b=0

xb[n]× 2b, where xb[n] ∈ [0, 1] (2)

the whole convolution sum can be described as shown in (3).

y[n] =

B−1
∑

b=0

2b ×

N−1
∑

n=0

xb[n]× c[n] =

B−1
∑

b=0

2b × f(xb) (3)

Since c[n] are constant the second sum in (3)

can be implemented as a mapping f(xb), where

xb = (xb[0], xb[1], . . . , xb[N − 1]). The efficiency of

implementations based on this concept strongly depends

on implementation of the function f(xb). The preferred

implementation method is to realize the mapping f(xb) as

the combinational module with N inputs. The schematic

representation of such implementation is shown in Fig.

2, where the mapping f is presented as a lookup table

(DA-LUT) that includes all the possible linear combinations

of the coefficients and the bits of the incoming data samples

[1].

If the number of coefficients N is large, the size of DA-LUT

may become too big to efficiently implement it in available

resources. In such case simple modification of DA concept

can be used. Suppose the N coefficients have been grouped

xB-1[0] x1[0] x0[0]

xB-1[1] x1[1] x0[1]

xB-1[N-1] x1[N-1] x0[N-1]

DA-LUT

0

1

N-1

+/-

R
e

g
is

te
r

2
-1

Accumulator
Shift registers

y[n]

Fig. 2. DA architecture with lookup table (LUT).

in L sets each containing K coefficients (N = L×K). Then

computing the sum of products can be described as (4).

y[n] =
L×K−1
∑

n=0

c[n]×x[n] =
L−1
∑

l=0

K−1
∑

n=0

c[Kl+n]×x[Kl+n] =

=

B−1
∑

b=0

2b ×

L−1
∑

l=0

K−1
∑

n=0

c[Kl + n]× xb[Kl+ n] =

=

B−1
∑

b=0

2b ×

L−1
∑

l=0

fl(x
l
b) (4)

Function f(xb) has been decomposed into L functions

fl(x
l
b), where xl

b = (xb[K × l], xb[K × l+ 1], . . . , xb[K × l+
+N − 1]). The sum is partitioned into L independent DA-

LUTs with K inputs each. This allows implementing DA

architecture as shown in Fig. 3. At the cost of additional adders

the size of DA-LUTs can be significantly reduced.

III. MODIFIED DISTRIBUTED ARITHMETIC

DA concept proves to be a powerful technique for im-

plementing MAC unit as a multiplierless algorithm through

the use of combinational DA-LUT to store the precomputed

values of f(xb) (3). The efficiency of implementations based

on this concept strongly depends on implementation of DA-

LUT representing the function f(xb). These blocks have to

be efficiently mapped onto FPGA’s logic resources. Since

heterogeneous logic blocks are often used in the modern FPGA

architectures (Xillinx Virtex-5 and Altera Stratix III series)

construction of efficient mapping algorithm is very challenging

task.

Modern heterogeneous structures are composed of pro-

grammable logic elements and embedded memory blocks.

However all these resources can be referred to as LUTs

of various sizes (Tab. I and Tab. II). It can be proposed a

modification of distributed arithmetic concept that would allow

decomposing DA-LUT into LUTs of sizes available in given

FPGA architecture.

Let assume that available logic resources of specific FPGA

are composed of LUT-like blocks grouped in M groups

according to their sizes Lini × Louti. Lini is the number

DA-LUT0

0

1

K-1

A
c
c
u

m
u

la
to

r

y[n]DA-LUT1

0

1

K-1

DA-LUTL-1

0

1

K-1

xB-1[0] x1[0] x0[0]

xB-1[1] x1[1] x0[1]

xB-1[K-1] x1[K-1] x0[K-1]

xB-1[K] x1[K] x0[K]

xB-1[K+1] x1[K+1] x0[K+1]

xB-1[2K-1] x1[2K-1] x0[2K-1]

xB-1[(L-1)K] x1[(L-1)K] x0[(L-1)K]

xB-1[(L-1)K+1] x1[(L-1)K+1] x0[(L-1)K+1]

xB-1[LK-1] x1[LK-1] x0[LK-1]

+

Fig. 3. DA architecture with partitioned lookup table.



MODIFIED DISTRIBUTED ARITHMETIC CONCEPT FOR IMPLEMENTATIONS TARGETED AT HETEROGENEOUS FPGAS 349

of inputs and Louti is the number of outputs of LUT blocks

belonging to group i.
To implement DA-LUT block using LUTs of specific size

a modification of (4) can be used. Suppose the N coefficients

have been grouped in L sets each containing Ki coefficients,

where
L−1
∑

l=0

Kl = N. (5)

Moreover Kl can only be equal to one of available sizes

Lini. As can be noticed groups may have various sizes,

differently that in case (4). Let denote the number of i-th
coefficient form j-th set as nj

i . Then computing the sum of

products can be described as (6).

y[n] =
L−1
∑

l=0

Kl−1
∑

k=0

c[nl
k]× x[nl

k] = (6)

=
B−1
∑

b=0

2b ×
L−1
∑

l=0

Kl−1
∑

k=0

c[nl
k]× xb[n

l
k] =

B−1
∑

b=0

2b ×
L−1
∑

l=0

fl(x
l
b)

Function f(xb) has been decomposed into L functions

fl(x
l
b). The sum is partitioned into L independent DA-LUTs.

This allows implementing DA architecture similarly to

this shown in Fig. 3. The number of inputs of l-th block

(DA-LUTl) is equal to Kl, while the number of outputs is

equal to (⌈log
2
Kl⌉+ q), where q is the number of bits used

to represent coefficients c[n].

Corollary 1. To implement l-th block (DA-LUTl) of

modified distributed arithmetic described by (6) it is needed

at most ⌈(⌈log
2
Kl⌉ + q)/Louti⌉ LUTs from group i for

which Lini is equal to Kl.

Example 1.

Let us assume that two types of LUTs are available: 6× 8
and 3×1. Let assume that sum of products (1) for N = 9 has to

be computed for size of coefficients q = 8. To implement such

sum of products using concept (6) we can group coefficients c
into two sets S0 = {c[0], c[1], c[2], c[3], c[4], c[5]} and S1 =
{c[6], c[7], c[8]}. Then the sum of product can be represented

as (7).

y[n] =

1
∑

l=0

Kl−1
∑

k=0

c[nl
k]× x[nl

k] =

=

5
∑

k=0

c[n0

k]× x[n0

k] +

2
∑

k=0

c[n1

k]× x[n1

k] =

=
B−1
∑

b=0

2b ×
(

5
∑

k=0

c[n0

k]× xb[n
0

k] +
2

∑

k=0

c[n1

k]× xb[n
l
k]
)

=

=

B−1
∑

b=0

2b × (f0(x
0

b) + f1(x
1

b)) (7)

According to (7) the sum of product can be implemented

in structure presented on Fig. 3 with two DA-LUT blocks

such that the size of DA-LUT0 is 6 inputs (K0 = 6) and 11

outputs (⌈log
2
K0⌉ + q = 11), and the size of DA-LUT1 is

3 inputs (K1 = 3) and 10 outputs (⌈log
2
K1⌉ + q = 10).

Implementation of DA-LUT0 requires 2 logic elements of

size 6 × 8 and DA-LUT1 requires 10 logic elements of size

3× 1.

Modification (6) allows to adjust the number of inputs of

DA-LUTs of structure presented on Fig. 3 to the size of

available logic resources. Then the mapping of each DA-LUT

into logic elements is straightforward (Corollary 1). However

in some cases not all logic elements used for mapping are

utilized in 100%. It happens, when the number of outputs

of given DA-LUT is not the multiple of number of outputs

of logic element used for mapping. In Example 1 DA-LUT

described by f0(x
0

b) has 6 inputs and 11 outputs, thus 2 logic

elements of size 6× 8 are required to implement it. One will

implement 8 outputs of f0(x
0

b), what will utilize its capacity

in 100%. However the other will implement only 3 outputs,

what means, that only 37.5 % of its capacity is used and the

rest is wasted.

This issue can be addressed by application of another

modification of DA concept. Let represent all coefficients of

sum of product from (3) as follows:

c[n] = 2d × cA[n] + cB[n], (8)

where cB[n] represents d least significant bits of coefficient

c[n] and cA[n] represents q − d most significant bits of

coefficient c[n]. Then (3) can be expressed in following way:

y[n] =
B−1
∑

b=0

2b ×
N−1
∑

k=0

xb[k]× (2d × cA[k] + cB[k]) =

=

B−1
∑

b=0

2b × (2d ×

N−1
∑

k=0

xb[k]× cA[k] +

N−1
∑

k=0

xb[k]× cB[k] =

=

B−1
∑

b=0

2b × (2d × fA(xb) + fB(xb)). (9)

Function f(xb) has been decomposed into two functions

fA(xb) and fB(xb). The sum is partitioned into two indepen-

dent DA-LUTs, one with N inputs and ⌈log
2
N⌉+q−d outputs

and the second with N inputs and ⌈log
2
N⌉+ d outputs. This

allows implementing DA architecture as shown in Fig. 4. At

the cost of additional adders the number of outputs of DA-

LUTs can be reduced.

Application of this concept allows to adjust the number of

outputs of DA-LUTs. Application of both described techniques

A
c
c
u
m

u
la

to
r

y[n]

+

xB-1[0] x1[0] x0[0]

xB-1[1] x1[1] x0[1]

xB-1[N-1] x1[N-1] x0[N-1]

DA-LUTB

0

1

N-1

log2N + d

xB-1[0] x1[0] x0[0]

xB-1[1] x1[1] x0[1]

xB-1[N-1] x1[N-1] x0[N-1]

DA-LUTA

0

1

N-1

log2N + q - d

<< d

é

é

ù

ù

Fig. 4. DA architecture with decomposed lookup table.



350 M. RAWSKI

makes it possible to map DA-LUT into heterogeneous

architectures of modern FPGAs very efficiently.

Example 2.

Let us express coefficients from Example 1 as in (8), where

d = 5. Then function f0(x
0

b) can be expressed using (9) as

follows:

f0(x
0

b) =

5
∑

k=0

c[n0

k]× xb[n
0

k] =

= 25 ×

5
∑

k=0

cA[n
0

k]× xb[n
0

k] +

5
∑

k=0

cB[n
0

k]× xb[n
0

k] =

= (2d × f0A(x
0

b) + f0B(x
0

b)). (10)

Function f0(x
0

b) has been decomposed into two functions

f0A(x
0

b) and f0B(x
0

b). The sum is partitioned into two inde-

pendent DA-LUTs, one with 6 inputs and ⌈log
2
N⌉+q−d = 6

outputs and the second with 6 inputs and ⌈log
2
N⌉ + d = 8

outputs. The second DA-LUT directly fits 6×8 logic element.

However, first one still requires one 6 × 8 logic element.

To implement f0A(x
0

b) we can use concept described by (6)

to decompose it into two DA-LUTs with 3 inputs and then

implement them using 3× 1 logic elements.

Recursive application of concepts described by (6) and (9)

allows to decompose initial DA-LUT into blocks that have

required number of inputs and outputs. This makes it possible

to adjust the size of partial DA-LUTs to size of available logic

elements. Then the mapping of resultant structure into FPGA

resources is straightforward.

IV. APPLICATION RESULTS

This section demonstrates the application of introduced

modified distributed arithmetic concept for implementation of

DA-LUT in heterogeneous programmable structures.

There are presented results of implementation of DA-LUT

for a low pass FIR filter with cutoff frequency 1.5 MHz.

This is 15-tap filter with coefficients c = {23, -53, -108, -79,

55, 257, 438, 511, 438, 257, 55, -79, -108, -53, 23}. The

filter accepts 8-bits signed input samples and coefficients are

10-bits numbers in fixpoint notation. As a target FPGA a

EP3SL50F484C2 device from Stratix III family was used. All

designs have been modeled in VHDL and synthesized with

Quartus II Version 9.1 Web Edition.

Table III presents results of DA-LUT implementation in

selected FPGA structure. The number of ALMs and M9K

Blocks describe the utilization of resources, while fMAX

characterizes the performance.

The method described in this paper allows the designer to

implement DA-LUT in many different ways, using different

types of available resources. The rows DA_Modified_1÷4

present results of implementation for several different struc-

tures obtained by applying concepts described by (6) and (9).

Modified DA structures have been modelled in VHDL and

implemented using Quartus.

The row DA_Non-modified presents the result obtained by

describing DA-LUT as truth table in VHDL and implementing

it using CAD system.

TABLE III
IMPLEMENTATION RESULTS OF DA-LUT IN STRATIX III

Method Resources fMAX

ALMs M9K Blocks [MHz]

DA_Non-modified 616 0 241.95
DA_Modified_1 38 0 486.38
DA_Modified_2 19 1 290.87
DA_Modified_3 10 2 337.61
DA_Modified_4 9 3 335.01

All implementation using presented modified DA concept

are characterized by much lower resource utilisation and

higher performance (fMAX) than implementation using clas-

sic DA approach.

V. CONCLUSION

Distributed Arithmetic concept is a very important tech-

nique used in designing digital signal processing modules for

FPGA architectures. The quality of implementation of DSP

algorithms based on DA strongly depends on efficiency of

DA-LUT mapping. Heterogeneous structure of modern FPGAs

greatly increases the complexity of this process. Modified DA

concept presented in this paper allows for very efficient imple-

mentation of DA-LUT blocks in heterogeneous programmable

structures. The method introduced here may have great impact

on performance of DSP modules based on DA and targeted at

modern FPGA architectures.

REFERENCES

[1] U. Meyer-Baese, Digital Signal Processing with Field Programmable

Gate Arrays, 2nd ed. Berlin: Springer-Verlag, 2004.
[2] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation. New York: Wiley, 1999.
[3] M. A. M. Eshtawie and M. Othman, “On-line DA-LUT architecture

for high-speed high-order digital FIR filters,” in Proceedings of the

IEEE International Conference on Communication Systems, Singapore,
November 2006, p. 5.

[4] P. K. Meher, “Hardware-efficient systolization of DA-based calculation
of finite digital convolution of finite digital convolution,” IEEE Trans-

actions on Circuit and Systems II: Express Briefs, vol. 53, no. 8, pp.
707–711, 2006.

[5] J. Xie, J. Heand, and G.Tan, “FPGA realization of FIR filters for
high-speed and medium-speed by using modified distributed arithmetic
architectures,” Microelectronics Journal, vol. 41, no. 6, pp. 365–370,
2010.

[6] J. Cong and K. Yan, “Synthesis for FPGas with embedded memory
blocks,” FPGA. New York, pp. 75–82, 2000.

[7] S. Krishnamoorthy and R. Tessier, “Technology mapping algorithms for
hybrid FPGAs containing lookup tables and plas,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
no. 5, pp. 545–559, 2003.

[8] M. Rawski, T. Łuba, Z. Jachna, and P. Tomaszewicz, “The influence of
functional decomposition on modern digital design process,” Design of

Embedded Control Systems, pp. 193–203, 2005.
[9] T. Sasao, Y. Iguchi, and T. Suzuki, “On LUT cascade realizations of

fir filters,” in Proceedings of Eighth Euromicro Conference on Digital

System Design, Architectures, Methods and Tools, C. Wolinski, Ed.,
Porto, 2005, pp. 467–475.

[10] M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Łuba, “Efficient
implementation of digital filtres with use of advanced synthesis methods
targeted FPGA architectures,” in Proceedings of Eighth Euromicro

Conference on Digital System Design, Architectures, Methods and Tools,
C. Wolinski, Ed., Porto, 2005, pp. 460–466.

[11] P. Jamieson and J. Rose, “A verilog RTL synthesis tool for heterogeneous
FPGAs,” in International Conference on Field Programmable Logic and

Applications, 2005, pp. 305–310.


