
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 4, PP. 323–326

Manuscript received July 24, 2012; revised October, 2012. DOI: 10.2478/v10177-012-0044-0

Probabilistic Sequence Mining – Evaluation and

Extension of ProMFS Algorithm for Real-Time

Problems
Krzysztof Hryniów and Andrzej Dzieliński

Abstract—Sequential pattern mining is an extensively studied
method for data mining. One of new and less documented
approaches is estimation of statistical characteristics of sequence
for creating model sequences, that can be used to speed up
the process of sequence mining. This paper proposes extensive
modifications to one of such algorithms, ProMFS (probabilistic
algorithm for mining frequent sequences), which notably in-
creases algorithm’s processing speed by a significant reduction
of its computational complexity. A new version of algorithm is
evaluated for real-life and artificial data sets and proven to be
useful in real-time applications and problems.

Keywords—ProMFS, sequential pattern mining, probabilistic
mining, real-time.

I. INTRODUCTION

S
EQUENTIAL PATTERN MINING was first defined by

Agrawal and Srikant in [1]

Given a set of sequences, where each sequence

consists of a list of itemsets, and given a user-

specified minimum support threshold (min support),

sequential pattern mining is to find all frequent

subsequences whose frequency is no less than

min support.

One of the algorithms used for sequential pattern mining

is ProMFS algorithm (probabilistic algorithm for mining

frequent sequences) proposed by Tumasonis and Dzemyda

in [2]. This two-step procedure is based on the estimation

of statistical characteristics of the main sequence, such as

a probability of element occurrence and an average distance

between different elements. Based on such characteristics

the algorithm creates a shorter, model sequence which is

analysed with GSP (Generated Sequence Pattern [3]) or

similar algorithms such as SPARSE (Sequential PAttern

mining with Restricted Search [4]), SPAM (Sequential

PAttern Mining [5]), LAPIN (LAst Position INduction [6]) or

in some specific cases even with BDFS(b)-diff-sets [7]. The

frequency estimation of the subsequences in the sequence is

based on the results of applying GSP algorithm to a model

sequence. The ProMFS algorithm is meant to produce slightly

less accurate results in shorter time than classical approach

algorithms for very large data sets [2].

Extensive testing on both real-life and artificial data sets

has shown that the originally proposed ProMFS algorithm can

K. Hryniów and A. Dzieliński are with Institute of Control and Industrial
Electronics, Warsaw University of Technology, Koszykowa 75, 00-662, War-
saw, Poland (hryniowk@ee.pw.edu.pl; adziel@ee.pw.edu.pl).

generate inadequate results in much longer time then the basic

GSP algorithm. The experiments on many types of commonly

available data, have shown that the original ProMFS algo-

rithm’s working speed is one to two orders of magnitude

slower than that of GSP or even basic Apriori algorithm

[8]. Moreover, the accuracy of generated results was low for

many types of tested data. The longest sequences, which were

reflecting the hardest-to-find, and the most interesting patterns,

were rarely identified by ProMFS algorithm. Results of tests

were shown in [9].

In [9] several modifications to ProMFS algorithm were

proposed. They eliminated the accuracy problems of ProMFS

caused by creating improper sequences. Two of three criteria

were modified greatly improving accuracy – for tested data,

ProMFSmod, the modified version of ProMFS algorithm, was

able to find all the sequences that were found by basic GSP

algorithm without ProMFSmod preprocessing. The working

time has improved as well, due to the optimisation of ProMFS

algorithm to work with FUP (Fast Update [10]) algorithm

– it allowed frequently updated data sets to be computed in

only slightly longer time than that of basic GSP algorithm

(and for large data sets – even slightly shorter time).

Despite those modifications ProMFS algorithm was still

incapable of achieving working times needed for real-time

operations, especially for first runs and data sets that were

not frequently modified (for King James Bible [11], one of

real-life data sets used, working time for version without FUP

was circa 37h – as illustrated in Tab. I).

In this article a modification of ProMFS algorithm for real-

time applications is proposed, that has superior working time

to ProMFS algorithm and due to that allows to use it as

a preprocessing tool not only for other algorithms (as ProMFS

was intended), but also for real-time rule-based systems.

It is worth noting that ProMFS algorithm does not need any

information about a data set to work properly (it can be

useful for determining proper parameters g and l) and used as

a preprocessing tool it can give additional information about

a data set to a second-step algorithm, as it gathers statistical

data about used sequences.

II. PROMFS ALGORITHM OVERVIEW

ProMFS algorithm is based on three statistical

characteristics of the sequence: probability of an element in

the sequence, probability of an element’s appearance after

another one and average distance between different elements

324 K. HRYNIÓW, A. DZIELIŃSKI

in the sequence. Each element is defined as single, different

ASCII character. ProMFS needs two parameters defined:

– l – length of model sequence S;

– minimum support g threshold, for second-step algorithm.

In the first step the algorithm creates matrices with char-

acteristics of a sequence. Probabilities of an element in the

sequence are stored in a matrix P:

P (ij) =
V (ij)

V S
(1)

where:

V (ij) is the number of occurrences of element ij in the

sequence S;

V S is the length of main sequence S.

Probability of an element occurring after another element

is marked as P (ij|iv) and D(ij|iv) is the distance between

elements ij and iv in the sequence. Matrix A stores average

distances between elements, which are used for the comple-

mentary function ρ(Cr, Ar,j) (rho). After each step, function

ρ(Cr , Ar,j) modifies matrix Q:

ρ(Cr , ar,j) → Q[ij, r + ar,j] = Q[ij , r + ar,j] + 1 (2)

At the start of algorithm’s work, all elements in matrix Q

are null. Matrix M stores minimal distances between elements

ij and iv that are used to improve algorithm’s accuracy

as used with combination with average distances they limit

the occurrence of improbable subsequences in created model

sequence C.

After creating all matrices and filling them with statistical

characteristics of sequence, algorithm starts by putting element

with maximum P (i) into the first place of model sequence C

and changing matrix Q with ρ(Cr, Ar,j). Next elements of

model sequence are chosen according to algorithm presented

below until model sequence C is of length l. Elements with

maximal value of Q(ij, Cr) are chosen and inserted into model

sequence C:

C(r) = max(Q(ij , Cr)). (3)

If Q(ij , Cr) is equal for two or more elements we choose next

element for model sequence based on the second criterion

C(r) = max(P (Cr−1|ij), P (Cr−1|iv)). (4)

If we have again equal values we use the third criterion

C(r) = max(P (ij |iv)). (5)

In case of equal values, the element with less occurrences

in the model sequence is chosen. After model sequence C

is of length l the first step of algorithm stops and another

algorithm (such as GSP) is used with model sequence C as

input instead of longer main sequence S.

Presented algorithm is using modified criteria from [9] that

are more accurate then basic criteria presented in [2]. For

simplicity presented formulas (4) and (5) are for case with

two elements with equal values.

III. FASTPROMFS ALGORITHM OVERVIEW

FastProMFS algorithm uses different method of loading

data sets and generating probability matrices than classical

ProMFS. To speed up the process additional two elements are

used – character set template T (vector containing the next

position in sequence S of each ASCII character) and vector

L, containing the last positions of each ASCII character in

the sequence.

Both vectors consist of 255 elements (number of characters

in ASCII). Each element in vector T represents the difference

between the current position of the algorithm and the position

where the nearest character with that ASCII code is located.

For example:

T [67] = 2; T [68] = 10; T [69] = 0;

means that next ’A’ letter is 2 positions ahead from

current position, nearest ’B’ letter is 10 positions ahead and

’C’ letter is non-existent after current position. The last case

improves algorithm’s speed, as it reduces the need to search

for non-existing characters. Also, introduction of vector T

allows to search for only one character, rather than all of

them, as positions of all characters (with the exception of

current) for the next element checked are the same, only one

position closer (all numeric values in vector T are decreased

by one).

Vector L is not modified in the course of algorithm’s run, as

it stores the last position of each of ASCII characters that

is unchangeable. After the algorithm moves to that position,

corresponding element in vector T is zeroed permanently.

Algorithm

• Input data – sequence S, length of model sequence l, min-

imum support g threshold (for second-step algorithm);

• Step 1 – sequence S is loaded from a data set; each loaded

character (and combination) is counted for generation of

matrices P (i) and P (i|j); vector L is created;

• Step 2 – number of different ASCII characters in se-

quence S is set as m;

• Step 3 – for the first element in sequence S vector T is

created; minimal distances between elements in sequence

are updated;

• Step 4 – in loop, for each next element S[n], where n <

V S:

– a) T [i] is zeroed, where i is ASCII code of n;

– b) T [j] = T [j]− 1, ∀(j)! = i;

– c) minimal distances are updated on base of T ;

– d) if n ≥ L[i] algorithm moves to next element; else

if T [i] was zero before step 4a it stays so, otherwise

T [i] is updated (and also M [i][i]);

• Step 5 – matrix A is created;

• Step 6 – matrices P (i) and P (i|j) are created.

After the creation of matrices A, M , P (i) and P (i|j), the

rest of algorithm proceeds in the same way as in modified

ProMFS algorithm presented in [9].

PROBABILISTIC SEQUENCE MINING – EVALUATION AND EXTENSION OF PROMFS ALGORITHM FOR REAL-TIME PROBLEMS 325

A. Example

Let us take a sample sequence ′ABCAB′ to illustrate how

modified algorithm works in each step. For simplicity ASCII

signs ’A’, ’B’ and ’C’ are mapped to positions 1, 2 and 3

respectively (instead of 67, 68 and 69) in vectors L and T .

Length of model sequence is set to 3.

• Step 1 – L =
[

4 5 3
]

• Step 2 – there are only three different symbols in se-

quence, so m = 3.

• Step 3 – for first element (’A’) we create vector

T =
[

3 2 1
]

;

Minimal distances in matrix M are updated and now

M =





3 2 1
0 0 0
0 0 0





• Step 4 – for second element in sequence (’B’):

– a) field in T corresponding to ’B’ is zeroed;

T =
[

3 0 2
]

;

– b) distances in vector T are lowered by one;

T =
[

2 0 1
]

;

– c) minimal distances are updated for element ’B’;

M =





3 2 1
2 0 1
0 0 0



;

– d) as n = 2 < L[2] and T [2] was greater then zero

at the beginning of step 4a, we update T [2] and

M [2][2];

T =
[

2 3 1
]

, M =





3 2 1
2 3 1
0 0 0





• Step 4 – for third element in sequence (’C’):

– a) field in T corresponding to ’C’ is zeroed;

T =
[

2 3 0
]

;

– b) distances in vector T are lowered by one;

T =
[

1 2 0
]

;

– c) minimal distances are updated for element ’C’;

M =





3 2 1
2 3 1
1 2 0



;

– d) as n = 3 = L[3] this step is skipped – and from

now on algorithm is not searching for ’C’ signs.

• Step 4 – for fourth element in sequence (’A’):

– a) field in T corresponding to ’A’ is zeroed;

T =
[

0 2 0
]

;

– b) distances in vector T are lowered by one;

T =
[

0 1 0
]

;

– c) minimal distances are not updated as M [1][2]
had the same value and zeroes are ignored as there

cannot be zero distance between elements. Such

value means that given combination is not present

in the sequence;

– d) as n = 4 = L[1] this step is skipped – and from

now on algorithm is not searching for ’A’ signs.

• Step 4 – for fifth element in sequence (’B’):

– a) field in T corresponding to ’B’ is zeroed;

T =
[

0 0 0
]

;

– b) as all the elements of vector T are zeros this step

is skipped;

– c) minimal distances are not updated as all elements

in T are zeros;

– d) as n = 5 = L[2] this step is also skipped.

• Step 5 – matrix of average distances A =





3 2 1
2 3 1
1 2 0



.

In this case this matrix has the same values as as matrix

M due to short sequence size.

• Step 6 – matrices P (i) =
[

2
5

2
5

1
5

]

and

P (i|j) =





0 2
5 0

0 0 1
5

1
5 0 0



 are created.

Next steps of algorithm are identical to those in [9] and for

given example look following:

• Step 7 – creation of vector C =
[]

and matrix

Q =





0 0 0
0 0 0
0 0 0



.

• Step 8 – first element is put into model sequence. As

two elements in P (i) have the same maximum value

(’A’ and ’B’) and both are not represented in model

sequence C criteria (1) – (3) are skipped and element

with lower index value is chosen (exactly as in [2]).

C =
[

A
]

; Q =





0 0 1
0 1 0
0 0 1



.

• Step 9 – for r = 2

– a) second element is chosen according to criterion

(1) and max(Q(ij , C2)) = 1 is for element ’B’;

C =
[

A B
]

– b) Q =





0 0 2
0 1 1
0 0 2



.

• Step 9 – for r = 3

– a) third element is chosen according to crite-

rion (1) and max(Q(ij , C3)) = 2 for both el-

ements ’A’ and ’C’. Using criterion (2) we get

max(P (A|B), P (B|C) = 0.2 for C’ ; C =
[

A B C
]

;

– b) Q =





0 0 3
0 1 2
0 0 2



.

• Step 10 – as model sequence C is full, second-step algo-

rithm is used with model sequence C =
[

A B C
]

as an input.

IV. ALGORITHM EVALUATION

FastProMFS algorithm was evaluated both theoretically

(with computational complexity analysis) and experimentally

– by running it on a large real-life and artificial data sets.

A. Theoretical Evaluation

Algorithm’s computational complexity for each step can be

calculated as follows:

326 K. HRYNIÓW, A. DZIELIŃSKI

• Step 1 – computational complexity of this step is O(n);
• Step 2 – computational complexity of this step is O(1);
• Step 3 – step is finished in V S operations in extreme

case, computational complexity of this step is O(n);
• Step 4 – step is finished in m2 ∗ (V S

m
− 1), which can be

approximated as m ∗ V S for most cases; as V S >> m

algorithm is convergent to O(n);

In one extreme case step is finished in V S2

2 , but it is

only in case when m = V S
2 (and elements are sorted in

specific way) and as V S >> m it can be ignored for

practical solutions.

• Step 5 – step if finished in m2, as V S >> m computa-

tional complexity of this step is O(n)
• Step 6 – step if finished in m2, as V S >> m computa-

tional complexity of this step is O(n)

As the latter part of ProMFS algorithm has computational

complexity of O(n), overall computational complexity of

FastProMFS algorithm is O(n) making it fast and feasible

for real-time applications.

B. Experimental Evaluation

For experimental evaluation, the algorithm was compiled

using Microsoft Visual Studio 2010 Ultimate and run on Intel

i7 960@3.20 GHz CPU, with ASUS P6T7WS motherboard,

24 GB DDR3 RAM, Windows Server 2008 R2 64-bit operat-

ing system with data on Seagate ST31000524AS hard drive.

Working speeds of loading data sets and generating matrices

(steps that differ in ProMFS and FastProMFS) for different

data sets are presented below.

TABLE I
COMPARISON OF WORKING TIMES FOR THE MOST TIME-CONSUMING

PART OF PROMFS AND FASTPROMFS ALGORITHMS (STEPS 1-6)

Data set Data set size Number of ProMFS FastProMFS
description [in thousands different ASCII working working

of characters] characters time [s] time [s]

King James
Bible 4834,8 81 130810 13
Pan Tadeusz 461,4 78 1209 1
randomly
generated 500 68 1092 1

Above results are for real-life (first and second) and artificial (third) data sets.

It is clearly visible that proposed modifications greatly

reduce working time of the most time-consuming steps of

the algorithm, thus making FastProMFS is much faster then

basic ProMFS algorithm. For large data sets it can be used

in real-time conditions with proper second-step algorithm. In

Tab. II are shown results for pattern mining with combination

of ProMFS and GSP variants. As can be seen FastProMFS

preprocessing is faster then GSP without preprocessing, but

best results are obtained for the real-time modifications of

both algorithms used – FastProMFS presented in this paper

and GPU GSP presented in [12].

It is clearly visible that FastProMFS is capable of working

on large data sets in real-time conditions. FastProMFS’ accu-

racy is slightly lower then that of GSP algorithm as longest

sequences found by it were one character shorter for all tested

data sets. It is considered acceptable trade-off, especially when

compared to losses of ProMFS algorithm presented in [9].

TABLE II
WORKING TIMES OF PROMFS AND GSP VARIANTS

Data set Working time of algorithm [s]
description GSP ProMFS with FastProMFS with

GSP GPU GSP GSP GPU GSP

King James
Bible 6250 > 24h > 24h 5217 123
Pan Tadeusz 451 1592 1231 384 29
randomly
generated 399 1432 1128 342 24

Above results are for very low minimum support threshold

(0,03% of data set size).

V. CONCLUSIONS

In the article, a new version of ProMFS algorithm was

proposed. It eliminates it’s biggest drawback – the algorithm’s

high computational complexity and large running times. It

was evaluated for both real-life and artificial data sets and

proved that algorithm is capable of real-time applications as

preprocessing step for other algorithms. It has been shown

that FastProMFS has low computational complexity of O(n)
for real-life data sets and is competitive with other frequent

pattern mining algorithms under real-time constraints.

Further improvement of FastProMFS algorithm remains an

open problem as adaptation for GPGPU (general purpose com-

putation on graphics hardware) problems would be impossible

without extensive modifications.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings
of the Eleventh International Conference on Data Engineering, 1995, pp.
3–14.

[2] R. Tumasonis and G. Dzemyda, “A probabilistic algorithm for mining
frequent sequences,” in ABDIS, 2004.

[3] R. Agrawal and R. Srikant, “Mining sequential patterns: Generaliza-
tions and performance improvements,” in International Conference on
Extending Database Technology, 1996, pp. 3–17.

[4] C. Antunes and A. Oliveira, “Sequential Pattern Mining Algorithms:
Tradeoffs between Speed and Memory,” in 2nd Workshop on Mining
Graphs, Trees and Seq, 2004.

[5] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential PAttern Mining
using a Bitmap Representation,” in Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2002, pp. 429–435.

[6] Z. Yang, Y. Wang, and M. Kitsuregawa, “LAPIN-SPAM: An improved
algorithm for mining sequential pattern,” in Proceedings of the 21st
International Conference on Data Engineering Workshops, 2005, p.
1222.

[7] R. Dass, “An Efficient Algorithm for Frequent Pattern Mining for Real-
Time Business Intelligence Analytics in Dense Datasets,” in HICSS 06
Proceedings of the 39th Annual Hawaii International Conference on
System Sciences, 2006, p. 170b.

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB, 1994, pp. 487–499.

[9] K. Hryniów, “Probabilistic sequence mining – evaluation and extension
of promfs algorithm,” in IIPhDW2009, Szklarska Poreba, Poland, 2009.

[10] D. W. Cheung, J. Han, V. Ng, and C. Wong, “Maintenance of Discov-
ered Association Rules in Large Databases: An Incremental Updating
Technique,” in Proceedings of the Twelfth International Conference on
Data Engineering, 1996, pp. 106–114.

[11] “King James bible,” (1611 Authorized Version, 1769 Revised Edition),
http://printkjv.ifbweb.com/.

[12] K. Hryniów, “Parallel pattern mining – application of GSP algorithm for
Graphics Processing Units,” in 13th International Carpathian Control
Conference, Slovakia, 2012, pp. 233–236.

