
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 2, PP. 177–183

Manuscript received October 18, 2010; revised April 2011. DOI: 10.2478/v10177-011-0025-8

Methodology for Implementing Scalable Run-Time

Reconfigurable Devices
Łukasz Kotynia, Piotr Amrozik, and Andrzej Napieralski

Abstract—The aim of this paper is to present the implemen-
tation methodology for an ASIC constituting the fine-grained
array of dynamically reconfigurable processing elements. This
methodology was developed during the work on a device which
can operate as a typical Field Programmable Gate Array (FPGA)
with some bio-inspired features or as a multi-core Single In-
struction Multiple Data (SIMD) processor. Such high diversity
of possible operating modes makes the design implementation
extremely demanding. As a consequence, the comprehensive
study and analysis of the different possible implementation
techniques in this case allowed us to formulate a consistent
and complete methodology that can be applied to other systems
of similar structure.

Keywords—design reuse, floorplanning, FPGA, implementa-
tion, verification, reconfigurable logic, timing analysis.

I. INTRODUCTION

IT seems fairly natural that realisation of any IC design

is determined by its structure. Consequently, each new

approach to a design architecture results in a need of an appro-

priate implementation path. The goal of this paper is to present

a reliable implementation flow that addresses all the char-

acteristics of the specific organization of a reconfigurable

design to produce a ready-to-manufacture product. Unlike

commercial methodologies, this paper presents an open and

accessible way of developing IC prototypes for programmable

devices. We take the semi-custom approach based on standard

logic cells. One can include some full-custom elements to the

data path to gain speed and/or reduce silicon area. However,

it is not in the scope of this paper. Our objective was to create

a firmly structured implementation path that can be easily

rerun. It was an important aspect taking into account a high

number of essential changes in the behavioural description

of the chip done during the work on the project. In our

approach we refer to a complete implementation path rather

than to separated front- and back-end stages. This way we con-

centrate on getting a global solution for the entire process

instead of intermediate steps. The presented methodology

is based on combining Electronic Design Automation (EDA)

tools seamlessly together using standard file formats and TCL

based tools mostly from Cadence Design Systems but also

other vendors.

The novelty of the proposed flow lies in a combination

of different techniques rather than developing new software

This work was supported by the European Union (PERPLEXUS project,
Contract No. 34632).

All authors are with the Department of Microelectronics and Com-
puter Science of Technical University of Lodz, Poland (e-mails:
lkotynia@dmcs.p.lodz.pl; pamrozik@dmcs.p.lodz.pl; napier@dmcs.p.lodz.pl).

tools, models, etc. Moreover, we are employing automated

functional verification as a part of the final sign-off stage.

The combination of constrained random testbench generation

with annotated delays brings an effective way to overcome

limitations of using Static Timing Analysis (STA).

The paper is organised as follows. The second section

briefly presents the architecture of the PERPLEXUS chip with

special emphasis on issues that we found most important

in terms of implementation. The section III constitutes a theo-

retical background. It is focused on the issues directly related

with the implementation. This part of the paper is intended

to give a justification for further design and implementation

decisions. The section IV presents the proposed implemen-

tation flow divided into three main steps: getting the netlist,

getting the final layout, and timing validation. The proposed

methodology validation is discussed in the section V. Finally,

the paper is concluded with some general remarks in the final

section.

II. ARCHITECTURE OVERVIEW

The methodology described in this paper was elaborated

within the framework of the PERPLEXUS project [1]. The

main aim of this project was to develop a scalable hardware

platform made of custom reconfigurable and, as stated in the

project, ubiquitous computing modules with some bio-inspired

capabilities. The run-time reconfigurable (RTR) ASIC, called

Ubichip was the main component of these modules. Its archi-

tecture allows implementing specific bio-inspired mechanisms

like dynamic routing [2] or self-replication [3]. Additionally,

it supports emulation of Spiking Neural Networks (SNN) with

Address Event Representation (AER) scheme [4]. The circuit

merges functionality of a novel FPGA device and a multi-core

processor. In this paper we concentrate mainly on hardware

realisation of the Ubichip. Therefore, we are not covering

mentioned mechanism in detail.

P
e
ri
p
h
e
ra

ls

Ubichip

Macorcell Array

Fig. 1. System architecture of the Ubichip.



178 Ł. KOTYNIA, P. AMROZIK, A. NAPIERALSKI

From the system point of view, the mentioned ASIC com-

prises an array 10 by 10 of configurable elements called

Macrocells and some peripherals including modules respon-

sible for configuration, control, and communication with the

external world – see Fig.1. In this paper we focus on the array

of the Macrocells, since it is the key part of the chip. The array

of the Macrocells can operate in two different modes. In the

first mode it acts as an FPGA device designed to facilitate bio-

inspired behaviours. In the other mode, each Macrocell can

be seen as a 16-bit processor which makes the array a multi-

core processor operating in a Single Instruction Multiple Data

(SIMD) manner.

Ubicell

Ubicell

Ubicell

Ubicell

S
R

D
R

 u
n

it

ALU LUT Memory/ /
ALU Regs

Flags
switchbox

Output
switchbox

(a) (b)

Input
switchbox

Macrocell

Ubicell

Fig. 2. Schematic organization of (a) Macrocell and (b) Ubicell (connection
between ALU, LUT/Memory/ALU Regs section and other components are
not shown).

Each Macrocell is composed of five blocks (Fig.2): SRDR

responsible for the specific bio-inspired features like Self-

Replication and Dynamic Routing (hence the name of the

block – SRDR) [2], [3] and four Ubicells. In the FPGA mode,

the Ubicell corresponds to a typical slice of the commercial

FPGA device with four 4-input LUTs. The important feature

of this mode is that all of the building blocks can implement

both synchronous as well as purely asynchronous functions.

On the other hand, in the SIMD mode the Ubicell acts as a 4-

bit ALU with sixteen 4-bit registers [5]. What is worth noticing

is that, the same memory elements building the LUTs in the

FPGA mode are used as the mentioned registers in the SIMD

mode.

The universal architecture of the Ubichip, together with the

resource sharing, increase silicon area utilization but made

the design more demanding as far as its physical imple-

mentation is concerned. The Ubicells may theoretically form

asynchronous closed feedback loops which are the main ob-

stacle to overcome in this project. Long connections between

elements of the array of the Macrocells and the peripherals

as well as rich connectivity patterns among the Ubicells and

Macrocells drastically complicate the timing driven implemen-

tation process.

III. THEORETICAL BACKGROUND

This section presents some details of the methods and

models used during the proposed implementation scenario.

Conclusion drawn from the process of performing Static

Timing Analysis (STA) together with basic facts about timing

models are used to target the implementation challenges re-

sulting from the specific architecture described in the previous

section. Additionally, it presents some general consideration

of possible approaches and role of EDA tools in the imple-

mentation process.

A. Static Timing Analysis

In our methodology we use two basic techniques to ver-

ify whether our design meets timing requirements: timing

simulation (with back-annotated delays) and Static Timing

Analysis (STA). The principles of operation of both methods

differ significantly and one can easily find their comprehensive

description (for instance in [6]). Understanding the basic

concept of STA is essential in the presented approach, since

it is the basic tool in the process of design optimization.

The first important observation about the STA engine is that

it performs timing checks on the entire design. It verifies

timing requirements taking into account all possible com-

binations of logic connections including paths that cannot

be established in a practical case (the substantial problem for

the reconfigurable devices). Timing violations can be observed

on paths resulted from mutually exclusive logic conditions

or on unwanted paths constituting connections that make no

sense from designer’s point of view, like those exercising

unused combinations of configuration bits. These false paths,

regardless of their cause, should be excluded from STA. Other-

wise both Quality of Result (QoR) and optimization time will

be affected. Whereas the first mentioned type of false paths

can be automatically detected by EDA tools (like Cadence

Conformal Constraint Designer), the latter group requires

designer’s attention and careful consideration. Eliminating

unwanted paths from timing analysis is a key issue during

the implementation process presented in this paper.

Generally, STA is done in two main steps. In the first one the

transition time observed at all nodes is calculated taking into

account capacitance load. The STA engine tracks the timing

path from the signal source to the sink. In the other stage, each

cell delay is calculated individually taking into account the

cell load and the calculated input transition time. Therefore,

in order to exclude a particular path from STA, one needs

to take care of both delay and slew propagation.

B. Timing Models

In our project we employed the most popular and widely

used timing model for digital designs the Liberty format.

This open source standard initially introduced by Synopsys has

been significantly developed over last few years. Some syntax

extensions like Effective Current Source Model (ECSM) [7]

from Cadence have been introduced to address high nonlin-

earity in deep submicron or nanometric processes. However,

nonlinear modelling is beyond the scope of this paper. In this

section we limit the consideration to the concept of timing

arcs and its representation.

A

B

Y

c Yr Aa

a Brc Y

D Q

clock

setup
hold

rising edge

Fig. 3. Examples of combinational and sequential timing arcs.

The timing arc is a path during timing analysis that starts

at an input, output, or I/O pin and ends at an output or I/O



METHODOLOGY FOR IMPLEMENTING SCALABLE RUN-TIME RECONFIGURABLE DEVICES 179

pin [8]. The only exceptions to that rule are hold and setup

constraints (checks) – see Fig.3. In general, timing arcs fall

into two main groups depending on their type: sequential

(edge-sensitive) and asynchronous. This feature is very useful

in process of specifying timing constraints presented later

in this paper.

C. Flat versus Hierarchical Approach

Since we understand the implementation as a process start-

ing from the RTL level and ending at a layer mask map,

we present some trade-offs of both logic synthesis and place

and route together.

The implementation of each system can be done using dif-

ferent approaches. One of them, called flat, is based on global

synthesis without hard block boundaries during place and

route. The flat approach enables global optimization tech-

niques. What is more, avoiding hard hierarchical boundaries

during the place and route process leads to better silicon

utilisation (there are no placement halos, routing channels,

etc.). Finally, it is possible to perform comprehensive full-chip

STA which directly specifies the chip performance.

One the other hand, this general consideration does not have

to apply to all designs. The PERPLEXUS chip, containing

repeated logic blocks, seems to be an ideal candidate for the

hierarchical bottom-up approach. However, there are some

drawbacks of this method. As an example, it is extremely

sensitive to quality of a floorplan. Moreover, routing within

different hierarchical levels does not share the same metal

layers. All this limits the silicon utilisation.

The EDA tools capacity is also an important aspect

of choosing the implementation strategy. Obviously, there has

been a great progress in EDA solutions over past few years.

New software engines (using multi-threading) and sophisti-

cated algorithms make it possible to obtain chips with multi-

million gates. However, the Ubichip shows that gate count

is not the only obstacle for the flat implementation process.

Elimination of timing loops, related to ability to effectively set

timing constraints (requirements), is the key problem which

is described in more detail in the next sections.

D. Combinational Timing Loops

As it was mentioned before, each Macrocell in the array

implements sequential as well as purely combinational func-

tionality. From the timing point of view, it means numer-

ous paths creating so called combinational (feedback) timing

loops. The building blocks of the Macrocells do not have

all output registered. In other words, the Ubicells and SRDR

blocks can be seen as purely combinational (transparent) cells.

This cause of action is seen as bad coding practice by some

authors (see [9]). However, in case of reconfigurable devices

this transparency is introduced on purpose. As a consequence,

signal can theoretically traverse many configurable blocks and

form a closed path. What is more, the number of closed paths

rapidly grows with the number of reconfigurable blocks –

in case of PERPLEXUS – size of the array.

A combinational loop (Fig.4) is a cyclic path made of timing

arcs. The dependence of the combinational gate output and its

Fig. 4. Combinational timing loop with component timing arc.

input prevents from performing STA, since the engine cannot

track the signal endpoints. Although there were new algo-

rithms developed to analyse circuits with timing loops [10],

[11] in some situations, this phenomenon should be avoided

in standard implementation flows. The way the EDA tools

deal with detecting and eliminating timing loops may differ

even among tools from the same vendor (in our case Cadence

Design Systems). As a common feature, the presence of tim-

ing loops results in a warning message and requires further

investigation. In case of devices like the Ubichip dealing with

this issue is essential. To illustrate the scale of the problem let

us bring some numbers from reports after assembling the final

design in Cadence Encounter Digital Implementation System.

It occurred that the design, with approximately one million

instances, includes more than 41 thousands timing loops.

It is worth pointing out that the presence of combinational

timing loops in case of ”standard” digital devices suggests

problems with bad coding or poor architecture design. How-

ever in case of the reconfigurable devices, this phenomenon

is unavoidable. By its nature, this class of devices gives a great

number of possible data paths. It is the user who specifies

the final datapaths in the design during the configuration

process. It means that before loading a particular bit-stream

which sets the connection pattern, the reconfigurable design

contains numerous unpractical and undesired timing paths

forming closed loops. The amount of these loops grows with

the number of reconfigurable blocks in the design

Let us illustrate this issue employing some numbers from

the Ubichip implementation process. The SRDR unit is built

from more than 1300 instances and has nearly 280 ports. Each

Ubicell unit can be characterized by almost 1900 instances and

more than 170 ports. Obviously not all ports are combinational

(”transparent”). However, when we take into consideration that

we have 500 instances of SRDR and Ubicell blocks in a singe

die, we end up with very high number internal ports and

interconnections. Thus the number of timing loops is of the

order of thousands.

The number of timing loops and the gate count made the

global analysis and synthesis of the flat netlist simply impos-

sible. As a consequence, we decided to develop a hierarchical

bottom-up flow during logic synthesis.

IV. IMPLEMENTATION FLOW

In contrast to traditional flows we do not use the front-end

term since we are performing P&R session to get the design

netlist. Therefore, we divided the implementation path into

three main steps: getting the netlist, getting the layout, and

performing timing validation.



180 Ł. KOTYNIA, P. AMROZIK, A. NAPIERALSKI

A. Step One – Getting the Netlist

setup

logic
synthesis

P&R
partition

RC
Extraction

ETM
generation

setup

logic
synthesis

partitions’ RTL

timing libraries

timing libraries

top module RTL

partitions’ netlists
+

top level’s netlists

final netlist

Fig. 5. First step of the implementation flow.

Fig.5 depicts the first step of the proposed flow aimed

to create the netlist. As it can be seen in the figure, the first step

involves both logic synthesis and the place and route sessions.

Obviously this step requires appropriate RTL description.

First of all, the Ubichip RTL code needs to be divided into

separate files for each element of the Macrocell Array and

the top module. Specification of the blocks, called partitions,

requires careful consideration. It should be done in order

to balance efforts on setting timing constraints and placing and

routing the design. In other words, too small partitions (grains)

result in a poor floorplan with many placement and routing

halos. On the other hand, relatively big logic blocks with great

number of combinational paths are difficult to constrain.

Initially, the partitions are seen as empty modules at the

top level. Clearly, the logic synthesis gives more reliable

results if timing information for all blocks is available. The

tools should take into account setup and hold timing checks

to try to optimise the glue logic on the top level. Also area

occupied by each partition is necessary to estimate delays

on interconnections before the full placement is available.

As a consequence, the blackboxes have to be replaced by

the timing representation of the partitions as soon as possible.

Therefore, our main goal at this stage is to gather as much

timing information about the partitions as possible for the top-

level synthesis. At the same time we need to avoid undesirable

timing loops. The solution of this problem involves creating

a reusable representation of partition blocks – Extracting

Timing Models (ETMs) [12].

1) Extracting Timing Model: Fig.6 shows a simplified

process of creating an ETM which can be seen as a type

of encapsulation. A system made of logic cells is transformed

into a set of timing arcs. The tool can merge timing arcs of all

components using the STA engine and create one cell. Netlist,

extracted parasitic data and timing libraries are required for

creating an ETM. Thus, the additional P&R process for each

partition is needed. Timing context of a cell derived using

the ETM is then used in the top level logic synthesis. It has

to be taken into account, that this modelling introduces some

clock edge

setup
hold

QD

clk

combinational

Logic Ainput A output B

output Q

input clk

Logic B

CLK logic

Fig. 6. First step of the implementation flow.

level of inaccuracy due to the tool limitations [12]. Precision

of the model is also reduced by the lack of information on the

final physical aspects of the block (including pin positions).

2) Timing loops elimination: Dividing the flow into syn-

theses of individual partitions simplifies process of specify-

ing timing requirements – problem of constraining the de-

sign is decomposed into several synthesis processes resulting

in a tighter control over the partition timing. However, such

an approach does not solve the problem of avoiding timing

loops at the top level of the design. There are several solutions

for dealing with timing loops. In this section, we present some

of them.

The first technique we investigated was using the

set_false_path command from the Synopsys Design

Constraints (SDC) set. This command removes timing con-

straints from a specified path. SDC is the most popular and

widely-used format of representing timing intent. It is based

on TCL language making it more flexible. However, it applies

only to the propagation delay. Taking into account the informa-

tion presented earlier in this document, STA would compute

the path since slew rates are still propagated.

The next technique is so called multi-mode synthesis. In this

solution timing analysis of the design is done complying

with a set of logical values applied to the design. In fact,

we were successfully using this method with setting the timing

requirements. One of the Ubicell sections was constrained

differently for each mode to follow a varying logic path

length according to the current configuration. Despite of its

clear usefulness in case of the Ubicell, this method could not

be applied to the top level synthesis in order to eliminate

timing loops. We encountered several barriers while trying

to exercise this method. First of all, maintaining satisfactory

control over the timing, without decomposing the design into

smaller blocks, in this case would be very demanding. Despite

difficulties in creation of timing constraints for each mode

itself, there is also the synthesis tool capacity issue. In order

to prevent slew to be propagated through undesirable paths,

each mode would require a separate timing graph during opti-

mization. By the time of the PERPLEXUS project realisation

(2009/2010) this feature was not available. What is more,

it is said that creating a new timing graph results in increase

in synthesis time for more than 40 per cent. Assuming four

modes (which is a relatively small number for a system of this

level of complexity) and about one million instances, impact

on synthesis effectiveness cannot be neglected.



METHODOLOGY FOR IMPLEMENTING SCALABLE RUN-TIME RECONFIGURABLE DEVICES 181

Finally, after checking several possibilities we decided

to avoid the unwanted input-output timing arcs of each par-

tition using the SDC set_disable_timing command

which literally cuts the timing paths. However, since this

solution is considered to be relatively unsafe (it removes paths

entirely from timing reports), we needed to ensure that only

already optimized paths that create the problem of timing loops

are disabled.

3) Discussion: Combination of the timing models and the

timing arc disabling brings several profits to the implemen-

tation process. On the other hand, it has to be taken into

account that the mentioned limitations of the models and

disabling timing arcs results in the need of extra efforts

and attention during specifying timing constraints. In other

words, the risk of losing control over the timing of the design

increases dramatically. Some paths can be excluded from

timing optimization and reports by mistake. All this implies

the necessity of performing the comprehensive full-chip timing

validation which will be covered in one of the further sections

of this paper.

B. Step Two – Getting the Final Layout

Floorplan

+

Power structure

Fast placement

Pin assignment

Layout – GDSII

Netlist – Verilog

Delays – SDF

Chip assemble

ubicell{A,B,C,D},

SRDR

Flat P&R

Timing model

Clock tree model

Layout abstract

Top-level

Flat P&R

Fig. 7. Block diagram of the step two.

Fig.7 shows the successive stages of the process of get-

ting the final layout using Cadence Encounter Digital Imple-

mentation System. This step can be seen as more conven-

tional in terms of standard implementation flows. However,

the methodology presented in this paper can be considered

as a combination or a hybrid of top-down and bottom-up

approaches. In the first case, all partitions are placed and

timing requirements are derived from the top SDC file. We do

not perform time budgeting and the optimization process

is based on constraints developed for partitions and top module

separately. From the other side, we are creating a top level

floorplan and power structure, as in the top-down approach,

to better use the available area.

Another important distinction from a standard place and

route process is the fact that we are employing the partition

cloning technique. In this method one block (referred as a mas-

ter partition) is chosen and instantiated (cloned) multiple times.

Only the master block is optimised and changes to individual

clones are not possible. As a consequence a clock signal propa-

gation network (clock tree) cannot be implemented in a single

”flat” session [9], [13]. This section presents how this and

other aspects related to the partition cloning are addressed

in our flow.

FPGA devices are known of their high metal density [14].

Therefore, the design floorplan must allow intensive intra-chip

connections. Specifying the partition positions and routing

channels is the biggest challenge in this step. The key issue

of planning the floor is the trade-off between an area allocated

for global (top-level) connections and local routing inside

the partitions. The presence of master partitions and their

duplicates additionally complicates the planning the floor,

since each clone needs to be aligned to power structure

identically to avoid power and ground shorts.

Global routing for top metal layerscharnels

Core area

Power stripe

ubicell_C

SRDR ubicell_D

ubicell_A

ubicell_B

Fig. 8. Relative floor and power plan for Ubichip.

Fig.8 depicts the proposed approach to creating the floorplan

for the Ubichip. Positions of partition boundaries and power

stripes are specified relatively which is illustrated using arrows.

The combination of TCL commands creates a set of related

numbers like distance between partitions, routing channel

widths or position of power stripes over the partition. All

sizes are generated automatically after supplying several basic

figures (like aspect ratio and size of partitions) and rounded

to placement/routing grid. This automation is especially im-

portant taking into account that achieving trade-off between

local and global routing may require several iterations.

In order to obtain the most optimized floorplan we con-

sidered several possible solutions for routing channel widths,

block sizes, etc. It has to be pointed out that all the changes

had to follow the requirements set by the power plan. For

instance all partitions needed to be located on the power-

ground structure in the same way. If we take into account

that the power horizontal rails are routed in the ground-supply-

ground pattern, the smallest possible adjustment to the vertical

routing channel widths was two rows.

Our objective was to get the final floorplan as soon as pos-

sible avoiding many iterations of the entire place and route

process. To achieve that goal we decided to use trial route

option. This routing estimation can give an idea of possible

congestion areas without performing the complete place and

route. Obviously not all problems could be foreseen at the

floorplan level. Nevertheless, the well-structured and firmly

divided flow facilitates finding source of possible problems

and adjusting the design decisions to avoid them.

Partition cloning is not a widely-used technique even with

multi-core processors. It results from the fact that performance

of each logic block depends heavily on its position on a silicon

die. Aspects like connection lengths, neighbourhood, etc. play

here an important role. What is more, the number of repeated



182 Ł. KOTYNIA, P. AMROZIK, A. NAPIERALSKI

blocks in processors available on market is relatively small.

In case of the PERPLEXUS project the situation was quite

different. We were implementing a chip with a few hundreds

of repeated partitions. In our approach we tried to balance high

number of partitions with impact of its physical location and

connections.

As it was mentioned, each of four Ubicells building the

Macrocell has the same behavioural description. However,

duplicating the same layout for every partition would severely

limit the optimization capabilities. For instance, fixed pin

locations increases wire length which affects timing. As a con-

sequence, the final netlist was changed in order to address this

problem. The netlist of the Ubicell was copied and renamed

in order to obtain four different blocks instantiated according

to their physical position. This way, functionally identical

blocks were represented by four types of partitions (see Fig.8).

This example shows again the role of careful organization

of the design. The differentiation was needed only in the P&R

process. Thus, the changes were done to the netlist, leaving

the VHDL models verification process unaffected.

Choosing the master Macrocell was another problem

to solve. The selection of physical part of the chip to be du-

plicated needs to be done carefully since it may significantly

affect performance of the entire design. The master partition

has to be optimized with realistic design constraints (mainly

pin assignment). These constraints need to be the most rep-

resentative for all partitions. Therefore, we considered two

major factors while selecting the master partition: the partition

neighbourhood and its distance to the relevant peripherals.

The next problem that arises here is the partition pin place-

ment. Each partition contains a considerable large number

of pins. Their distribution may noticeably affect the over-

all timing and requires careful attention. In the proposed

methodology, the final pin positions are reached in the ini-

tial placement process. No timing optimization is done here

in order to gain speed. In other words, this action can be seen

as a trial placement. Pin location constraints can be applied

as an enhancement of the process (in terms of QoR and speed).

In case of the Ubichip it was based on specifying side and

metal layer for the pins of particular block. Pin assignment

is the last part of planning the floor before dividing the design

into partitions.

It is worth emphasising that in case of partition cloning

aspects like partition pin placement or careful power structure

become even bigger challenge. Any possible errors (not opti-

mal solutions) are repeated and its impact on the final QoR

is significantly increased.

The final P&R of each partition does not differ from

standard procedures known from conventional implementation

flows. Instead of presenting it in detail we will concentrate

on one aspect. After P&R for each partition (excluding the top

module) we were generating a complete representation of the

partitions including:

• layout abstract (LEF) including information on process

antenna ratios for all pins

• timing model (ETM)

• clock tree macromodel including delays on internal clock

tree

Unlike the ETM generated in the step one of the flow, the

current model reflects timing of the partition more precisely.

It takes into account the final placement of the blocks. Also

latencies of the internal clock tree structures are fully repre-

sented in a clock tree macromodel. This way we obtain a fully

reusable partition representation (macro). Consequently, each

partition can be used as a leaf cell during P&R of the top

module. Hierarchical clock tree synthesis is possible since the

tool is aware of latencies in clock signal propagation inside

and between macro blocks.

After chip assembling we obtain the final netlist and cor-

responding Standard Delay Format (SDF) [15] file which are

used during timing verification of the design.

C. Step Three – Timing Validation

As it was mentioned before, we use two timing verification

techniques: STA and back-annotated simulations. Since the

designed circuit has a reconfigurable architecture, its timing

can be verified only with respect to the current operation mode.

Additionally, the timing arcs, which are removed in order

to disable combinational loops, severely limit usability of STA

to determine the actual top frequency of the circuit even

in a given mode. As a consequence, timing simulations are

introduced to the flow as its important element. Exhaustive

tests and timing debugging can highlight hot spots in the

design performance which can be then used to readjust the

timing requirements set during the optimization process.

Using simulation tools like ModelSim with a standard

approach (called direct simulations) is associated with limited

bandwidth. We enhanced the process of verification by making

tests more comprehensive to cover more possible configura-

tions and simultaneously shrink the verification time. There-

fore, we employed more advanced verification technique called

constrained-random testbenches using Hardware Verification

Language (HVL) with the VERA environment.

The individual parts of the Ubichip were represented

at higher level of abstraction using HVL. The verification was

based on automatic comparison of the responses of the HVL

model and the final netlist upon randomly generated input

vectors. After introducing a delay file and using appropriate

models of the cell, we were able to judge the design timing.

An SDF file includes delays as well as timing checks (setup,

hold) [15] corresponding to Verilog specify block of the

cell models. To illustrate the proposed timing validation let

us assume that the clock period is too small for the signal

to propagate between registers. As a consequence, the result

becomes either wrong (different from expected) or unknown

(containing Xs). In both cases it can be reported. Moreover,

the simulations can be easily automated using TCL scripts.

So, the top clock frequency for a given operation mode can

be established after a set of simulation runs.

Random testbenches are typically used during validating be-

havioural models. The VHDL or Verilog model is considered

to be correct when it gives the same results as the reference

description. We used the same idea but applied it to the

final netlist enriched with delay information. This approach

proved to be extremely efficient due to the possibility of high-

level modelling, input randomisation, and automatic result



METHODOLOGY FOR IMPLEMENTING SCALABLE RUN-TIME RECONFIGURABLE DEVICES 183

mismatch detection. As a result, we were able to automate the

simulations and effectively use them together with the SDF file

to determine the design timing. The mixture of constrained-

random post-synthesis simulations and STA allowed us to

overcome limitations of both verification methods: preserve

close control over timing intent of the blocks and at the same

time effectively validate performance of the entire design.

V. FLOW VALIDATION

Finally, the design was fabricated using the UMC 180 nm

technology. A dedicated PCB test-board was created in order

to check the simulation results with the physical measurements

done with logic analyser. It allowed us to measure the top fre-

quency of operation in different modes of operations. General

Purpose IOs were used to observe internal signals in order

to test the FPGA mode. Also the SIMD mode operation was

successfully verified.

We obtained a very good correlation between foreseen and

measured results. Additionally, correctness of the flow was

confirmed with demonstration of bio-inspired algorithms that

took place during the PERPLEXUS Final Review Meeting

(29 March 2010).

VI. CONCLUSION

In our work we developed a consistent and complete imple-

mentation flow. As it was shown each partition is implemented

as fully reusable macro. This way the high scalability of the

architecture developed in the PERPLEXUS project was also

reflected during the physical realisation phase. Impact of the

size of the Macrocell Array on synthesis or place and route

time was minimised due to multiple instantiation (cloning).

The project was also interesting from the management point

of view. Most of the steps of the flow were done by the

same group of people starting from adjusting the architecture

and partitioning the design ending at timing validation. It is

worth pointing out that successful stages of the presented

methodology heavily depended on one another. To illustrate

this situation let us consider the timing validation. The func-

tional simulations put additional stress on the parts that were

excluded from STA. Thus, the testbenches needed to somewhat

take into consideration the timing constraints. The presented

approach resembles to some extent term construct by cor-

rection introduced by the Sun Microsystems engineers that

worked on the UltraSPARC processor [13]. The PERPLEXUS

project also showed that all physical and design implication

cannot be predicted at the architecture specification stage.

Therefore, close collaboration within a working group is es-

sential.

The presented methodology can be extended from the tools

point of view. First of all, new features like virtual silicon

prototyping are now available. In this method influence of par-

asitic elements can be taken into account during synthesis. The

early estimation of parasitic elements may play an important

role in designs where a complex floorplan substantially in-

creases lengths of individual connection length. The presented

flow may be also enriched with new more efficient methods

of specifying timing constraints. It is well-know phenomena
that timing intent of a design is hardly ever stated mature

enough. A dedicated tool taking into account the specific

architecture class may result in a more automated process

of setting timing constraints.

REFERENCES

[1] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma, J. Moreno,
A. Villa, H. Volken, A. Napieralski, G. Sassatelli, and E. Lawarec,
“PERPLEXUS: Pervasive computing framework for modeling complex
virtually-unbounded systems,” in Proc. 2007 NASA/ESA Conference on

Adaptive Hardware and Systems, Edinburgh, UK, Aug. 2007, pp. 587–
591.

[2] A. Upegui, Y. Thoma, A. Perez-Uribe, and E. Sanchez, “Dynamic
routing on the ubichip: Toward synaptogenetic neural networks,” in
Proc. 2008 NASA/ESA Conference on Adaptive Hardware and Systems,
Noordwijk, The Netherlands, Aug. 2007, pp. 587–591.

[3] Y. Thoma, A. Upegui, A. Perez-Uribe, and E. Sanchez, “Self-replication
mechanism by means of selfreconfiguration,” in Proc. ARCS ’07 - 20th

International Conference on Architecture of Computing Systems 2007,
Zurich, Switzerland, Mar. 2007.

[4] J. Moreno, J. Madrenas, and L. Kotynia, “Synchronous digital imple-
mentation of the AER communication scheme for emulating large-scale
spiking neural networks models,” in Proc. 2009 NASA/ESA Conference

on Adaptive Hardware and Systems, San Francisco, CA, Nov. 2009, pp.
189–196.

[5] J. Moreno and J. Madrenas, “A reconfigurable architecture for emulating
large-scale bio-inspired systems,” in Proc. IEEE Congress on Evolu-

tionary Computation CEC 2009, Trondheim, Norway, May 2009, pp.
126–133.

[6] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer

Designs: A Practical Approach. Springer, 2009.
[7] “Si2 liberty syntax extensions for characterization and validation speci-

fication v1.0 21,” Silicon Integration Initiative, Inc., 2009.
[8] “Liberty user guide, vol. 1 version 2009.06,” Synopsys, Inc., 2009.
[9] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-

a-Chip Designs, 3rd ed. Springer, 2007.
[10] T. R. Shiple and H. T. G. Berry, “Constructive analysis of cyclic circuits,”

in Proc. European Design and Test Conference (ED&TC) 1996, Paris,
France, Mar. 1996, pp. 328–333.

[11] A. Gupta and C. Selvidge, “Acyclic modeling of combinational loops,” in
Proc. IEEE/ACM International Conference on Computer-Aided Design

ICCAD-2005, San Jose, CA, May 2005, pp. 343–347.
[12] “Encounter digital implementation system user guide product version

9.1,” Cadence Design Systems, Inc., 2009.
[13] H.Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design

Compiler Physical Compiler and PrimeTime, 2nd ed. Springer, 2001.
[14] P. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Cremen, and

B. Troxel, “Hybrid ASIC and FPGA architecture,” in Proc. IEEE/ACM

International Conference on Computer Aided Design ICCAD 2002, San
Jose, CA, Nov. 2002, pp. 187–194.

[15] “Standard delay format specification, version 3.0,” Open Verilog Inter-
national, 1995.


