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Abstract—Time Series Analysis of Leaf Area Index (LAI)
is vital to the understanding of global vegetation dynamics.
The LAI time series derived from satellite observations are
usually not complete and noisy due to cloud contamination
and uncertainties in the retrieval techniques. In this paper, the
continuity and consistency of the MODIS 8 day LAI products
are improved using a method based on Caterpillar Singular
Spectrum Analysis. The proposed method is compared with
other standard methods: Savitzky-Golay filter, Empirical Mode
Decomposition, Low Pass filtering and Asymmetric Gaussian
fitting. The experiment demonstrates the smoothing and gap-
filling ability of the developed method, which is more robust
across the biomes both in terms of root mean square error metrics
and bias metrics as compared to the standard methods.
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I. INTRODUCTION

LEAF Area Index (LAI), defined as half the total green

leaf area per unit horizontal ground area [1], characterizes

the size of the interface of mass and energy transfer between

the surface vegetation and atmosphere. It is one of the key

biophysical variables used in a wide range of applications and

is recognized as an essential climate variable for its key role

in the land-atmosphere interactions [2]. Temporal studies on

this variable are expected to provide a better description of the

global vegetation dynamics and a deeper understanding of the

global mass-energy balance [3]–[5].

Moderate spatial resolution satellite sensors are particularly

useful in monitoring the vegetation seasonality over long time

periods and offer global coverage at a high repetition rate.

The MODIS (MODerate Imaging Spectro-radiometer) sensors,

onboard the Aqua and Terra satellites view the entire earth

surface daily at a spatial resolution of around 1 Km [6].
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The MODIS global LAI product [7], globally available at

8-day resolution, is extensively used in a variety of studies.

However, this product is often noisy and not continuous

both spatially and temporally due to clouds, aerosols, snow

cover, algorithms and instrumentation problems [8]. Hence,

there is a clear interest to improve the temporal consistency

(smoothness) and continuity (lesser gaps) of the MODIS LAI

product.

Numerous methods have been proposed in the literature

for improving the smoothness and continuity of satellite time

series data [9]. Quantitative comparisons of temporal filtering

methods are relatively scarce, especially when applied to LAI

data. Jiang et.al. [10] compared the performance of 3 statistical

methods in making forecasts of the LAI time series data. How-

ever, most of the comparisons are focused on NDVI products.

Hird et.al. [11] compared 6 different methods in smoothing the

MODIS NDVI time series data using phenological metrics.

An innovative approach for smoothing and gap filling

satellite time series is proposed in this study. This method

is compared with other standard methods when applied to

MODIS LAI product.

II. DATA

A. The Data

The data used in this study belong to MODIS Terra observa-

tions of the BELMANIP2 sites. The BELMANIP2 sites are an

ensemble of 420 sites selected to represent the global range of

variability over different vegetation types or biomes [12]. The

biomes represented by this ensemble of sites can be divided

into Shrub Savana Bare, Grasslands and Crops, Deciduous

Broadleaf Forests, Evergreen Broadleaf Forests and Needle

Leaf Forests. The MODIS LAI data are generated using

a main-algorithm and a back-up algorithm. The observations

used in this study are from the main algorithm only, as the

estimates from the back-up algorithm are of poor quality [13].

The temporal resolution and sampling of the observations

are 8 days. Time series from 02/18/2000 to 12/17/2008 is

considered.

A set of 5 representative sites made of a single pixel in

a homogenous area is considered in each of these 5 biomes.

They are selected to show a range of seasonality while having

a minimum number of missing observations (gaps). The LAI

products are processed to remove spikes (abrupt changes in

LAI value in the series) [14], [15], as these spikes could affect

the final result.
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B. Building Climatology

The LAI time series products are first processed to compute

the climatology at an 8-day temporal step at a pixel level. The

climatology is defined here as the inter-annual mean of the 8-

day products over a 24 days compositing window. Inter-annual

averaging is expected to provide continuous and smooth cli-

matology patterns less affected by missing observations and

outliers in the original time series. However, the climatology

values are only computed if a minimum of 4 observations

exist within the composition period. To fill small gaps in the

climatology a linear interpolation is considered. The yearly

climatology is replicated to match the date of observations of

the processed MODIS time series.

III. METHODS

A. Time Series Methods

There are numerous methods for the smoothing and gap

filling of time series data based on different principles. The

methods used in this study can broadly be classified into curve-

fitting based methods and decomposition based methods:

1) Curve Fitting Based Methods: Asymmetric Gaussian

fitting method (AGF method) [14], [15] smoothes the data

by fitting it with an asymmetric Gaussian curve. It first

fits the asymmetric Gaussian locally to each season in the

time series and finally merges these local fits to produce the

smoothed time series. Hence, the only parameter required for

the application of this method is the number of observations

per year.

Chen’s Implementation of Savitzky-Golay filter (Chen’s

method) [16] is a polynomial fitting based smoothing method.

This method assumes the noise to be negatively biased and

smoothes the Savitzky-Golay filter (polynomial curve) output,

iteratively, to the upper envelope of the data until a conver-

gence is reached. The Savitzky-Golay filter requires two pa-

rameters, the window length and the order of the polynomial.

These values are data specific. In this study these values are

fixed as 9 and 3, respectively based on the most frequent best

combinations over the analyzed time series.

2) Decomposition Based Methods: Bacour’s low-pass fil-

tering method (Bacour’s method) [17] implicitly assumes that

noise components are of high frequencies. Hence, this method

filters the data using two cut-off frequencies to separate the

short- and long- term variations. Any components of data with

a frequency higher than these cut-off frequencies are rejected.

The cut-off frequencies for this study are fixed as 368 days (46

observations) and 3240 days (405 observations), respectively.

This method performs the filtering on the residue obtained by

fitting a second-order polynomial function (to represent long

term trend) and 4 harmonic functions (to represent seasonal

variations).

Empirical Mode Decomposition (EMD) [18] method de-

composes a given time series into its components called In-

trinsic Mode functions (IMFs). The number of IMFs obtained

is dependent on a specific convergence threshold. Usually this

threshold is in the range 0.2 – 0.3 18. However in this study,

this value is set to 0.1 to ensure least loss of information

when the high frequency components are removed as noise.

Fig. 1. Experimental flow.

By having a lower value for the threshold for convergence,

the number of IMFs obtained will be high and hence it allows

a better flexibility in selecting the IMFs for reconstruction.

The other parameter required by this method is the threshold

to reject noise. It is assumed that the noise contributes the least

to the information of the time series. Hence, the smoothed time

series is computed by selecting only IMFs that constitute up

to 80% of the total information.

The Iterative “Caterpillar” Singular Spectrum Analysis

(ICSSA) (Appendix A) method here proposed is a modified

form of the standard CSSA method [19]. The method has been

modified to reject outliers and make the model parameters

more robust to the different temporal patterns between the

sites of the considered dataset. This method is based on the

Eigen-value decomposition of trajectory matrices. This method

requires two parameters, the window length and the number

of eigenvectors with largest Eigen-values to be selected for

reconstructing the complete and smooth time series data. After

some trial and error, these values are fixed as 5 and 1,

respectively.

Among the methods considered for this study, only the

proposed method (ICSSA) can process the data with miss-

ing observations. The other methods require the data to be

complete i.e. without gaps. Hence, the missing observations

are replaced by Climatology values before being processed by

the different considered methods excluding ICSSA (Fig. 1).

Climatology is not required for filling gaps in the ICSSA

method but it is used indirectly as a reference for selecting the

best estimate between the two possible solutions (Appendix

A). Climatology is also used for the rejection of outliers in

the ICSSA method.

B. Experimental Plan

The experimental flow of the study is given in the Fig. 1.

This study compares the performance of proposed ICSSA

method with the standard methods in processing MODIS LAI
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Fig. 2. Relative smoothness of the reconstructed LAI time series for the
different methods over the BELMANIP2 sites.

temporal series (gap-filling and smoothing). This is achieved

as follows:

From the total number of BELMANIP2 sites(420), 5 sites

per biome were selected (Section II A). Let these 25 sites be

called as ‘Selected Sites’(SS).

The remaining 395 sites (called hereafter ‘Gap Sites’(GS))

were used for simulating gaps over the SS. In each of the

SS sites gaps were simulated by considering the missing

observations existing in GS. Gap simulation is done by biome

classes in order to respect the spatio-temporal distributions of

gaps in the original dataset which is biome dependent. The

resulting time series with gaps are subsequently processed by

the considered methods. Finally the reconstructed series are

compared with the original SS series (before gap simulation).

The performances of the methods are evaluated based on

smoothness criteria and the root mean square error (RMSE)

between the original and the reconstructed data.

A relative smoothness value is computed as the ratio of

the smoothness [20] of reconstructed to that of the original

temporal series. The lower the relative smoothness value, the

better the smoothing and vice versa. Faithful reconstruction

of the entire time series data is evaluated by computing the

overall RMSE between all the observations in the original and

reconstructed data.

The ability of the methods to fill missing observations is

evaluated by computing the RMSE between the reconstructed

series and the original series (before gap simulation) at the

dates of simulated gaps in the SS, i.e. at the dates of missing

observation in each of the GS. Performance of the methods

in reconstructing seasonal trajectories in the temporal profiles

is studied using the RMSE computed at the locations of the

peaks and valleys in the climatology.

IV. RESULTS AND DISCUSSION

The ICSSA method provides smoother reconstruction of

the temporal series in comparison to the other methods stud-

ied (Fig. 2). Similar smoothness levels are shown in the

Asymmetric Gaussian Fitting method (AGF) and the Bacour’s

Low Pass Filtering (Bacour) reconstructions. EMD, Chen and

climatology approaches provide shakier profiles.

Fig. 3 shows the reconstruction of a temporal data by

the methods for three BELMANIP2 sites. ICSSA tends to

Fig. 3. Reconstruction of the temporal data for 3 BELMANIP2 sites by the
methods.

reject abrupt variations, which are mostly outliers or noise,

and provides smooth results (Fig. 3). This may be explained

because the method reconstructs the temporal data from the

dominant eigenvector of the trajectory matrix. However, it

may also result in slight deviations from the original data.

The reconstruction of the temporal data by the Bacour’s

method is very similar to that of the ICSSA (Fig. 3). High

smoothness rates are also observed since Bacour’s method

rejects frequencies to eliminate noise. However, it seems that

Bacour method is more sensitive to local variations in the

data as observed in the year 2001. In addition, the Low

Pass filtering approach, as is implemented by Bacour, tends
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Fig. 4. RMSE of the reconstructed temporal series as compared to the original
data for the different methods. RMSE is computed for the overall data series,
at the location of simulated gaps and at the location of the climatology peaks
and valleys.

to slightly underestimate and over-estimate the LAI values

at the peaks and valleys, respectively. The smoothness of

the reconstruction of temporal data by AGF method closely

follows that of ICSSA method (Fig. 2). However, this method

has a tendency to “flatten” out seasonal peaks in the series data

resulting in an under-estimation of seasonal peaks (Fig. 3). The

AGF method may be more affected by local distortions in the

data than global fitting methods and may not be suited for

temporal data with high noise content or with shallow seasons

[14], [15].

Fig. 4 gives the performance of the methods computed by

considering all the biomes.

Overall RMSE gives the deviation between the reconstruc-

tions and the original series. The Chen’s method aims at fitting

the polynomial curve to the upper of data. Therefore, data at

seasonal valleys and near seasonal valleys are overestimated,

resulting in a higher value of the RMSE. The RMSE of

climatology could be attributed to the inter-annual averaging

of the temporal series. The EMD is found to have the lowest

RMSE value. The EMD rejects the high frequency IMFs that

contribute the least to the amplitude of the series and hence

reconstructs the temporal data that resembles the original data

to a great extent. The Bacour’s method and the AGF methods

are also produce lower RMSE values than the ICSSA method.

RMSE at Simulated Gaps metric gives an illustration of the

ability of the methods to produce estimates for the missing

observations in the temporal series. The high RMSE value of

the Chen’s method could again be explained as due to the

fitting of the Savitzky-Golay output to the upper envelope of

the data. The EMD, which had the lowest Overall RMSE,

has an RMSE similar to that of the climatology and is higher

than the RMSE values for the ICSSA method, the Bacour’s

method and the AGF method. The EMD cannot estimate the

missing observations and depends on the climatology values

to fill the gaps. The smoothing produced by rejection of high

frequency IMFs is not significant. Hence, at the dates of

simulate gaps the output of the EMD is very close to that of the

climatology values, which could be attributed as the reason for

high RMSE values close to that of the climatology. The low

RMSE value of AGF method could be attributed to optimal

fitting of the Gaussian function. Bacour’s method, on the other

hand, rejects noise frequencies thereby produce estimates free

of the noise introduced by the climatology filling of gaps. The

ICSSA method uses the dominant eigenvector to reconstruct

the temporal data and hence the estimations are least affected

by noise or artifacts. The dominant vector also captures the

inter-annual variations, which it uses to estimate the missing

observations.

RMSE at Climatology Peaks is computed to evaluate the

methods in reconstructing the seasonal trajectories. The cli-

matology, which is calculated as an inter-annual average,

may flatten sharp peaks and not capture inter-annual shifts

in the seasonal pattern. This may explain the high RMSE

values for climatology at peaks locations. The RMSE at the

climatology peaks for the Chen’s method are similar to those

obtained with the other methods (higher than EMD) even if the

former iteratively fits the upper envelope. This may be partially

explained by the deviations between the detected climatology

peaks and the actual seasonal peaks in the data. The EMD

reconstruction better fits the actual data and provides the

lowest RMSE. The highest RMSE at Climatology valleys

are observed for the Chen’s method. This may be explained

because the upper envelope approach tends to overestimate

LAI data over the valleys.

V. CONCLUSION

The reconstructed series is expected to be smooth and less

affected by outliers and noise in the original series. From this

study, it is found that the methods based on the principles

of decomposition and curve fitting is providing smoother

results than those obtained from simple inter-annual averaging

(climatology).

The Chen’s upper envelope approach may be more robust to

negatively biased noisy data but it may also introduce system-

atic differences between the reconstructed and the original data

resulting in the highest overall RMSE values. The Asymmetric

Gaussian method provides overall good performances in terms

of RMSE and smoothness but it may introduce local deviations

from the original data.

The Bacour’s FFT based method has some similarity to the

Iterative “Caterpillar” singular spectrum analysis method and

removes the high-frequency components as noise. Therefore,

the noise introduced by climatology filling of gaps has very

little effect on this method’s performance compared to other

methods that depend on the climatology values to fill gaps.

This method could serve as an alternative to the Iterative

“Caterpillar” Singular Spectrum Analysis method to process

global data. However, Bacour’s method is very sensitive to

local variations in the data series.

The Empirical Mode Decomposition (EMD) method is more

sensitive to local variations in the data and provides lower

RMSE values at expenses of noisier profiles as compared with

the other considered methods. The major difficulty using this

method for processing satellite data is in identifying a global

threshold for the optimal removal of the high frequency IMFs.

IMF components having a total contribution lower than 20%

in terms of amplitude were here rejected. A more adaptive

approach will be explored in a forthcoming study.
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The Iterative “Caterpillar” Singular Spectrum Analysis (IC-

SSA) method is found to be the most robust to the local

variations in the temporal series, providing good performances

both in terms smoothness and RMSE. ICSSA method is thus

a good candidate for the processing temporal satellite data at

global scale.

APPENDIX A

ITERATIVE “CATERPILLAR” SINGULAR SPECTRUM

ANALYSIS METHOD

The Iterative “Caterpillar” Singular Spectrum Analysis (IC-

SSA) method is a slight modification of the “Caterpillar” SSA

method15. It is modified to take into account the number of

gaps, to take another data (climatology) as a model to remove

certain outliers as well as be less dependent on the local

variations in data.

Algorithm 1 Main Algorithm

Let the time series data be represented by, F = fi, i =
0, . . . , N − 1
Where N is the length of the time series data

Let the Climatology, C = ci, i = 0, . . . , N − 1
Let the window length, L = 5 (for this study)

Let the eigenvectors selected for reconstruction, Ir = 1
(largest eigenvector)

Define, K = N − L+ 1
Let the zeroth output be represented by, y0

i = fi, i =
0, . . . , N − 1 {initial time series data}
Maximum number of iterations allowed, thres = 1000
Initialize the iteration counter, iter = 1
while (∼ (F̃iter−1 ≥ F̃iter ≤ F̃iter+1)) & &(iter < thres)
do

yiter = compute cssa(yiter−1, C, L, Ir ,K)
{Algorithm 2}.

yiteri =



















yiteri , ∀i ∈ A

y0i if(yiteri < y0i ), ∀i ∈ P

y0i if((yiteri < ci)and(i ∈ P )), ∀i ∈ V

min(C) if(yiteri < min(C)), ∀i ∈ V

Where A, P and V are the indices of missing observa-

tions, observations and seasonal valleys, respectively.

Compute Weights [16],

Wi =

〈

1− di

dmax

, yiteri < y0i
1 , otherwise

Where di = |y0i − yiteri | and dmax = max(d)
Compute Chen’s Fitness [16],

F̃iter =

N−1
∑

i=0

|yiteri − y0i | ×Wi

iter = iter + 1
end while

return yiteri {Gap-filled and Smooth Time Series Data}

Algorithm 2 compute cssa(O,C,L, Ir ,K) [19]

Let O = oi, i = 0, . . . , N − 1
Form the Trajectory Matrix,

X =















o0 o1 o2 . . . oK−1

o1 o2 o3 . . . oK
...

...
...

. . .
...

oL−1 oL oL+1 . . . oN−1















Form the Sub-matrix, X̃ = Xj, ∀j ∈ C̃
Where C̃ is the indices of all complete columns in X
Compute Gap-Ratio vector,

Rk = 1 − NG(Xk)
L , k = 0, . . . ,K − 1. {Modifications to

CSSA handle gaps}
NG(Xk) is the number of gaps in the kth column of X .

Compute Eigenvalues and Eigenvectors from X̃X̃T

Arrange Eigenvectors in the descending order of their

eigenvalues

Let the selected eigenvectors,U = Ul=Ir

Project the complete lagged vectors,

V = X̃TU X̂j = UV T , j ∈ C̃
Let the indices of columns in X with missing observations

be C̃′

I/P are the row indices of observations in the columns of

C̃′

P row indices of gaps in C̃′

Create an Identity matrix, EP = IP×P , of size P × P
V = U I/P

W = UP

X̂
I/P
i = πI/PX

I/P
i , i ∈ C̃

Where, πI/P = V V T + VWT (EP −WWT )−1WV T

X̂P
i = (EP −WWT )−1WV TX

I/P
i

Reconstructed Signal,

rk̃ =
∑

ĩ

∑

j̃ X̂ (̃i, j̃), ∀ĩ+ j̃ = k̃ + 1
if (Rk = 0, k = 0, . . . ,K) then

temp1 =

{

r̂k−1, k > 0
r̂k
N ′

, otherwise

else

temp2 = r̂k
N ′

end if {Modifications to CSSA handle gaps}
Where,N ′ is the number of elements in X̂ for which ĩ+ j̃ =
k̃ + 1
Reconstructed Signal,

rk =











temp1, |temp1− ok| < |temp2− ok|

temp2, |temp2− ok| < |temp1− ok|
temp1+temp2

2 , |temp2− ok| = |temp1− ok|

{Modifications to CSSA to create upper envelopes as in

Chen}
return rk, k = 0, . . . , N − 1
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