
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 55–62

Manuscript received December 31, 2011; revised March 2012. DOI: 10.2478/v10177-012-0008-4

Sensor-Actor Network Solution for Scalable

Ad-hoc Sensor Networks
Zenon Chaczko, Christopher Chiu, Shahrzad Aslanzadeh, and Toby Dune

Abstract—Architects of ad-hoc wireless Sensor-Actor Networks
(SANETS) face various problems and challenges. The main
limitations relate to aspects such as the number of sensor nodes
involved, low bandwidth, management of resources and issues
related to energy management. In order for these networks to
be functionally proficient, the underlying software system must
be able to effectively handle unreliable and dynamic distributed
communication, power constraints of wireless devices, failure
of hardware devices in hostile environments and the remote
allocation of distributed processing tasks throughout the wireless
network. The solution must be solved in a highly scalable manner.
This paper provides the requirements analysis and presents the
design of a software system middleware that provides a scalable
solution for ad-hoc sensor network infrastructure made of both
stationary and mobile sensors and actuators.

Keywords—Sensor-Actor Networks (SANETS), Ad-hoc Wire-
less Sensor Networks (WSNS), middleware, distributed software
services.

I. INTRODUCTION AND BACKGROUND

THE paper examines a sensor network made up of multiple

individual devices that function as a single survivable

entity. The devices must cooperate with each other to provide

processing for a single purpose. Managing the failure of

devices and connection links on the network is a key concern

to ensure survival of the key network processing tasks, as indi-

vidual devices can fail. With a distributed network of portable,

wireless sensing and actuating devices to be commanded,

scattered throughout the area of interest there is an ability

to gain an awareness of the situation not previously possible.

Information is power; with more information at hand about a

particular situation, more informed decisions can be made with

minimum manual intervention. Improved techniques to obtain

information and manage hardware devices in an environment,

in the form of sensory data and devices/resource controls,

bring about changes in the way users perceive and interact with

the environment. Greater informational gathering capabilities

and more flexible resource control can provide a variety of

benefits to a vast range of applications such as:

• Monitoring for research in various application domains

such as habitat monitoring and control for bio-diversity

and bio-complexity studies;

• Military situational awareness, toxin and radiation de-

tection, monitoring and possible neutralization of hostile

movements;

• Management of remote network infrastructure;

Z. Chaczko, C. Chiu, S. Aslanzadeh, and T. Dune are with
the Faculty of Engineering & IT, University of Technology, Sydney,
Australia (e-mails: zenon.chaczko@uts.edu.au, christopher.chiu@uts.edu.au,
shahrzad.aslanzadeh@student.it.uts.edu.au, toby.dune@alumni.uts.edu.au).

• Security monitoring and active protection of assets; and

• Management and monitoring of stress/seismic activity

effects in civil infrastructures (i.e. bridges, roads, build-

ings).

The Distributed SANET (DSAN) software infrastructure

(middleware) solution presented in this paper is intended to

provide a platform that addresses the challenges involved in

realizing an ad-hoc wireless Sensor-Actor Network (SANET).

The DSAN is to be used in the development of real-world

sensor and actuator networks and the trialing of new re-

search concepts in the SANET field. Further developments

in sensor networks can utilize the functionality provided in

the middleware solution, allowing researchers to be more

focused at their specific problem area. The main aim of this

project is to reduce the development time of future research

from being exhausted by redesigning or redeveloping the

underlying network management functions that are provided

by the presented middleware solution.

II. SANET CHALLENGES

SANETS or Wireless Sensor-Actuator Networks (WSANS),

as for all ad-hoc based networks (Fig. 1), present some serious

challenges. With WSANS made of many disparate nodes,

managing the information that needs to be disseminated across

the entire network is critical. In this section, an investigation is

made about the important challenges associated with WSANS

that use ZigBee-based sensor nodes (motes) in particular.

a) Range: The maximum throughput for ZigBee is 250

kilobytes per second. With ZigBee wireless technology,

Fig. 1. Wireless Sensor-Actor Network mesh networking.



56 Z. CHACZKO, C. CHIU, S. ASLANZADEH, T. DUNE

packet-based networking is used and instead of using

access points, gateways are applied which can provide

connectivity from distributed nodes back to the coordinator.

The maximum signal range for ZigBee is 1,000 meters.

b) Power: Using wireless technology for devices such as

mobile phones and laptops, the battery lifetime will last

for about 1 to 2 days; however, ZigBee is an efficient

wireless technology that can be used in energy-constrained

environments as it has a battery lifetime of 3 to 5 years.

c) Cost: Deployment and maintenance of the nodes is be-

coming inexpensive over time; varying on the underlying

technology.

III. MIDDLEWARE FOR SANET TECHNOLOGY

Traditionally, component middleware systems [1], [2] is a

type of middleware that enables reusable service elements [3],

[4] to be composed, configured, adapted, tested, integrated and

installed to build software applications reliably and inexpen-

sively, while adhering to requirements of distributed shared

memory across disparate environments. Data space concerns

can be addressed through Tuple-Space implementations as

supported in modern component based [2] software-system

middleware, following the multi-layer concepts of a core entity

of representing the structures and interconnections between

internal entities. This provides users with a specific set of

capabilities (Fig. 2) listed below:

• Connector Facilities within Components:

This includes Remote Procedural Calls (RPC), Remote

Method Invocation (RMI) or message passing mecha-

nisms;

• Horizontal Models of Infrastructure Services:

Request brokers or publish-subscribe mechanisms be-

tween components within the same platform; and

• Vertical Models of Domain Paradigms:

Common semantics and context awareness, and high-

level services spanning from transaction and lease sup-

port, to multilayer security and privacy for multiple

platforms.

Recent advancements in the miniaturisation of sensing

devices including Micro-electromechanical systems (MEMS),

embedded processors such as System-on-a-Chip (SoC) and

wireless communications provide the hardware capability nec-

essary to control devices embedded in the environment, collect

environmental data and report it. With the availability of the

Fig. 2. SANET component architecture paradigm.

hardware and various information processing and management

systems, including commercial of-the-shelf (COTS) technolo-

gies, the construction of effective SANET solutions becomes

feasible. Products such as Sun’s Remote Method Invocation

(RMI), Microsoft’s .NET Remoting and Object Management

Group’s Common Object Request Broker (CORBA) have

dramatically matured and become de-facto standards in the

ICT industry. At present, these solutions are being used to

reduce the Software Development Life Cycle and improve

the effectiveness of building systems by reducing costs (time,

work efforts and resources) mostly in business domains.

Whilst commercial middleware solutions have traditionally

been used in business, including enterprise management re-

source planning, stock control and asset management systems,

e-commerce reservation systems and many other applications

[5]; the technology can be transformed for distributed wireless

networking solutions.

A distributed middleware for SANET systems can be

built on evolvable, autonomic [6] and ad-hoc networks with

actuation and control. This encapsulates events monitoring

and control processes, operations, networks and hardware

systems in civil and environmental engineering, computing and

telecommunications, medicine, defense, manufacturing and

infrastructure industries. SANET applications possess distinct

characteristics relating to its mission critical aspects and time

constraints. Time criticality and strict deadlines are essential,

as the correct data response that is delivered beyond a given

threshold can result in unpredictable or catastrophic conse-

quences. Therefore, SANET middleware models need to meet

stringent Quality of Service (QoS) qualitative requirements

such as scalability, robustness, usability, security, efficiency,

latency, privacy and trust [3], [4], [7]–[10].

For all application domains, the ultimate goal of infras-

tructure oriented software systems such as middleware is to

support the process of software intensive system develop-

ment by facilitating integration of components and protecting

engineers from inherent and accidental complexities related

to heterogeneous computing environments, management of

resources, security and fault tolerance. The important issue

for component middleware systems is being able to alleviate

the compositional complexity and management of distributed

SANET systems. Reducing the Software Development Life

Cycle (SDLC) shortens the time-to-market delivery that is

essential in modern engineering industry. As the majority of

developer roles are to assemble distributed networked systems

by selecting a combination of custom made components and

compatible COTS frameworks [3], [5], [11], the process of

selection is an important focus of this research. The construc-

tion of an effective system requires components to possess

compatible application programming interfaces, semantics,

context and protocols which make the analytical process of

selection and development of a compatible set of software

components a challenging task. Problems are exacerbated

by the availability of various vendor-driven strategies for

configuring and deploying the underlying software middleware

to leverage dedicated hardware and software features.



SENSOR-ACTOR NETWORK SOLUTION FOR SCALABLE AD-HOC SENSOR NETWORKS 57

IV. SANET CHALLENGES

“The sheer number of sensor nodes and the dynamics of

their operating environments (e.g. limited battery power and

hostile physical environment) pose unique challenges in the

design of sensor networks and their applications” [1].

With the introduction of this technology and emergence of

wireless sensor networks, a new set of technical challenges

arise [7], [12]. These challenges form the basis of the middle-

ware design.

A. Scalability of System and Communications

There is a need to manage the complexity of dealing

with an immense number of sensors and a large volume of

information contained within sensor and actuator networks

so “...existing distributed system scaling techniques are not

directly applicable given the extreme conditions under which

our target systems must operate” [13]. The vast number of

devices on these networks prevents the ability to manually

configure and repair devices individually within the system;

thus the number of electronic devices also increases probability

of failure. The software must automatically configure devices

and robustly handle failed devices.

B. Dynamic and Hostile Environment

The devices that make up the sensor network will be

deployed to monitor hostile environments. Devices in the

sensor network have a high coupling with the physical en-

vironment that they are deployed in. The dynamics of such

an environment poses complex design challenges regarding

as to how to manage the changing availability of resources

and communication links within a large network. The sensor

network must respond robustly to the dynamic environment in

which it is situated.

C. Power Utilisation

As quoted from Zhong, “Power consumption is crucial

to wireless sensor network applications” [14]. The lifetime

of a sensor network is a function of energy consumption

[15]. To improve overall network life, avoidance is necessary

in key parts of the network from being over-utilized and

drained quickly. Methods for distributing the processing and

communication tasks evenly over the network are needed; the

SANET system must be power aware.

D. Processing Resources

Embedded sensor devices throughout the network will

have limited memory and processing resources. All network

management must conform to the limitations of this target

hardware [12].

E. Diverse Range of Applications and Uses

The many uses of the SANET network and continuing

research and development in the SANET field compels the

system to be expandable and maintainable [7]. To be able

to utilize this emerging technology effectively and efficiently,

smart systems are needed to manage the issue inherent to such

networks. The software has to be able to manage the vast

number of small autonomous devices in a way that allows

for the effective combination of all of available resources. All

devices must be able to interact and work together to support a

common goal. The middleware that can solve these problems

will facilitate the creation of new sensor network systems

easily. A sensornet specific middleware will streamline the

development of customized SANET sensors for the client’s

specific monitoring needs. There is a shortage of middleware

solutions that are able to adequately handle the range of

the domain concerns and constraints that can be encountered

within the SANET context.

V. ENGINEERING DSAN MIDDLEWARE

Infrastructure-system software such as middleware is re-

quired to provide a set of services designed specifically to

manage the complexities that exist within the field of dis-

tributed sensor and actuator networks [3], [11], [15]. This

covers a suite of functional and non-functional requirements

that need to be addressed when modeling the middleware

and designing software components specifically to support the

operations in distributed SANETS [5], [16]. The DSAN mid-

dleware aims to provide a base for a number of communication

and management services to reliably enable distributed envi-

ronmental monitoring and control, actuator management, in-

situ (i.e. ONE-WIRE and CANBUS) and wireless processing

(i.e. Bluetooth IEEE 802.15.1 and ZigBee IEEE 802.15.4), and

reporting to a centralized datacenter (Fig. 3).

A. Functional Requirements

The set of high-level functional requirements that the DSAN

middleware must address for operability concerns include the

following aspects:

• The communication interfaces with embedded sensor and

actuator devices;

• Automated health monitoring of available resources

within the SANET system;

• Automated configuration management for the SANET

network;

• Lightweight communication infrastructure for distribut-

ing events and configuration throughout the middleware

system;

• Persistent storage for recording of notifications, alarms

and alerts as well as and configuration reports; and

• A user interfaces for viewing system state, logging events

and warnings as well as configuring the processing tasks

on the devices within the sensor network.

The TINI (Tiny Inter-Net Interface) device [10] has been

chosen as it provides the reference implementation of the dis-

tributed embedded sensor devices. The standard Java Mobile



58 Z. CHACZKO, C. CHIU, S. ASLANZADEH, T. DUNE

Runtime Environment, with the addition of JINI [17] services

was selected to provide a platform for the scalable centralized

services required.

B. Non-Functional Requirements

In order to solve a very diverse set of problems characterized

within DSANS, the middleware must possess a range of

architectural qualities. Therefore, when building middleware

for SANETS, among the most important non-functional re-

quirements are considered as follows:

• Lightweight Implementation: The code solution must

efficiently apply and use the resources available on the

small embedded computing devices used in SANET

networks;

• Robustness: The middleware must gracefully handle

failure of wireless and in-situ components registered in

the network;

• Scalability: The middleware for sensor networks must be

inherently scalable, so it is able to support the massive

number of devices contained within the SANET system.

Additionally, the distribution and scale of the SANET

environment means potential geographic spread among

various infrastructure interconnections and software in-

terface, this is resolved with Remote Method Invocation

(RMI);

• Adaptability: The middleware must gracefully adapt to

the continually changing health status of the SANET

network, while also maintaining the user’s processing

needs; and

• Flexibility: A diverse range of situations the middleware

can be applied to, along with the immaturity of the

technology means the middleware has to be very flexible.

To cater for new research, the system must allow for

components implementing specific functionalities to be

updated or replaced without impacting on the rest of the

middleware.

Fig. 3. Overview of DSAN middleware.

VI. MIDDLEWARE SERVICES

Service repositories have been designed to provide an

initial set of solutions for each of the diverse challenges

involved in the SANET application. The services provided

by the middleware are divided into a layered model (Fig. 4).

The middleware services must be implemented over different

hardware architectures; with a set of distributed lightweight

services interacting with highly scalable central services. All

services are integrated via the integration bus layer.

A. Integration Layer

The integration layer forms a solid base for all other

services to be built upon. This layer provides a flexible

set of communication services for lightweight and device-

independent communication. Interfaces are provided to

handle the low-level functions of the operating system in a

hardware-independent manner.

1) Distributed Communication Service

The object of the Distributed Communication service is to

provide an interface that will enable the distributed nodes

throughout the system to communicate. The distributed com-

munication service has been designed to provide support for

the following features:

• Minimal resource utilization to run on embedded devices;

• Platform/media layer independent addressing mechanism;

• Transmission media independence;

• Robust communication error handling;

• Synchronous Communication (Lightweight RMI) for de-

vice interaction, device control, and agent activation;

• Asynchronous Communication for availability ’heart-

beating’ and the sensor interface; and

• Mobile Code for Agent Distribution.

The design of Distributed Communication Services is based

on lightweight client-to-server communication. These services

are designed to be independent of the communication media

Fig. 4. Architectural model of DSAN middleware.



SENSOR-ACTOR NETWORK SOLUTION FOR SCALABLE AD-HOC SENSOR NETWORKS 59

being used. Generic interfaces are provided for establishing

and tearing down of connections regardless of the media-type

used.

B. Core Middleware Layer

The core middleware layer services provide high level

interfaces to the integration layer. The services provided cater

for higher-level data distribution and routing functionality.

1) Agent Distribution Service

The objective of the Agent Distribution Service is to

enable the coordination of the distributed processing required

by the sensor network. This is provided by the distribution

and execution of mobile agents throughout the system. This

service provides the underlying mechanisms for adaptability

of the SANET system. Work, in the context of this system,

is defined as a specific task for a remote agent to perform;

it includes some agent configuration parameters and the

required sensors that should be monitored.

2) Event Distribution Service

The objective of the Event Distribution Service is to

provide a standard reliable system for events to be generated

by devices. Events are routed throughout the network to reach

their destination. In order to reduce the amount of data sent

through the network, any device is capable of intercepting

events and providing local processing and actions, instead of

forwarding them to the central event collector.

3) Device Monitoring Service

The Device Monitoring service provides for data input to

the system. A framework for implementing custom drivers is

used to provide support for a range of monitoring scenarios.

Lightweight dynamic driver loading and unloading mecha-

nisms are provided to enable run-time reconfiguration of data

collection, with minimal processing overhead.

C. Middleware Services Layer

The middleware services layer provides high-level functions

for managing the distributed SANET. Management of the

networks’ distributed processing includes such components as:

1) Configuration Management Service

The Configuration Management Service provides a

centralized configurable model of the processing needs

within the sensor network. The Configuration Manager is

an automated system responsible for ensuring the optimum

level of service in utilizing the available resources. The

Configuration Manager contains models of both the target

environment (environmental model) and the Sensor Network

(system model). The environmental processing model

determines what physical properties of the environment

should be monitored and how this should be done. This

includes a set of work distribution rules. The system model

is a record of the current state of the sensor/actuator nodes

within the system: which sensor nodes are ready to check the

environment and which sensor/actuator devices are available.

Fig. 5. Centralized health checking in DSAN middleware.

The system model is dynamically updated when nodes enter

and leave the system. The system model is automatically

updated to reflect the current state of the sensor network.

The model of system state is based upon received system

reports from the event collector indicating that resources

are entering the system or are no longer available. User

interaction with the models contained within the Manager is

via a Configuration Console which allows users to view the

individual node’s activity, as well as how many nodes are

active and what environmental properties they are actually

monitoring.

2) Node Management Service

The node manager is responsible for managing a group

of nodes within its local coverage area. It provides in-situ

management of network resources. The Node Management

Service works in cooperation with the Configuration Man-

agement Service to provide for agent distribution. A cache

of device work allocations, within the node manager, is used

to manage the distributed processing requirements of nearby

processing nodes.

This reduces the communication load to the remote config-

uration management. Processing nodes use the Node Manage-

ment Service to announce themselves, to publish their sense

collection and processing capabilities and receive processing

tasks. The Node Management Service is also responsible for

tracking the health of processing nodes within its coverage

area. Health checking agents are distributed to other nodes

within the system to enable nearby peer nodes to monitor

each other’s health. The remote configurability of the System

Fig. 6. Decentralized health checking in DSAN middleware.



60 Z. CHACZKO, C. CHIU, S. ASLANZADEH, T. DUNE

Health Service allows for health checking to be decentral-

ized and distributed throughout the network. Greater resource

utilization can be achieved if the nodes manage themselves,

provided that all health-checking tasks and power drain is not

somehow centered on the node manager (cluster-head) which

may attribute to possible premature failure. As illustrated in

Fig. 5, the node manager needs to continually talk to all nodes

within its maximum communication range. Distributing the

task of health checking to individual nodes within the network

ensures power utilization will be more evenly drained.

Algorithms can be validated to determine node proximities

and configure nodes accordingly in order to check the health

of the closest devices. This would reduce the power output

required to perform the same amount of health checking.

Figure 6 gives an example of how the same node configuration

as discussed above could be more efficiently health-monitored.

The Node Manager needs only to continually health check

one node. The nodes perform health checking on neighboring

nodes; communication distance is potentially closer than that

of the distance to the node manager. Note also the ability

for the node manager to manage the health of nodes outside

its direct communication range, as routing would need to

be performed to do the initial setup for agent and event

distribution.

3) System Health Monitoring Service

The System Health Monitoring Service enables

sensor/actuators nodes to check the health status of their

nearby peers. The service consists of a set of health checking

agents that are remotely managed to provide optimal health

checking coverage and reporting. System health information

is used for automated management of how the available

processing resources are utilized. The sensor network will

adapt to the reduction in available resources over time,

allowing the network to degrade gracefully. The current

implementation of the Service uses status heart-beating to

detect device abnormalities, while alternate methods, such as

leasing, can be used as replacement or in combination with

this method.

4) Detection Service

The Detection Service enables the distributed processing

capability for the business operations of the SANET.

The service is remotely managed to enable dynamic

re-configuration for optimum processing in accordance

with specified processing allocations. Processing and data

aggregation algorithms are implemented as agents within the

service. These agents utilize collected data input from the

Device Monitoring Service and provide output in the form of

events via the Event Distribution Service.

5) Persistence Service

The Persistence Service provides a central store for logging

events and maintaining active models of the network. The

service is built upon the Java Space service of JINI. In

this release of the DSAN middleware system, the reference

implementation of Java Spaces as provided by JINI is used.

The DSAN middleware relies on the expandability of the Java

Spaces model, future releases of the DSAN software may have

to use a more scalable and capable implementation of the Java

Spaces service.

VII. CASE STUDY

Location tracking has long been an area of interest where

research into SANETS and Wireless Sensor Actuator Net-

works is concerned. It is useful for the tracking and location

of objects; such as vehicles on a road or people. For this

case study, it is important to create a basic prototype for a

tracking system that involves both sensors and mobile robots.

The specific objective is to design a WSAN solution that is

capable of detecting heat within a specified temperature range

in order to determine whether a fire is likely to be in or nearby

an area. The proposed hardware architecture involves a tem-

perature sensor connected to a Texas Instruments CC2530ZNP

board attached to a battery board which broadcasts the local

temperature over IEEE 8.2.15.4 (ZigBee) Protocol, to a ZigBee

network of routers (other CC2530ZNP boards) which include

multiple coordinator nodes and the Stellaris Evalbot (Fig. 9)

via the Texas Instruments CC2530EM board interfaced to the

Evalbot’s EM socket.

The Evalbot will obtain the local temperature via reading the

temperature sensor on its Analog-to-Digital Converter (ADC)

and use this temperature as well as the temperature broadcast

by nearby nodes and the coordinator node(s) to calculate

areas of high temperature. Then, the onboard motors will be

powered to navigate towards the high temperature areas to

investigate whether a fire is present, and then broadcast an alert

over router nodes to a coordinator node, ultimately reaching

a main computer. The model has been depicted in Fig. 7.

Implementing a full user-interface is beyond the scope of this

case study and not required for a proof-of-concept; all that is

required is a conceptual design. The basic idea is to have the

data received by the coordinator node connected to the PC

via USB (virtual COM port) collated by time received and

location and broadcast over TCP/IP to a centralized system.

Fig. 7. Model diagram of coordinator and router nodes.



SENSOR-ACTOR NETWORK SOLUTION FOR SCALABLE AD-HOC SENSOR NETWORKS 61

Fig. 8. TI CC2530ZNP ZigBee sensor motes.

This system will create a map of locations and show

temperatures at these locations, displaying a warning if the

temperature is greater than a set threshold. The important

features of this software will be to be able to set the location of

the coordinator nodes manually so the location of router nodes

can be calculated. This is along with the ability to display the

temperature and warning message, and to send out alerts via

e-mail, SMS or another medium to emergency services.

A. Hardware Components

1) Texas Instruments CC2530ZNP Mini-Kit

The CC2530ZNP is a board designed to introduce

computer engineers to the ZigBee Network Processor (Fig. 8)

without a significant amount of hardware and software

setup work required. This makes it suitable for developing a

quick prototype to test the design while using the protocol

and on-board chip (CC2530) to be deployed in a final product.

2) Texas Instruments LM3S9B92 Stellaris Evalbot

The Stellaris Evalbot is a useful prototyping and evaluation

tool and has been chosen to simulate an automated

investigation and response vehicle. The Evalbot has an EM

socket that can be used for attaching an RF module; in this

case this is ZigBee (Fig. 9). DC motors to provide movement

and bumper-switch sensors allow for obstacle detection and

avoidance.

3) Texas Instruments CC2530EM Module

In the Stellaris Evalbot (robot) that is used for the prototype

of the mobile sensor mote, the main method of wireless

communication with other sensor and actuator devices is

Fig. 9. TI Stellaris Evalbot with CC2530EM as a mobile node.

Fig. 10. a) TI CC2530EM wireless module (left), b) Honeywell 135-
102DAG-J01 thermostat (right).

through the EM socket on the Evalbot that allows the

installation of an onboard RF unit, the CC2530EMK module

(Fig. 9 and Fig. 10a). The CC2530EMK module uses the

ZigBee Network Protocol to communicate sensor data and

receive control to/from the Base Station/decision center. There

are significant programming benefits in terms of firmware

development using the CC2530EMK module that use the

same on-board chips as the sensor nodes for the rest of the

sensor network.

4) Honeywell 135-102DAG-101 Temperature Sensor

The Honeywell 135-102DAG-J01 glass encapsulated NTC

thermostat is used (Fig. 10b). Although any low-power

temperature-measuring sensor will suffice, this one was chosen

due to its low power, affordability and high availability.

B. Implementation

The initial design proved to be ambitious to develop in the

timeframe; so with the resources available for this project,

some concessions were made. As an insufficient number of

nodes were constructed to allow for location sensing (upwards

of five nodes of a known location would be ideal), so a

practical solution was implemented with a minimum of two

nodes. The CC2530ZNP Mini-kit was used to test communi-

cation between modules and to establish whether the ZigBee

protocol was effective in this case. There were also issues

of communication with the CC2530EM and the Evalbot. It

was decided that this would be acceptable due to the fact that

the 2530EM uses the same chip as the CC2530ZNP Mini-

kit boards, so the same code should work on both. Hence, it

was a matter of hardware interfacing between Evalbot and EM

socket. The final system developed ended up as follows:

• CC2530ZNP modules communicate with each other

sending the light sensor value, along with the temperature

sensor via the designated coordinator and router nodes;

• The CC2530ZNP coordinator collates information for

post-processing on middleware server; and

• The Evalbot reads the temperature and light sensor values

from ADC and uses the following simple algorithm:



62 Z. CHACZKO, C. CHIU, S. ASLANZADEH, T. DUNE

Do {
Read ADC Temp/Value

Move random distance in random direction

Read ADC Temp/Value
If (New Temp > Old Temp/Val)

Continue Move

Else
Move back to previous location

} While (No Error)

The main problem encountered with the progress of the

initial design was the technical expertise in the development

team and the time required for studying the technology.

With the experience gained from embedded microprocessor

programming along with knowledge into wireless protocol

design, the concept of the system was essentially realized.

Further work into swarming algorithms with multiple nodes

will be investigated for collaborative swarm intelligence in

SANETS, along with the efficient optimization of peer-to-

peer communication between wireless nodes, gateways and

the coordinator.

VIII. CONCLUSION

The DSAN middleware environment achieves the goal of

enabling the end-user to interact effectively in SANET con-

texts. Further outcomes in terms of the infrastructure design

and implementation have established the main outcomes:

• Project Management: The design and implementation of

the SANET middleware system was used in conjunction

with the TRAC e-wiki tool, facilitating the practice of

formal software engineering standards.

• Configuration Management: The development of the

SANET middleware system was achieved with Subver-

sion Configuration Management to commit code changes

and integration branches to the main code trunk.

The domain of wireless sensor and actuator networks is at

its early stages, with much development work being done.

Many aspects of the domain are currently in early research

and development stages. This means that new developments

are continually being made and are open to being incorporated

into a middleware solution. The DSAN is designed specifi-

cally with the future of SANET applications in mind. It is

the intention that future research in the sensor and actuator

network field is able to build upon and extend the DSAN.

The DSAN layered architecture promotes the use of strong en-

capsulation of services with concise interfaces. Sound design

principles enable expandability of the middleware by future

investigation; each service designed within the middleware

provides functions required in a different area of research.

With developments any in area, a service in the middleware

can be upgraded or replaced, leaving the rest untouched.

Researchers need only look at the specific set of problems

that relate directly to their field and let the middleware take

care of the rest of the concerns. Wireless communication can

consume a lot of power, so new developments in power-aware

algorithms and design principles are needed to maximize the

utilisation of energy throughout a network as a whole. These

new developments can be built into DSAN services to enable

them to be tested in real-world scenarios.

REFERENCES

[1] C. Shen and C. Srisathapornphat, “Sensor Information Networking Ar-
chitecture and Applications, University of Delaware,” in IEEE Personal

Communications, August 2001, p. 52.
[2] C. Szyperski, “Emerging component software technologies – A Strategic

Comparison,” Software Concepts and Tools, vol. 19, no. 1, pp. 2–10,
1998.

[3] F. Golatowski, J. Blumenthal, M. Handy, M. Haase, H. Burchardt, and
D. Timmermann, “Service-Oriented Software Architecture for Sensor
Networks,” in Proceedings of International Workshop on Mobile Com-

puting (IMC’03), Rockstock, Germany, June 2003, pp. 93–98.
[4] A. Rezgui and M. Eltoweissy, “Service-Oriented Sensor-Actuator Net-

works,” IEEE Communications Magazine, vol. 45, no. 12, pp. 92–100,
2007.

[5] X. Chu and R. Buyya, Sensor Network and Configuration: Funda-

mentals, Standards, Platforms, and Applications. Germany: Springer-
Verlag, January 2007, ch. Service Oriented Sensor Web, pp. 51–74.

[6] A. G. Ganek and T. A. Corbi, “The dawning of the Autonomic
Computing Era,” IBM Systems Journal, vol. 42, no. 1, pp. 5–18, 2003.

[7] I. F. Akyildiz and I. H. Kasimoglu, “Wireless Sensor and Actor Net-
works: Research Challenges,” Ad-hoc Nets, vol. 2, no. 4, pp. 351–367,
2004.

[8] Z. Chaczko and R. Klempous, “Anticipatory Biomimetic Middleware,”
in Journal of American Institute of Physics (AIP), Casys 2009, Liege,
Belgium, August 2009.

[9] Z. Chaczko, R. Kohli, R. Klempous, and J. Nikodem, “Middleware
Integration Model for Smart Hospital System Using the Open Group
Architecture Framework (TOGAF),” in 14th International Conference

On Intelligent Engineering Systems, INES 2010, Las Palmas of Gran
Canaria, Spain, May 5–7 2010.

[10] TINI Website and Development, (2010) Tiny InterNet Interface,
http://www.ibutton.com/TINI/index.html, last visited June 2010.

[11] E. C. H. Ngai, M. R. Lyu, and J. Liu, “A Real-Time Communication
Framework for Wireless Sensor-Actuator Networks,” in Proceedings of
IEEE Aerospace Conference, Big Sky, Montana, U.S.A., March 2006.

[12] C. Y. Chong and S. P. Kumar, “Sensor Networks: Evolution, Opportu-
nities, and Challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp.
1247–1256, 2003.

[13] D. Estrin, Center for Embedded Network Sensing. Los Angeles:
Computer Science Department, University of California, 2001.

[14] C. Zhong, Pico Radios: What does it take to design a link between

them? Department of EECS, UC Berkeley, 2004.
[15] R. Vidhyapriya and P. T. Vanathi, “Conserving Energy in Wireless

Sensor Networks,” IEEE Potentials, vol. 26, no. 5, pp. 37–42, 2007.
[16] F. Xia, Y. C. Tian, Y. J. Li, and Y. X. Sun, “Wireless Sensor/Actuator

Network Design for Mobile Control Applications,” Sensors, vol. 7,
no. 10, pp. 2157–2173, 2007.

[17] JINI Website, (2010), http://www.jini.org/, last visited May 2010.
[18] Z. Chaczko and G. Resconi, “Organising Software Infrastructures:

EgoMorphic BIM Model, Conscious Brain and Education – Mind and
Living Systems, Risk Management, Economical Systems, and Social
Models, Applied Mathematics, Programming, and Biomimetic Tools,”
in Partial Proceedings of the Eighth International Conference CASYS’07

on Computing Anticipatory Systems, D. M. Dubois, Ed., Liege, Belgium,
August 6–11 2008, application of Biomimetic Design Methods in
Infrastructure Systems. Chaos, Lie?ge, Belgium, Vol.21. pp.372–385.

[19] I. Gorton and S. Motwani, “Issues in co-operative software engineering
using globally distributed teams,” Information and Software Technology,

Elsevier Science, vol. 38, pp. 647–655, 1996.
[20] E. C. H. Ngai, Y. Zhou, M. R. Lyu, and J. Liu, “Reliable Reporting

of Delay-Sensitive Events in Wireless Sensor-Actuator Networks,” in
Proceedings of the 3rd IEEE International Conf.erence on Mobile Ad-

Hoc and Sensor Systems (MASS’06), Vancouver, Canada, October 2006.
[21] F. Xia, W. H. Zhao, Y. X. Sun, and Y. C. Tian, “Fuzzy Logic Con-

trol Based QoS Management in Wireless Sensor/Actuator Networks,”
Sensors, vol. 7, no. 12, pp. 3179–3191, 2007.


