
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 2, PP. 209–216

Manuscript received April 18, 2011; revised May 2011. DOI: 10.2478/v10177-011-0029-4

Application of Indexed Partition Calculus in Logic

Synthesis of Boolean Functions for FPGAs
Mariusz Rawski

Abstract—Functional decomposition of Boolean functions spec-
ified by cubes proved to be very efficient. Most popular decom-
position methods are based on blanket calculus. However compu-
tation complexity of blanket manipulations strongly depends on
number of function’s variables, which prevents them from being
used for large functions of many input and output variables. In
this paper a new concept of indexed partition is proposed and
basic operations on indexed partitions are defined. Application of
this concept to logic synthesis based on functional decomposition
is also discussed. The experimental results show that algorithms
based on new concept are able to deliver good quality solutions
even for large functions and does it many times faster than the
algorithms based on blanket calculus.

Keywords—indexed partition, logic synthesis, FPGA.

I. INTRODUCTION

FOR years now, functional decomposition is perceived as

one of the best logic synthesis methods targeted FPGAs.

Today’s FPGAs are entire programmable systems on a chip

(SoC) which are able to cover an extremely wide range of

applications. They specific architecture based on the lookup

table (LUT) as basic building block requires a specific logic

synthesis methods. A logic network describing implemented

system must be transformed into network that consists of

nodes of limited number of inputs only, since an n-input LUT

is capable of implementing any Boolean function of up to n

variables.

Functional decomposition relies on breaking down a com-

plex system into a network of smaller and relatively indepen-

dent co-operating subsystems, in such a way that the original

system’s behavior is preserved. A system is decomposed into

a set of smaller subsystems, such that each of them is easier

to analyze, understand and synthesize. Decomposition allows

synthesizing the Boolean function into multilevel structure that

is built of components, each of which is in the form of LUT

logic block specified by truth tables.

Since the Ashenhurst-Curtis decomposition have been pro-

posed, many new decomposition techniques have been devel-

oped [1]–[5], but they are still based on Ashenhurst’s ideas.

The classical methods for computing functional decompo-

sition were based on representing the Boolean function by

a decomposition chart [6], [7]. Shortly after their introduction,

decomposition charts were abandoned in favor of cube repre-

sentation [8], and computing column multiplicity on charts

was replaced by computing compatible classes for a set of

This work was partly supported by the Ministry of Science and Higher
Education of Poland – research grant no. N N516 418538 for 2010-2012.

M. Rawski is with Institute of Telecommunications, Warsaw Univer-
sity of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:
rawski@tele.pw.edu.pl).

cubes. Cubes can efficiently represent many practical logic

multiple-output, partially specified Boolean function. In [1]

a comprehensive theory of serial functional decomposition for

multiple-output, partially specified Boolean functions repre-

sented by cubes was proposed. This theory uses the concept

of blankets that are generalized set systems [9]. The blanket

calculus allowed construction of very efficient decomposition

algorithms [10], [11]. However the computational complexity

of blanket manipulations made it impossible to efficiently

apply these algorithms to large Boolean functions.

In [12] the theory of information relationships and measures

has been proposed that also uses cube representation of

Boolean function. In this approach the concept of information

and abstraction sets is used to model various “information

streams” in discrete information systems. This concept allowed

to investigate relationships between information in various

information streams of a digital system represented by Boolean

function. For instance, relationships between information de-

livered by certain inputs and information necessary for com-

puting certain outputs could be measured, such as: similar-

ity, dissimilarity, missing information and extra information.

However the analysis of dependency between “information

streams” in function on such “atomic” level makes it very

difficult to construct efficient algorithms for synthesis of

large multi-output Boolean functions. There are algorithms

presented in literature that use this concept to construct ef-

ficient algorithms of functional decompositions limited only

to small or single-output functions [13], [14] or to support

decomposition methods based on blankets [11]. Moreover to

express large functions the espresso format is often used, that

can use cubes that have “no meaning” for some outputs. This

in general does not specify “pure” truth table, so algorithms

based on concept of information relationships and measures

cannot be directly used in contrast to methods based on blanket

calculus.

A Boolean function can be represented using binary de-

cision diagrams. BDDs as a method of representation of

single-output Boolean functions were introduced by Lee [15]

and later Ackers [16]. In [17] Bryant presented algorithms

that efficiently manipulated BDDs assuming ordering of the

variables. He developed a method to reduce the size of BDDs

by removing ’redundant’ nodes and sub-graphs which occur

more than once. Decomposition with use of BDDs involves

the process of variable ordering that leads to good decompo-

sition. Normally, the size of BDD varies for different variable

orderings and, for some functions, it is highly sensitive to the

ordering. Finding the best ordering that minimises the size of

the BDD requires, in the worst case, a time exponential in

the number of variables. Finding a good variable ordering for

210 M. RAWSKI

evaluation of functional decomposition is time consuming and

influences the efficiency whole process of decomposition.

Logic circuits usually have many outputs. The functional

decomposition of multi-output circuit requires such represen-

tation of multiple-output function that allows efficient cre-

ation of sub-circuits common to all of the outputs. Cube

representation of multiple-output Boolean function is very

easy. To represent such functions by using BDDs there have

been proposed several methods. One of the first methods

is a multi-terminal binary decision diagram (MTBDD) [18].

Unfortunately, MTBDDs tend to be too large to construct.

The second method is a binary decision diagram (BDD)

for the characteristic function (CF) of the multiple-output

function. The advantage of the CF is its small evaluation

time. CFs are used in logic simulation and multi-level logic

optimization [19]. The third method is a shared binary decision

diagram (SBDD) [18]. In many cases, SBDDs are smaller

than corresponding MTBDDs and BDDs for CFs. Recently an

encoded characteristic function for non zero outputs has been

proposed for compact representation of multi-output Boolean

function [4]. Decomposition methods based on concept of

BDDs allow synthesizing even large functions but methods

based on blanket calculus offer better quality of obtained

solutions (in terms of number of blocks decomposed network).

In this paper a concept of indexed partition is presented

that allows manipulate Boolean function described by cubes

in similar way as blanket calculus but requires much less com-

putational and memory complexity. It combines the advantages

of both blanket calculus and information relationships and

measures. Presented results prove that application of indexed

partition allows to efficiently apply synthesis method even for

large Boolean functions.

II. PRELIMINARY INFORMATION

A. Cube Representation of Boolean Functions

A Boolean function can be specified using the concept of

cubes (input terms, patterns) representing some specific sub-

sets of minterms. In a minterm, each input variable position

has a well-specified value. In a cube, positions of some input

variables can remain unspecified and they represent “any

value” or “don’t care” (−). A cube may be interpreted as a p-

dimensional subspace of the n-dimensional Boolean space or

as a product of n− p variables in Boolean algebra (p denotes

the number of components that are ’−’). Boolean functions are

typically represented by truth tables. Truth table description

of function using minterms requires 2n rows for function

of n variables. For function from Table I truth table with

26 = 64 rows would be required. Since cube represents a set of

minterms, application of cubes allows for much more compact

description in comparison with minterm representation. For

example cube 0101−0 from row 1 of truth table from Table I

represents set of two minterms {010100, 010110}.

For pairs of cubes and for a certain input subset B, we

define the compatibility relation COM as follows: each two

cubes S and T are compatible (i.e. S, T ∈ COM(B)) if and

only if x(S) ∼ x(T) for every x ⊆ B. The compatibility

relation ∼ on {0,−,1} is defined as follows [1]: 0 ∼ 0,− ∼
−, 1 ∼ 1, 0 ∼ −, 1 ∼ −,− ∼ 0,− ∼ 1, but the pairs (1, 0)

TABLE I
BOOLEAN FUNCTION y1 = f(x1, x2, x3, x4, x5, x6)

x1 x2 x3 x4 x5 x6 y1
1 0 1 0 1 − 0 0
2 0 1 0 − 0 0 0
3 − 1 0 0 0 − 0
4 0 1 0 1 1 − 0
5 0 0 1 − − 1 0
6 − − 1 1 − 1 0
7 1 − 1 1 0 − 0
8 0 0 − − − 0 1
9 − 1 0 0 1 − 1
10 1 − 1 0 − − 1

and (0, 1) are not related by ∼. The compatibility relation on

cubes is reflexive and symmetric, but not necessarily transitive.

In general, it generates a “partition” with non-disjoint blocks

on the set of cubes representing a certain Boolean function

F . The cubes contained in a block of the “partition” are all

compatible with each other.

The compatibility relation COM can be represented as

a compatibility graph. Each vertex in such a graph is asso-

ciated with a cube. There is an edge between the two vertices

of that graph if the related cubes are compatible.

Information on the input patterns of a certain function F is

delivered by the function’s inputs and used by its outputs with

precision to the blocks of the input and output “partitions”.

Knowing the block of a certain “partition”, one is able to

distinguish the elements of this block from all other elements,

but is unable to distinguish between elements of the given

block. In this way, information in various points and streams

of discrete information systems can be modeled.

“Partitions” with non-disjoint blocks are referred to as

blankets [1]. The concept of blanket is a simple extension

of ordinary partition and typical operations on blankets are

strictly analogous to those used in the ordinary partition

algebra.

The compatibility relation on Boolean function’s cubes

can also be modeled using the concept of information and

abstraction sets [12].

B. Blanket Calculus

A cover on a set S is such a collection of (not necessary

disjoint) subsets Bi of S, called blocks, that
⋃

i

Bi = S (1)

The product of two covers σ1 and σ2 is defined as follows:

σ1 • σ2 = {Bi ∩Bj |Bi ∈ σ1 and Bj ∈ σ2}. (2)

A blanket on a set S is a cover β = {B1, . . . , Bk} of

nonempty and distinct subsets of S, called blocks.

Define “nonempty” operator ne as follows. For any set

{Si} of subsets of set S, ne{Si} is {Si} with empty subset

removed, if was originally present and only one instance of

block if more similar block were originally present.

The product of two blankets β1 and β2 is defined as follows:

β1 • β2 = ne{Bi ∩Bj |Bi ∈ β1 and Bj ∈ β2}. (3)

APPLICATION OF INDEXED PARTITION CALCULUS IN LOGIC SYNTHESIS OF BOOLEAN FUNCTIONS FOR FPGAS 211

For two blankets we write β1 ≤ β2 if and only if for each

Bi in β1 there exists a Bj in β2 such that Bi ⊆ Bj . The

relation ≤ is reflexive and transitive.

Each block Bi of cover (blanket) has its cube representative

r(B1) that indicates the value of variables inducing this

cover(blanket) corresponding to this block.

Example 1. (Blanket-based representation of Boolean func-

tions).

For function F from Table I, the blankets induced by

particular input and output variables on the set of function

F ′s input patterns (cubes) are as follows:

βx1 = {B1;B2} = {1, 2, 3, 4, 5, 6, 8, 9; 3, 6, 7, 9, 10}, (4)

βx2 = {5, 6, 7, 8, 10; 1, 2, 3, 4, 6, 7, 9, 10}

βx3 = {1, 2, 3, 4, 8, 9; 5, 6, 7, 8, 10}

βx4 = {2, 3, 5, 8, 9, 10; 1, 2, 4, 5, 6, 7, 8}

βx5 = {1, 2, 3, 5, 6, 7, 8, 10; 1, 4, 5, 6, 8, 9, 10}

βx6 = {1, 2, 3, 4, 7, 8, 9, 10; 3, 4, 5, 6, 7, 9, 10}

βy1
= {1, 2, 3, 4, 5, 6, 7; 8, 9, 10}

The representative of block B1 of blanket βx1 is r(B1) = 0,

since variable x1 has value 0 for input patterns 1, 2, 4, 5, 8.

Similarly for block B2 of blanket βx1 r(B2) = 1.

Blanket generated by variable x1 models information deliv-

ered by this variable. Variable x1 cannot be used to distinguish

input pattern 1 and 2, since it has value 0 for both of them in

Table I and this is reflected in blanket βx1 – these patterns are

contained in the same block. Similarly input pattern 1 and 7

are distinguish by this variable, since in Table I it has value 0

for input pattern 1 and value 1 for input pattern 7. In blanket

βx1 these patterns are contained in different blocks.

Product of blankets βx2, βx4, βx5 presented as cover

σx2x4x5 may have empty and repetitive blocks.

σx2x4x5 = βx2 • βx4 • βx5

= {B1;B2;B3;B4;B5;B6;B7;B8}

= {5, 8, 10; 5, 8, 10; 5, 6, 7, 8; 5, 6, 8;

2, 3, 9, 10; 9, 10; 1, 2, 4, 6, 7; 1, 4, 6}

The cube representative of a block B3 of cover σx2x4x5 is

r(B3) = 010, since this block was obtained from blocks B1

of βx2, B2 of βx4 and B1 of βx5. The representatives of these

blocks are respectively 0, 1 and 0. Representatives of cover’s

blocks are always minterms.

Product of blankets βx2, βx4, βx5 presented as blanket

βx2x4x5 has empty and repetitive blocks removed.

βx2x4x5 = βx2 • βx4 • βx5 = {B1;B2;B3;B4;B5;B6;B7}

= {5, 8, 10; 5, 6, 7, 8; 5, 6, 8; 2, 3, 9, 10;

9, 10; 1, 2, 4, 6, 7; 1, 4, 6}.

The relationship between blocks of βx2x4x5 and their cube

representatives r(Bi), relies on containment of block Bi in

blocks of blankets used in product. Denoting blocks of βx2x4x5

as B1 through B7, we have r(B1) = 00−. This is because

B1 = {5, 8, 10} is included in the first blocks of βx2, βx4 and

in both blocks of βx5. For B2 = {5, 6, 7, 8}, we have: B2 is

included in the first block of βx2, in the second block of βx4

and in first block of βx5. Hence, r(B2) = 010.

Blanket calculus proved to be very efficient in decompo-

sition based logic synthesis of Boolean functions specified

by cubes. Many ideas based on this concept can be found in

literature that solve problems from field of general (functional)

decomposition of combinational circuits [3], [10], [20]–[22]

and sequential machines [23], pattern analysis, knowledge

discovery, machine learning, decision systems, data bases,

data mining etc. [24]–[26]. Unfortunately computational and

memory complexity of basic manipulation on blankets grows

exponentially with the number of variables of Boolean func-

tion. This makes it unable to use them for large Boolean

functions.

C. Information Relationships and Measures

The theory of information relationships and measures is

presented in paper [12]. Information on symbols from a certain

set S means the ability to distinguish certain symbols from

some other symbols. An elementary information describes

the ability to distinguish a certain single symbol si from

another single symbol sj , where: si, sj ∈ S and si 6= sj .

Any information on elements from a certain set S can be

represented as a composition of such elementary portions

of information. In particular, one can represent any set

of elementary portions of information by an information

(incompatibility) relation I or an information set IS defined

on S × S as follows:

I = {(si, sj)|si is distinguished from sj by the modelled

information},

IS = {{si, sj}|si is distinguished from sj by the modelled

information}.

In similar way an elementary abstraction can be defined as

inability to distinguish a certain single symbol si from another

single symbol sj , where: si, sj ∈ S and si 6= sj .

Having defined elementary portions of information and

abstraction it is possible to express the information modeled by

blankets in terms of these elementary portions, i.e. in terms of

the information relations and sets and it is possible to analyze

the relationships between blankets by analyzing the relation-

ships between their corresponding information relations and

sets. In particular, the correspondence between blankets and

IS is as follows: IS contains the pairs of symbols that are

not contained in any single block of a corresponding blankets.

For instance, let’s consider the blanket β1 from (4), the

corresponding information set is as follows:

ISx1 = {1|7, 1|10, 2|7, 2|10, 4|7, 4|10, 5|7, 5|10, 8|7, 8|10}

Symbol “|” in pairs si|sj from ISx1 is used to stress that the

elements si and sj of a certain pair {si, sj} are distinguished

from each other.

212 M. RAWSKI

Performing analysis or design of discrete information sys-

tems, we often ask for relationships between information

in various information streams of a considered system. For

instance, one may be interested in relationships between infor-

mation delivered by certain inputs and information necessary

for computing certain outputs, such as: similarity, dissimilarity,

missing information and extra information.

In [12], among others the following relationships between

information of two blankets β1 and β2 are defined:

common information (i.e. information present in both β1

and β2): CI(β1, β2) = IS(β1) ∩ IS(β2),
extra information (i.e. information missing in β1, but

present in β2): EI(β1, β2) = IS(β2)− IS(β1).

The simplest quantitative measures for the amount of

information and for the strength of information relationships

are the absolute measures that are defined by the number of

elements in the appropriate information set. In this way, for

a single blanket β the following measure was defined in [12]:

information quantity: IQ(β) = |IS(β)|

For two blankets β1 and β2, the following relationship

measures were defined:

information similarity measure:

ISIM(β1, β2) = |CI(β1, β2)|

and

information increase measure:

IINC(β1, β2) = |EI(β1, β2)|

Information relationships and measures concept operates on

sets of “elementary information” and “elementary abstraction”.

Basic operations here are very simple: union, intersection,

difference, symmetric difference of sets. Computational and

memory complexity of these operations is polynomial and

depends on the number of cubes representing Boolean func-

tion. However there are no functional decomposition methods

that are based on this concept only. Information relationships

and measures deliver very efficient mean for analyzing depen-

dencies between variables of Boolean functions, but do not

show how to construct decomposition without the concept of

blanket. Still there are methods that use this concept to support

some parts of decomposition process, such as input variable

partitioning, symbolic sub-function selection and encoding

[11], [13], [14], [27].

III. INDEXED PARTITION CONCEPT

Blankets, as well as information sets are the way of

expressing the compatibility relation COM on Boolean

function’s cubes. This also can be done using the concept of

compatibility or incompatibility graph.

Definition 1. For Boolean function F specified by set S

of cubes and for a certain set B of function F ’s variables

we define an incompatibility graph ΓB = (N,E), where

the set N of vertices corresponds to the set S of cubes and

set E of edges is formed by set of incompatible pairs of cubes.

Operations on blankets or information sets have direct

analogue in operations on incompatibility graphs. For example

the product of two blankets β1 and β2 can be modeled as

computing incompatibility graph Γ12 = (N,E = E1 ∪ E2)
using graphs Γ1 = (N,E1) and Γ2 = (N,E2) (corresponding

to these blankets).

Here the concept of indexed partitions is introduced,

that is used to model such operations on incompatibility

graphs. Indexed partitions are compact way of representing

incompatibility graphs.

Definition 2. An indexed partition is a set of ordered di-

chotomies {Bi, Pi} on set S, such that Bi are disjoint subsets

of S and ⋃

i

Bi = S (5)

Example 2. (Indexed partition-based representation of

Boolean functions).

For function F from Table I, the indexed partitions induced

by selected input and output variables on the set of function

F ’s input patterns (cubes) are as follows:

δx1 = {{B1, P1}; {B2, P2}; {B3, P3}} = (6)

{{{1, 2, 4, 5, 8}, {7, 10}}; {{3, 6, 9}, {∅}};

{{7, 10}, {1, 2, 4, 5, 8}}},

δx2 = {{{5, 8}, {1, 2, 3, 4, 9}}; {{6, 7, 10}, {∅}};

{{1, 2, 3, 4, 9}, {5, 8}}},

δy1 = {{{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10}},

{{8, 9, 10}, {1, 2, 3, 4, 5, 6, 7}}}.

Equation (6) can be interpreted in such way that input

variable x1 can be used to distinguish every input pattern

from set B1 from every pattern from set P1, (similarly

{B3, P3}), however P2 is an empty set so variable x1 cannot

distinguish patterns included in B2 from any other pattern.

Definition 3. The product of two indexed partitions δ1 and δ2
is defined as follows:

δ1 • δ2 = {{Bi ∩Bj , Pi ∪ Pj}|Bi ∩Bj 6= ∅,

{Bi, Pi} ∈ δ1 and {Bj , Pj} ∈ δ2}. (7)

Example 3. (Product of two indexed partitions).

For indexed partitions from example 2 we have:

δx1x2 = δx1 • δx2 =

{{{5, 8}, {1, 2, 3, 4, 7, 9, 10}};

{{1, 2, 4}, {5, 7, 8, 10}};

{{6}, {∅}};

{{3, 9}, {5, 8}};

{{7, 10}, {1, 2, 4, 5, 8}}};

APPLICATION OF INDEXED PARTITION CALCULUS IN LOGIC SYNTHESIS OF BOOLEAN FUNCTIONS FOR FPGAS 213

Definition 4. For two indexed partitions we write δ1 ≤ δ2 if

and only if for each {Bi, Pi} in δ1 and each {Bj, Pj} in δ2
Pi ⊇ Pj if Bi ∩ Bj 6= ∅. The relation ≤ is reflexive and

transitive.

Example 4. (The relation ≤).

It can be easily verified that δx1x2 ≤ δx1.

However it is not true that δx1x2 ≤ δy1, since

for {B4, P4} = {{3, 9}, {5, 8}} from δx1x2 and

{B2, P2} = {{8, 9, 10}, {1, 2, 3, 4, 5, 6, 7}}from δy1 we

have that B4 ∩B2 6= ∅ but P4,⊇ P2.

Definition 5. The quotient of two indexed partitions δ1 and

δ2 is defined as follows:

δ1|δ2 = {{Bi ∩Bj , Pi − Pj}|Bi ∩Bj 6= ∅, {Bi, Pi} ∈ δ1

and{Bj , Pj} ∈ δ2}. (8)

Example 3. (Quotient of two indexed partitions).

For indexed partitions from example 2 we have:

δ = δy1|δx1 =

{{{1, 2, 4, 5}, {8, 9}};

{{3, 6}, {8, 9, 10}};

{{7}, {9, 10}};

{{8}, {1, 2, 3, 4, 5, 6}};

{{9}, {1, 2, 3, 4, 5, 6, 7}}

{{10}, {3, 6, 8}}}

For indexed partition we can also use quantitative measures

similar to these defined for information sets:

information quantity: IQ(δ) = 1

2

∑
i(|Bi| × |Pi|).

For two indexed partition δ1 and δ2, for example the

following relationship measure can be defined:

information similarity measure: ISIM(δ1, δ2) = IQ(δ1)−
IQ(δ1|δ2).

IV. APPLICATION OF INDEXED PARTITIONS TO LOGIC

SYNTHESIS

Indexed partitions are the method for expressing compatibil-

ity relation COM on cubes in different way than blankets and

information sets. Some existing algorithms based on blankets

and information sets can be adopted to work with indexed

partitions.

In [12] an efficient heuristic method for computing minimal

input support and parallel decomposition for Boolean function

was presented that can be easily implemented with use of con-

cept indexed partitions. Similarly, efficient heuristic method

for input support selection proposed in [11] can be used with

new concept to reduce the search space to a manageable size

while keeping the high-quality solutions in the reduced space.

G

H

U V

F

X

Fig. 1. Schematic representation of the serial decomposition.

It is also possible to propose algorithms based on new con-

cept that have much better efficiency that similar algorithms

constructed for blankets or information sets.

This section demonstrates the examples of application of

introduced indexed partition concept in logic synthesis of

Boolean functions specified by cubes.

A. Serial Functional Decomposition

The set X of function’s input variable is partitioned into

two subsets: free variables U and bound variables V , such

that U ∪ V = X . Assume that the input variables x1, . . . , xn

have been relabeled in such way that:

U = {x1, . . . , xr} and

V = {xn−s+1, . . . , xn}.

Consequently, for an n-tuple x, the first r components are

denoted by xU , and the last s components, by xV .

Let F be a Boolean function, with n > 0 inputs and

m > 0 outputs, and let (U, V) be as above. Assume that

F is specified by a set F of the function’s cubes. Let G be

a function with s inputs and p outputs, and let H be a function

with r + p inputs and m outputs. The pair (G,H) represents

a serial decomposition of F with respect to (U, V), if for every

minterm b relevant to F,G(bV) is defined, G(bV) ∈ {0, 1}p,

and F (b) = H(bU , G(bV)). G and H are called blocks of the

decomposition (Fig. 1).

In [1] a theorem based on concept of cubes can be found

that describes the existence of the serial decomposition.

Theorem 1.

Let βV , βU , and βF be blankets induced on the function’s

F input cubes by the input sub-sets V and U, and outputs of

F , respectively.

If there exists a blanket βG on the set of function F ’s

input cubes such that βV ≤ βG, and βU • βG ≤ βF , then F

has a serial decomposition with respect to (U, V).

As follows from Theorem 1 the main task in constructing

a serial decomposition of a function F with given sets U and

V is to find a blanket βG which satisfies the condition of the

theorem. The number of blocks of blanket grows exponentially

with the number of variables used to induce this blanket.

Usually set V is small (up to 7 variables). However, for large

214 M. RAWSKI

functions (with many input and output variables) βU and βF

may have large number of blocks, thus the test of condition

from Theorem 1 can be computationally complex.

The Theorem 1 can be re-expressed using the concept of

indexed partitions.

Theorem 2.

Let δV , δU , and δF be indexed partitions induced on the

function’s F input cubes by the input sub-sets V and U , and

outputs of F , respectively.

If there exists a indexed partition δG on the set of function

F ’s input cubes such that δV ≤ δG, and δU • δG ≤ δF , then

F has a serial decomposition with respect to (U, V).

In practice, even large Boolean functions of many input

variables are often specified by relatively small number of

cubes. Since the size of indexed partition depends on number

of cubes the test from Theorem 2 can generally be computa-

tionally much less complex than the test based on blankets.

B. R-admissibility Concept

The r-admissibility concept was introduced in [28]. The r-

admissibility test allows to obtain the set U of free variables

for which there may exist function G (generally with t outputs)

such that |U |+ t < n, where n = |X |.
More information on application of the r-admissibility in

logic synthesis can be found in [29].

Let β1, . . . , βk be blankets induced by k variables from free

set U on S the set of cubes of a function F . The set of blankets

{β1, . . . , βk} is r-admissible in relation to blanket βF (induced

by output variables) if and only if there is a set {βk+1, . . . , βr}
of two-block blankets such that the product β of blankets

{β1, . . . ;βk}•{βk+1, . . . , βr} satisfies the inequality β ≤ βF ,

and there does not exist any set of r−k−1 two-block blankets

which meets this requirement.

The r-admissibility has the following interpretation. If

a set of blankets {β1, . . . , βk} is r-admissible, then there

might exist a serial decomposition of F (Fig. 1) in which

component H has r inputs: k primary inputs corresponding

to free input variables which induce {β1, . . . , βk} and r − k

inputs being outputs of G. Thus, to find a decomposition of

F in which component H has r inputs, we must find a set

of input variables which induces an r-admissible set of input

blankets. The following corollary can be applied to check

whether or not a given set of input blankets is r-admissible.

Corollary 1. For β ≤ γ, let β|γ denote the quotient blanket

and ǫ(β|γ) be the number of elements in the largest block of

β|γ. Let e(β|γ) be the smallest integer equal to or larger than

log2(ǫ(β|γ)) (i.e., e(β|γ) = ⌈log2(ǫ(β|γ))⌉).

Definition 6. A r-admissibility of the two-block blankets

set {β1, . . . , βk} on S in relation to the blanket γ on S, is

defined as r = k + e(β1, • . . . , •βk|γ).

The r-admissibility may also have the following interpreta-

tion. If a blanket β (being product of blankets β1, . . . , βk) is

r-admissible in relation to the blanket γ, then there is required

blanket α with at least ǫ(γ|β) blocks to satisfy condition

β • α ≤ γ. There are required at least e(γ|β) two-block

blankets such that they product can give α.

R-admissibility can also be computed using concept of

indexed partitions.

Corollary 2. For indexed partitions δ ≤ θ, let χ(θ|δ) denote

the chromatic number of incompatibility graph described by

quotient indexed partitions θ|δ. Let e(θ|δ) be the smallest

integer equal to or larger than log2(χ(θ|δ)).

Definition 7. A r-admissibility of indexed partitions δ (being

product of k indexed partitions δ1, . . . , δk) in relation to the

indexed partitions θ, is defined as r = k + e(θ|δ).

Since there are efficient heuristics for computing graph

coloring the optimal or sub-optimal r-admissibility of given set

of variables can be efficiently evaluated even for large Boolean

function.

V. RESULTS

In this section efficiency of synthesis algorithms based on

concept of indexed partitions and on concept of blankets is

compared. The set of C++ classes has been implemented to

model operations on blankets as well as on indexed partitions.

For comparison functions computing r-admissibility, as well as

testing serial decomposition existence has been implemented

for both: blanket calculus and indexed partition calculus. All

experiments were performed on PC with Phenom II X6 110T

@ 3.3 GHz and 6 GB of RAM.

For experiment several benchmark Boolean with functions

have been selected. Table II presents the number of inputs

(|X |), outputs (|Y |) and the number of cubes (|S|) used to

specify Boolean function used in comparison.

In Table III there are presented results of comparison of

functional decomposition evaluation time (in seconds) for

several sizes of bound set V . The comparison was performed

for V set size ranging from 3 to 6. In the experiment 10

randomly selected V sets for every size of bound set were

generated and used to evaluate blanket based, as well as

indexed partition based decompositions. For all benchmarks

time necessary for evaluation one single functional decom-

position was measured as average value of time needed to

evaluate every 10 bound sets. Evaluation for blanket based

decomposition was performed using algorithm implementing

decomposition test given by Theorem 1, while for evaluation

TABLE II
BENCHMARK FUNCTIONS USED IN COMPARISON

Benchmark |X| |Y | |S|
table3 14 14 175
alu4 14 8 1028

misex3 14 14 1848
b12 15 9 431

table5 17 15 158
t2 17 16 301

opa 17 69 342
shift 19 16 100
in2 19 10 137

APPLICATION OF INDEXED PARTITION CALCULUS IN LOGIC SYNTHESIS OF BOOLEAN FUNCTIONS FOR FPGAS 215

TABLE III
COMPARISON OF FUNCTIONAL DECOMPOSITION EVALUATION

Blanket based decomposition Indexed partition based decomposition
Benchmark |V | = 3 |V | = 4 |V | = 5 |V | = 6 |V | = 3 |V | = 4 |V | = 5 |V | = 6

table3 0.0020 0.0062 0.0268 0.1108 0.0005 0.0005 0.0005 0.0011
alu4 0.0195 0.0058 0.0028 0.0048 0.0031 0.0034 0.0044 0.0056

misex3 0.0371 0.0119 0.0133 0.0368 0.0061 0.0067 0.0075 0.0091
b12 0.0173 0.0066 0.0037 0.0059 0.0013 0.0014 0.0022 0.0072

table5 0.0027 0.0066 0.0304 0.1388 0.0003 0.0005 0.0006 0.0009
t2 0.0009 0.0013 0.0036 0.0129 0.0008 0.0031 0.0013 0.0019

opa 0.0017 0.0023 0.0058 0.0226 0.0008 0.0011 0.0016 0.0023
shift 5.5664 1.5586 0.4719 0.1401 0.0003 0.0003 0.0006 0.0012
in2 0.0323 0.0298 0.0796 0.4625 0.0005 0.0005 0.0006 0.0011

Total time 5.6800 1.6290 0.6379 0.9354 0.0136 0.0175 0.0192 0.0304
Speedup factor 1 1 1 1 419 93 33 31

TABLE IV
COMPARISON OF R-ADMISSIBILITY COMPUTATION

Blanket based r-admissibility evaluation Indexed partition based r-admissibility evaluation
|V | = 3 |V | = 4 |V | = 3 |V | = 4

Benchmark |U | R T |βU | |U | R T |βU | |U | R T |U | R T

table3 11 14.2 0.0031 177 10 13.1 0.0031 158 11 14.2 0.0015 10 13.1 0.0016
alu4 11 15.0 0.0265 2029 10 14.0 0.0078 1018 11 15.0 0.0234 10 14.0 0.0218

misex3 11 15.0 0.0484 1421 10 14.0 0.0125 646 11 15.0 0.0655 10 14.0 0.0655
b12 12 16.0 0.0250 1544 11 15.0 0.0093 885 12 16.0 0.0047 11 15.0 0.0063

table5 14 17.1 0.0031 195 13 16.0 0.0031 211 14 17.1 0 13 16.2 0.0016
t2 14 17.6 0.0016 114 13 16.7 0.0016 102 14 17.6 0.0031 13 16.7 0.0016

opa 14 19.1 0.0047 171 13 18.3 0.0031 150 14 19.1 0.0032 13 18.4 0.0031
shift 16 21.0 5.3555 24159 15 20.0 1.5647 13702 16 21.0 0 15 20.0 0.0016
in2 16 19.7 0.0312 510 15 18.9 0.0188 472 16 19.7 0.0016 15 18.9 0

of indexed partition based decomposition test from Theorem

2 was used. As can be noticed, with the growth of function

size the superiority of indexed partition based algorithm over

blanket based implementation also increases. In average, for

benchmarks used in the comparison, the new method was 419

times faster. But in case of shift benchmark evaluation of

decomposition for 3 variables in V set using indexed partitions

was over 17 956 times faster than method based on blankets.

Table IV presents the result of comparison of both methods

for r-admissibility of U set computation. Comparison was

performed for two sizes of set V : 3 and 4 variables. Set U

was computed as U = X−V . Table presents the size of set U

(column labeled |U |) for every benchmark. Again, the same

10 randomly selected V sets for every size of bound set were

used as in previous experiment. Column labeled T presents

the time required for evaluation of r-admissibility of single U

set measured as average value of time necessary to evaluate all

10 free sets. Column R holds average r-admissibility for these

randomly selected free sets. Additionally for method based on

blanket calculus average number of blocks in blanket βU was

shown in column labeled |βU |.

It can be noticed that execution time of algorithm based on

blankets strongly depends on number of blocks in blankets

used in evaluation. Since for function of many input variables

it is more likely that blankets used in computation will have

large number of blocks this method is practically useless for

function of more than 20 inputs. Algorithm based on indexed

partitions is sensitive on number of cubes used to describe

Boolean function. However, even for large functions (in terms

of input variables, as well as number of cubes) this methods

performs very well.

The quality of solutions delivered by both methods (column

R) is very similar. Method based on indexed partitions uses

heuristic algorithm for incompatibility graph coloring, hence

in two cases the average r-admissibility R is slightly worse.

VI. CONCLUSIONS

Many practical logic multiple-output, partially specified

Boolean function can be efficiently represented by cubes.

There are methods that use blanket calculus to compute func-

tional decomposition of such functions. Unfortunately compu-

tational complexity of operations on blankets highly depends

on the size of Boolean function. This makes algorithms based

on this concept practically useless for functions of many input

and output variables.

The concept of indexed partitions introduced in this paper

allows constructing algorithms that perform very well even for

large Boolean functions. Experimental results presented here

prove that indexed partition calculus can be efficiently used for

functions of many input variables. Decomposition, as well as

r-admissibility computation using indexed partitions delivers

solution of similar quality as algorithms based on blankets,

but does it many times faster.

REFERENCES

[1] J. A. Brzozowski and T. Łuba, “Decomposition of Boolean Functions
Specified by Cubes,” Journal of Multiple-Valued Logic and Soft Com-
puting, vol. 9, pp. 377–417, 2003.

[2] T. Łuba and H. Selvaraj, “A General Approach to Boolean Function
Decomposition and its Applications in FPGA-Based Synthesis,” VLSI
Design, vol. 3, no. 3-4, pp. 289–300, 1995.

[3] M. Rawski, “Decomposition of Boolean Function Sets,” Electronics and
Telecommunications Quarterly, vol. 53, no. 3, pp. 231–249, 2007.

216 M. RAWSKI

[4] T. Sasao, M. Matsuura, Y. Iguchi, and S. Nagayama, “Compact BDD
Representations for Multiple-Output Functions and Their Application,”
in Proceedings of ISMVL, 2001, pp. 207–212.

[5] C. Scholl, Functional Decomposition with Application to FPGA Synthe-
sis. Kluwer Academic Publisher, 2001.

[6] R. Ashenhurst, “The Decomposition of Switching Functions,” in Pro-
ceedings International Symposium Theory of Switching, vol. 29, 1959,
pp. 74–116.

[7] H. A. Curtis, A New Approach to the Design of Switching Circuits. New
Jersey: D. van Nostrand company, Princeton, 1962.

[8] R. M. Karp, “Functional Decomposition and Switching Circuit Design,”
SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp. 291–335,
June 1963.

[9] J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, 1966.

[10] H. Selvaraj, M. Nowicka, and T. Łuba, “Performance Oriented De-
composition Strategies for FPGA Based Technology Mapping,” in
International Conference VLSI for Signal Processing, Chennai, India,
1998.

[11] M. Rawski, L. Jóźwiak, and T. Łuba, “Functional Decomposition
with an Efficient Input Support Selection for Sub-Functions Based on
Information Relationship Measures,” Journal of Systems Architecture,
vol. 47, no. 2, pp. 137–155, February 2001.

[12] L. Jóźwiak, “Information Relationships and Measures: An Analysis Ap-
paratus for Efficient Information System Synthesis,” 23rd EUROMICRO
Conference, pp. 13–23, 1-4 September 1997.

[13] A. Chojnacki and L. Jóźwiak, “High-Quality FPGA Designs Through
Functional Decomposition with Sub-Function Input Support Selection
Based on Information Relationship Measures,” in IEEE International
Symposium on Quality of Electronic Design. San Jose, USA: IEEE
Computer Society Press, Los Alamitos, CA, USA, 26-28 March 2011,
pp. 409–414.

[14] ——, “An Effective and Efficient Method for Functional Decomposi-
tion of Boolean Functions Based on Information Relationships Mea-
sures,” in Design and Diagnostics of Electronic Circuits and Systems
DDECS’2000, Smolenice, Slovakia, April 2000.

[15] C. Y. Lee, “Representation of Switching Circuits by Binary-Decision
Diagrams,” The Bell System Technical Journal, pp. 985–999, 1959.

[16] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Com-
puters, vol. 27, no. 6, pp. 509–516, 1978.

[17] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Transactions on Computers, vol. 35, no. 6, pp. 677–691,
1986.

[18] T. Sasao and M. Fujita, Representations of Discrete Functions. Kluwer
Academic Publishers, 1996.

[19] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[20] M. Nowicka, T. Łuba, and M. Rawski, “FPGA-Based Decomposition of
Boolean Functions, Algorithms and Implementation,” Advanced Com-
puter Systems, pp. 502–509, 1999.

[21] M. Rawski, “Efficient Variable Partitioning Method for Functional De-
composition,” Electronics and Telecommunications Quarterly, vol. 53,
no. 1, pp. 63–81, 2007.

[22] ——, Evolutionary Algorithms. Intech, 2011, ch. Evolutionary Algo-
rithms in Decomposition-Based Logic Synthesis.

[23] M. Rawski, H. Selvara, T. Łuba, and P. Szotkowski, “Multilevel
Synthesis of Finite State Machines Based on Symbolic Functional
Decomposition,” International Journal of Computational Intelligence
and Applications, vol. 6, no. 2, pp. 257–271, June 2006, imperial College
Press.

[24] T. Łuba, “Decomposition of Multiple-Valued Functions,” in 25th Inter-
national Symposium on Multiple-Valued Logic, Bloomington, Indiana,
1995, pp. 256–261.

[25] J. Lewandowski, M. Rawski, and H. Rybiński, “Application of Parallel
Decomposition for Creation of Reduced Feed-Forward Neural Net-
works,” in Proceedings of the International Conference, Rough Sets and
Intelligent Systems Paradigms. Warsaw, Poland: Springer, 28-30 June
2007, pp. 564–573, lecture Notes in Artificial Intelligence, Subseries of
Lecture Notes in Computer Science.

[26] H. Selvaraj, P. Sapiecha, and T. Łuba, “Functional Decomposition and Its
Applications in Machine Learning and Neural Networks,” International
Journal of Computational Intelligence and Applications, vol. 1, no. 3,
pp. 259–271, 2001.

[27] A. Chojnacki and L. Jóźwiak, “Multi-Valued Sub-Function Encoding
in Functional Decomposition Based on Information Relationship Mea-
sures,” in 30th IEEE International Symposium on Multiple-valued Logic,
Portland, OR, May 2000.

[28] T. Łuba, “Multi-Level Logic Synthesis Based on Decomposition,” Mi-
croprocessors and Microsystems, vol. 18, no. 8, pp. 429–437, 1994.

[29] G. Borowik, T. Łuba, and P. Tomaszewicz, “A Notion of R-Admissibility
and its Application in Logic Synthesis,” in DESDes’09, Preprints of
the 4th IFAC Workshop Discrete-Event System Design 2009, Spain, 6–8
October 2009, pp. 207–212.

