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On a New Approach to SNR Estimation of BPSK

Signals
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Abstract—Signal-to-noise ratio (SNR) information is required
in many communication receivers and their proper operation
is, to a large extent, related to the SNR estimation techniques
they employ. Most of the available SNR estimators are based on
approaches that either require large observation length or suffer
from high computation complexity. In this paper, we propose a
low complexity, yet accurate SNR estimation technique that is
sufficient to yield meaningful estimation for short data records.
It is shown that our estimator is fairly close to the (CRLB) for
high SNR values. Numerical results also confirm that, in terms
of convergence speed, the proposed technique outperforms the
popular moment based method, M2M4.

Keywords—digital communication, statistical analysis, AWGN
channels.

I. INTRODUCTION

S
NR information is required in many techniques and

components such as power control [1], rate adaptation,

adaptive coding and modulation [2], [3], soft decoding [4],

and maximal ratio combining (MRC) [5], [6]. SNR estimation

thus is an important task in many communication receivers and

their proper operations is so strongly dependent on the correct

estimation of SNR [7]–[9]. Many SNR estimation techniques

have been proposed in the literature. They can be classified

into two main categories [10]: maximum likelihood (ML)

based estimators and method of moments. The ML estimators

[11], [12] give favorable results but suffer from high compu-

tation complexity, while the moment based methods, on the

other hand, have the problem to work properly when the SNR

is high [10]. Moreover, these two approaches tend to require

large observation length to be converged to an acceptable error,

indicating that these estimators have to demand significant

amount of data for a reliable estimation.

In this paper, we propose a SNR estimation technique that

is sufficient to yield meaningful estimation for short data

records. We test the performance of the estimator by using

the binary phase-shift keying (BPSK) signal corrupted by the

AWGN noise. This technique is compared favorably against

the popular moment technique, M2M4.

This paper is organized as follows. In Section II, the signal

model and derivation are presented. The statistical analysis is
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provided in Section III. Section IV gives the simulations and

results. Finally, in Section V, the conclusions are drawn.

II. SIGNAL MODEL AND DERIVATION

Let the binary phase shift keying (BPSK) signal at the

output of the matched filter be modeled as a one-dimensional

signal,

x(k) = Sa(k) + w(k) (1)

where S is a real scalar, a(k)’s are symbols taking values

±1 independently and identically with equal probabilities, and

w(k)’s are additive white Gaussian noise with zero mean and

variance of σ2. Without loss of generality, we assume that

x(k) is normalized such that the sample variance of x(k) is

equal to one. In this way, one may have,

σ2 + S2 = 1 (2)

A. Noise Variance Estimation

To estimate the SNR, the following steps are followed,

Step 1. Calculating the square of observation data,

y(k) = (x(k))2 (3)

or,

y(k) = S2 ± 2Sw(k) + (w(k))2 (4)

Step 2. Arranging the obtained points in an ascending order,

that is

0 ≤ ỹ(1) ≤ ỹ(2) ≤ . . . ≤ ỹ(K) (5)

Step 3. Choosing L+1 observation data around the mid point,

that is

ỹL(l) = ỹ(l), l = (K − L)/2, . . . , 0, . . . , (K + L)/2 (6)

Step 4. Using a least-squares polynomial to fit the obtained

data, ỹL(l). In this work we choose the forth degree poly-

nomial. Note that the higher degree polynomial may give

more accurate results but it makes the computational cost

too high. We will show that the noise standard deviation

can be estimated from the leading coefficient of the fitting

polynomial.
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Fig. 1. The sample quantile curves for the sample size of: a) 100 and
noise standard deviation of 0.5; b) 1000 and noise standard deviation of 0.5;
c) 10,000 and noise standard deviation of 0.5.

B. Polynomial Approximation of Sample Quantile Function

The quantile function is described as simply the value that

corresponds to a specified proportion of an ordered sample of

a population [13]. In other words, the ordered data values are

posterior point estimates of the underlying quantile function.

We employ the power series to create a function that is

closed to the underlying quantile function. A Taylor series

provides a way to generate such a series. To doing so, the

Taylor series of the p-th quantile yp at p = p0 is computed.

That is,

Pn(p) = a0 + a1(p− p0) + a2(p− p0)
2 + . . . (7)

In [14], an analytical approach is presented to express the

coefficients ak’s in terms of the probability density function of

underlying distribution. Although by following that approach

one may derive equations relating these coefficients to the

unknown parameters of the density function such as σ, the

derived equations can not be solved analytically (Appendix).

TABLE I
THE DIFFERENCE MEASUREMENT RESULTS USING d(K) IN (8)

Sample Standard Deviation of the Noise
Size 0.1 0.5 0.9

100 1.7×10−3 2.5×10−2 1.1×10−1

1000 1.2×10−4 3.5×10−3 1.2×10−2

10,000 2.1×10−5 1.1×10−3 3.8×10−3

100,000 1.98×10−6 1.92×10−4 4.71×10−4

1,000,000 2.03×10−7 1.59×10−5 6.8×10−5

10,000,000 2.29×10−8 9.08×10−7 9.17×10−6

In this paper we approximate the quantile function with

a forth degree polynomial along with introducing a numerical

method to estimate the coefficients in terms of unknown

parameter σ. To derive the equations, since the theoretical

quantile function is not available, we derive numerical results

by choosing the sample size (K) too large so that the numer-

ical results converge to the theory. To choose a large enough

sample size, by starting from a small sample size, we draw

several sets of observations form the underlying distributions

as described in (1) and consider the difference between the

corresponding sample quantiles. Figure 1 shows the results for

four simulation runs for a given sample size. It is observed

that for large sample size like 10,000 all curves are fully

overlapped.

To measure the numerical difference of results the following

equation is used,

d(K) =
1

K

K
∑

k=1

M−1
∑

i=1

(ỹi+1(k)− ỹ1(k))
2 (8)

where ỹi(k) is ỹ(k) at i-th simulation run and M is the number

of simulations.

The results of the difference measurement are reported in

Table 1.

Table 1 shows that the difference between the resulting

sample quantiles for large sample size is too small. Therefore,

if we choose large sample size like 1,000,000, the numer-

ical results for the approximated quantile function may be

approached to the true quantile function.

To approximate the quantile function with a polynomial,

we set the sample size K to 1,000,000 and vary the standard

Fig. 2. Sample quantile curves of square of arranged noisy data with different
standard deviation, σ(sigma) and the fitted fourth degree polynomials for
K = 1, 000, 000 and L = 0.8K .
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Fig. 3. Estimated coefficients of all fitted fourth degree polynomials Cσ(p) =
C0(σ) + C1(σ)p + C2(σ)p2 + C3(σ)p3 + C4(σ)p4 in terms of standard
deviation, σ for K = 10, 000, 000 and L = 0.8K .

deviation of noise from 0 to 1. The results for four settings are

shown in Fig. 2. It is seen that the sample quantile curve over

a large region around the midpoint p = 1/2 can be represented

by a low degree polynomial curve. In this work, by using

L + 1 data points taken equal to 80% of observations within

this region a forth degree polynomial is fitted.

From Fig. 2, it is also seen that for each σ there is a fourth

degree polynomial which can well fit the data. We estimate

the coefficients of these polynomials over a range of σ. For

simplicity, by considering normalized data, we set the range

of σ between 0 and 1. Figure 3 shows the numerical results

for the estimated coefficients of the forth degree polynomials

in terms of σ.

As seen from obtained curves in Fig. 3, each coefficient

varies with the noise standard deviation in a nonlinear manner.

Since our goal is to express the noise standard deviation in

terms of the estimated coefficients, only the coefficients that

can be approximated by a monotonic function is desired. From

Fig. 3, one may see that only the leading coefficient C4 has an

ascending shape which may be useful for an invertible fitting

polynomial. The numerical results of mean square error (MSE)

for different polynomials fitted to C4 are reported in Table 2.

TABLE II
MEAN SQUARE ERROR OF POLYNOMIAL APPROXIMATION WITH

DIFFERENT DEGREES

Degree C4(σ)
8 0.0095
9 0.0040

10 0.0037
11 0.0018
12 0.0018

TABLE III
MEAN SQUARE ERROR OF POLYNOMIAL APPROXIMATION FOR THE

INVERSE FUNCTION

Degree MSE

5 6.43× 10−5

6 5.97× 10−5

7 2.44× 10−5

8 2.01× 10−5

9 1.27× 10−5

10 1.25× 10−5

Fig. 4. The ninth degree polynomial fitted to the leading coefficient C4.

We choose the ninth degree for the fitting polynomial and

results are shown in Fig. 4.

From Table 2 and Fig. 4 it is seen that the coefficient C4(σ)
can be approximated to a high enough accuracy by a ninth

degree polynomial over the entire region of (0,1). This gives

following result,

C4(σ) = 15626− 66990σ + 117600σ2 − 109660σ3+

+58071σ4−17638σ5+2956.9σ6−218.8σ7+8.5σ8−0.06σ9

(9)

It can be easily shown that the above polynomial function is

strictly ascending implying that it has a unique inverse func-

tion. By numerical computation we approximate this inverse

function with a ninth degree polynomial as,

σ̂ = 0.0342+0.2481C4−0.1488C2
4+0.0699C3

4−0.0203C4
4+

+0.0036C5
4 − 4× 10−4C6

4 + 2.6563× 10−5C7
4+

−9.7237× 10−7C8
4 + 1.5037× 10−8C9

4 (10)

The results for the approximated polynomials for inverse

function are shown in Fig. 5 and Table 3.

Figure 5 and Table 3 confirm that the approximating ninth

degree polynomial function give a desired level of accuracy

for the inverse of function.

Fig. 5. The approximating ninth degree polynomial for the inverse function.
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Fig. 6. CRLB and variance of the proposed technique for SNR estimates of
BPSK signals with sample sizes of 200 and 400.

C. Estimation of Quantile Function Coefficients

To estimate the coefficients of approximating polynomial

quintile function from the observation data, we use a forth

degree polynomial fitting to the L+ 1 chosen points.

Using least mean square minimization [15],

C = U−1B (11)

where

C =
[

C1 C2 C3 C4

]T
(12)

Uij =

L+1
∑

l=1

( l

L+ 1

)i+j−2

, i, j = 1, 2, . . . , 5 (13)

Bi =

L+1
∑

l=1

( n

L+ 1

)i−1

yL(l), i, j = 1, 2, . . . , 5 (14)

Note that in C, only C4 is needed to be calculated as it

is employed in the estimate expression for the noise standard

deviation in (10).

D. Signal Power and SNR Estimation

Having the estimated noise standard deviation (10), one can

simply find an estimate of signal power Ps as,

P̂s =
1

N

N
∑

k=1

(x(k))2 − σ̂2 (15)

Consequently, using (2) the SNR can be estimated by

ˆSNR =
1− σ̂2

σ̂2
(16)

III. STATISTICAL ANALYSIS

A. Cramer Rao Lower Bound (CRLB) on the Variance of SNR

Estimator

The CRLB of Θ = [S2σ2]T estimates are defined as [16],

CRLB(g(Θ)) =
∂g(Θ)

∂Θ
Γ−1 ∂g(Θ)T

∂Θ
(17)

where I(Θ) is the Fisher information matrix given by,




−E
{

∂2 ln f(X;Θ)

∂S22

}

−E
{

∂2 ln f(X;Θ)
∂S2∂σ2

}

−E
{

∂2 ln f(X;Θ)
∂A2∂σ2

}

−E
{

∂2 ln f(X;Θ)

∂σ22

}



 (18)

Fig. 7. Mean of estimated SNR vs. true SNR with sample size of 400 and
50 computer runs.

It can be shown that the CRLB of SNR estimates for the

BPSK signals with unknown modulating symbols is obtained

by [17],

CRLB(SNR) =
200
(

1
α − f(α) + 1

)

N(ln(10))2(1 − f(α)− 4αf(α))
(dB)2

(19)

where

f(α) =
exp(−α)√

2π

∫ ∞

−∞

u2 exp
(

− u2

2

)

cosh(u
√
2α)

du (20)

Note that α is in linear scale.

IV. SIMULATION RESULTS

To verify the performance of the proposed estimator, the

following simulations are carried out with these setting pa-

rameters: the BPSK signal is produced by random number

generator with two states of ±1. The true SNR is set to be

between -10 and 10 dB. The sample size is set to 200 and

400, and the number of simulation runs for each simulation is

50.

A. Efficiency of the Proposed Technique

In this paper, we use CRLB as a finger of merit to check the

accuracy of the proposed estimator. Figure 6 shows the CRLB

and the simulation results for the variance of the proposed

estimator. As seen, for low SNR (e.g., dB), the difference

between the CRLB and variance of estimations is dependent

on the sample size, whereas at high SNR, the estimator ap-

proaches the CRLB. This indicates that the proposed estimator

is approximately a minimum variance unbiased estimator for

high SNR values.

Figure 7 compares the SNR estimates and true SNR. As

shown, at large SNR values (> 8 dB in this experiment) the

estimator can indeed track the true SNR.

B. Performance Comparison to M2M4 Technique

To evaluate and compare the effectiveness of the proposed

SNR estimation technique, we use accuracy and convergence

speed as performance metrics. The well-known SNR estima-

tors M2M4 is considered and the results are compared with the
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a)

b)

Fig. 8. The NMSE of estimators for sample size of: a) 200; b) 400.

proposed technique. The normalized MSE is used for accuracy

measurement of the estimators, that is [8]

NMSE =
1

M

M
∑

i=1

(

SNR− ˆSNR

SNR

)

(21)

The comparative results are given in Fig. 8. One can see that,

the proposed technique outperforms the M2M4 estimator over

the whole SNR range (from -10 to 10 dB) when the sample

size is 200. However, for larger sample size (Fig. 8b), both

estimators come with comparable results especially over large

SNR. This indicates that the proposed technique requires less

data to achieve the same accuracy level as M2M4 estimator

does.

V. CONCLUSIONS

In this paper, by separating the signal level from the noisy

observation data a SNR estimation technique for BPSK signal

in AWGN was derived. By arranging the data we fit a fourth

degree polynomial to a portion of arranged data. By numerical

computations we derived expressions from the approximating

polynomials for the noise standard deviation. The proposed

SNR estimator was compared with M2M4 estimator and the

numerical results showed that the new estimator performed

faster convergence speed, but comparable accuracy results,

especially for high SNR values. The statistical analysis such

as the CRLB of the SNR estimator was given. The simulations

confirmed this theoretical prediction and showed that the

proposed estimator attains the CRLB for high SNR (> 8 dB

in the experiments).

APPENDIX

As the quantile function of a probability distribution is the

inverse of its cumulative distribution function (cdf), we define,

p = F (yp), 0 < p < 1 (22)

where F is the cdf of distribution of y. For the expansion point

p = p0 one may find [14],

a0 = yp0 (23)

a1 =
1

fy(yp0)
(24)

a2 =
−f ′

y(yp0)

2f3
y (yp0)

(25)

a3 =
3(f ′

y(yp0))
2 − fy(yp0)f

′′
y (yp0)

6f5
y (yp0)

(26)

where fy and f
(m)
y (yp0) denote the probability density func-

tion of y and the m-th derivative of the function fy(yp0) at

p = p0, respectively.

In this work we consider the expansion point p0 = 1/2.

In this case, yp0 will be equal to the sample mean of y(k).
Because when F (yp0) = 1/2 the corresponding point of 1/2

will be the sample mean of y.

Therefore, to obtain a1, we have to find the value of fy at

yp0 = 1/2 which is discussed as follows.

A. Distribution of the Square of Observation Points

Equation (4) shows that the variable y is composed of

three terms: one with constant value (S2), one with normal

distribution multiplied by a constant value and the other one

is the square of a normal variable. The first two terms can be

treated as a normal variable with mean of S2 and variance of

4S2σ2. The last term is treated as a new variable z = (w(k))2

which takes the following density function form [18],

fz(z) =
1√

2Γ(1/2)

√

z/σe−z/2σ (27)

where Γ denotes the Gamma function.

Therefore, finding the distribution of y boiled down to

computing the probability distribution of sum of two variables.

This can be obtained by convolution of their individual distri-

butions [19].

fy(y) =

(

1
√

2πσ2
xs

e
−

(

y−µxs
2σxs

)2)

∗
( 1√

2Γ(1/2)
√

y/σ
e−y/2σ

)

(28)

where * denotes convolution, σxs = 2Sσ and µxs = S2.

B. Equation Derivation for Coefficients of Quantile Function

For y = yp0 , using (1),(2) and (23) we get,

a0 = yp0 = 〈y(k)〉 = S2 + σ2 = 1 (29)

Using (24), (28), and (29), one may find,

a1 =
1

fy(1)
=

4π
√

σ(1 − σ2)
∫∞
−∞

e−y/2σ
√
y e

− (y−σ2)2

4σ2(1−σ2) dy

(30)
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By applying this convolution property (f ∗ g)′ = f ′ ∗ g, one

may have,

f ′
y(1) =

−1

8σπ
√

σ(1 − σ2)

∫ ∞

−∞

(y + σ)e−y/2σ

y
√
y

e
− (y−σ2)2

4σ2(1−σ2) dy

(31)

f ′′
y (1) =

1

16πσ2
√

σ(1 − σ2)
·

∫ ∞

−∞

(y2 + 2σy + 3σ2)e−y/2σ

y2
√
y

e
− (y−σ2)2

4σ2(1−σ2) dy (32)

Using (25), (26) and above equations, the related equations

for coefficients a2 and a3 are derived which may not have

analytical solutions.
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