
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 4, PP. 363–368
Manuscript received October 1, 2012; revised November, 2012. DOI: 10.2478/v10177-012-0050-2

Hardware Accelerated Simulation of Crest Factor
Reduction Block for Mobile Telecommunications

Maciej Nikodem and Krzysztof Kępa

Abstract—This paper reports results of the hardware accel-
erated simulations of the crest factor reduction (CFR) block
which is a common element of the radio signal processing
path in base stations for mobile telecommunications. Presented
approach increases productivity of radio system architects by
shortening the time of model architecture evaluation. This en-
ables unprecedented scale of CFR parameter optimization which
requires thousands of simulation runs. We use FPGA device and
Xilinx System Generator for DSP technology in order to model
CFR block in MATLAB/Simulink environment, implement the
accelerator and use it for mixed hardware-software simulation.
Reported approach reduces simulation time by 70%, provides
straightforward use of fixed-point arithmetic and lowers power
consumption by 73% at the cost of constant and relatively low
overhead on model development.

Keywords—Crest factor reduction, configurable hardware,
hardware acceleration, FPGA, telecommunications.

I. INTRODUCTION

DEVELOPMENT of mobile network Base Stations (BSs),
and BS Radio Modules (RMs) in particular, require

number of hardware and software issues to be solved. Also,
in order to achieve the best in-field performance, the time-
consuming configuration parameter optimization is required.
RMs are required (e.g. [1]) to achieve flexibility through si-
multaneous support for diverse radio-access technologies (e.g.
GSM, UMTS, LTE, WiMAX), in-the-field reliability in harsh
and unsupervised environment, and high efficiency in terms
of power consumption per Watts transmitted. Also, the RM
products are required to be compliant with 3GPP specification
and Federal Communication Commission (FCC) regulations.
At the same time RM production must be cost-effective, thus
use of less expensive components must often be compensated
with additional hardware and software processing in order
to meet the requirements. Power amplifiers (PAs) are typical
example as they may account for up to 30% of the total
cost of the RM. Important requirement metrics for PA is
its high power-efficiency, linearity and low distortion. Class
A PA meets requirements for linearity and low distortion,
however, it is built with expensive high-power transistors and
is inefficient in transforming DC power to radio frequency

This publication was prepared as a part of the project of the City of
Wroclaw, entitled – “Green Transfer” – academia-to-business knowledge
transfer project co-financed by the European Union under the European
Social Fund, under the Operational Programme Human Capital (OP HC):
sub-measure 8.2.1.

M. Nikodem is with the Institute of Computer Engineering, Control and
Robotics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27,
50-370 Wroclaw, Poland (e-mail: maciej.nikodem@pwr.wroc.pl).

K. Kępa is with Virginia Bioinformatics Institute, Virginia Tech, Blacks-
burg, VA, USA (e-mail: kepa@vt.edu).

power. Therefore, the cost-attractive alternative is to use less-
expensive AB class PA and compensate for its nonlinearities,
e.g. by using digital pre-distortion (DPD). DPD offers high
efficiency and flexibility at relatively low costs. The idea
behind DPD is to introduce inverse-distortion to the input
signal that will compensate for distortions introduced by PA.
Such linearization is easier when dynamic range of the input
signal is small. Unfortunately today’s wireless communication
systems use sophisticated, non-constant envelope signals and
multicarrier transmission that often yield signals of high Peak-
to-Average ratio (PAR) and large dynamic range. Therefore,
to achieve cost-effective and efficient PA linearization PAR
reduction is required.

Crest Factor Reduction (CFR) is a technique to reduce PAR.
CFR blocks are part of radio frequency base band processing,
usually situated after the digital up conversion (DUC) and
prior to DPD (Fig. 1). The idea behind CFR is to detect
signal peaks that exceed acceptable power level and to cancel
these peaks. The straightforward cancellation through signal
saturation has an adverse impact on frequency spectrum and
cause interferences to neighboring bands that are measured
with adjacent channel power ratio (ACPR) parameter. These
interferences can be filtered out to meet the requirements
of spectral mask, however, in-band distortions, which are
expressed in Error Vector Magnitude (EVM) need additional
processing in order to ensure EVM is on acceptable level and
within limits specified by 3rd Generation Partnership Project
(3GPP). Consequently, CFR is a complex signal processing
algorithm composed of peak detection, clipping, in-band and
out-of-band processing blocks (Fig. 1).

The CFR algorithm must be flexible in order to properly clip
carrier signals in different radio access technologies, multi-
carrier solutions and configurable frequency band assignment.
Therefore, in real life applications the operation of CFR is
controlled by a number of configurable parameters that are
verified using a 3GPP test signals. An ideal solution to select
proper parameters is to develop a universal CFR module which
can be parameterized and verified. Unfortunately, developing
such module is time-consuming, costly, inefficient and imprac-
tical as different CFR architectures are still investigated and
radio access technologies evolve quickly (they may change
faster than time required to design and fabricate a dedicated
application specific integrated circuit – ASIC).

Faster and less expensive solution is to model architecture
of the CFR block in software and simulate its operation for
various sets of parameters and possible input reference signal
combinations. Such exploration is not only faster but also
more universal as it is relatively easy to investigate different



364 M. NIKODEM, K. KĘPA

Peak
detector

Clipping
In-band

processing

Out-of-band
processing

To 
antena

CFR
DPD PAModulated

signal

DUC

k*

Fig. 1. General structure of signal processing in BS radio module.

structures of CFR block. Chosen architecture and parameters
can be later on used to develop a hardware prototype, to verify
operation and possible additional adjustments of the CFR
block. In the last step, when architecture and parameters are
decided the dedicated CFR module (e.g. ASIC), is developed.

Although software simulation has indisputable advantages
(just to mention shorter development time and lower costs)
there are several issues that need to be addressed to make
it efficient and more practical. This paper addresses three of
them:

• speed – software simulations take more time when com-
pared to processing time of the same amount of data in
hardware module,

• data representation and precision – software simulations
use floating-point arithmetic while fixed-point arithmetic
is used in hardware. Different arithmetic yields differ-
ences in signal representation, calculations and resulting
cumulative error (e.g. due to rounding),

• clarity of the CFR algorithm – CFR is a digital signal
processing (DSP) algorithm that is easier to analyse
and understand when represented using signal processing
primitives (e.g. filters, coordinate rotation digital com-
puters – CORDICs, modulators, demodulators, multi-
rate operations, etc.) as they conceal algorithm details.
Although this is also possible for programming languages
(e.g. MATLAB) developing such software is difficult.

Our approach is to solve above simulation shortcomings
through reuse of configurable devices (FPGAs in particular)
for mixed hardware-software accelerated simulation. Such
method improves the speed of signal processing, shortens
simulation time and gives results closer related to what is
expected from CFR blocks running in the real BSs (as fixed-
point arithmetic is used). Our approach extends productivity
of radio system architects, by increasing number of possible
architectural evaluations within a fixed project time-period,
while maintaining the software-like configurability of the pro-
totype. Additionally we use MATLAB/Simulink environment
for modeling the CFR block. This gives an easy to understand
and analyse representation of the algorithm that can be also
used to generate hardware structure and to run CFR module
simulation using configurable devices.

II. RELATED WORK

Since multicarrier transmissions and non-constant envelope
modulations become popular in mobile networks a number

of papers and technical solutions were proposed to efficiently
combine them and reduce PAR. One of the early paper by
Väänänen et al. [2] focused on GSM and EDGE signals
and analysed different windowing methods and algorithms to
prevent signal over clipping. In [3] the same authors presented
that CFR can be successfully applied to GSM and WCDMA
carriers. Swaroop and Gard [4] proposed to separate clipped
signal into correlated and uncorrelated components using
autocorrelation function with the input signal (prior clipping).
The correlated component is a valuable desired signal, while
uncorrelated component is unwanted signal composed of both
in-band and out-of-band noises that are later removed. Similar
approach for OFDM modulation was presented by Zhao [5].

Hardware accelerated simulation using configurable devices
attracts more attention since they surpassed performance of
digital signal processors. Paper by Lin et al. [6] presents
a dedicated HAST tool that use high level MATLAB code
(m-files) for implementation of signal processing algorithm
that is later run on a Nallatech Xilinx FPGA board. The HAST
tool uses MATLAB code to generate hardware description
which is likely to output results larger and slower from what
can be achieved using dedicated synthesis tools. Simulations
of various FIR filters show a peak improvement of 69 times
when compared to software implementation in MATLAB. This
shows a great potential of hardware accelerated simulation but
was only verified for simple circuits. Contrary results were
presented in [7] where authors analysed efficiency of mixed
hardware/software (HW/SW) simulation. Due to long latencies
for accessing the FPGA, system driver overhead and simplified
implementation, mixed HW/SW simulation times exacerbated
software simulation times.

Number of authors also analysed MATLAB/Simulink based
design flows. Zoss et al. [8] used two reference design and
compared Synopsys’ tools, Mathworks’ Simulink HDL Coder
and Xilinx’s System Generator (SG) for DSP. SG generated
faster hardware requiring lower number of resources. Zoss
claims limitation to Xilinx’s devices is a disadvantage of
SG, however, favors SG for high level hardware descrip-
tion and library of specialised, efficient IP cores. MATLAB/
Simulink was also used by Chugh at al. [9] who implemented
a WCDMA rake receiver and compared required resources,
operating frequency, and throughput for different architectures
of the receiver.

This paper presents results of HW accelerated simulation
of CFR algorithm used in mobile network BS. Since we



HARDWARE ACCELERATED SIMULATION OF CREST FACTOR REDUCTION BLOCK FOR MOBILE TELECOMMUNICATIONS 365

chose to use Xilinx devices for HW acceleration, we follow
MATLAB/Simulink based design flow and use Xilinx System
Generator for DSP. Another reason to do so is the fact that
Simulink became a standard, flexible and convenient tool
for developing, modifying and analysing of DSP algorithms.
Developed SG models are compared with three different
simulation approaches: floating-point MATLAB; fixed-point
MATLAB; floating-point MATLAB/Simulink.

III. WHY TO USE MIXED HW/SW SIMULATION

Despite the mentioned advantages, software simulation of
CFR algorithms has several drawbacks that cannot be effi-
ciently and easily solved. The software simulation speed and
high memory requirements (for long test signals) are two of the
most important disadvantages. Both shortcomings are result
of large amount of IQ samples that need to be processed,
(number of samples is multiplied by digital up conversion
that precedes CFR module). Since memory constrain is crucial
thus the solution is to split signal into smaller blocks (chunks)
and process them sequentially. Unfortunately, such method
requires additional management, increases overhead and con-
sequently affects overall execution time. Chunk processing
makes computation parallelisation difficult, thus having an
unfavourable impact on simulation time. The amount of data
to process increases additionally in multicarrier simulation
extending execution time further. Multitasking and multi-
threading of today’s computers and operating systems has also
an adverse effect on software simulation time, as processor
time is consumed on running other applications, managing
memory, disk access, etc. As a result software simulation of
the CFR block for 2-carrier reference scenario, using a 10 ms
long test signal, takes 54 s on average.

Another issue, when using software simulation, is the
floating-point arithmetic that is by default used in the MAT-
LAB simulation environment. This is in contrast to hardware
devices that use fixed-point arithmetic instead. Fixed-point
arithmetic implementation is typically more resource-efficient
and has fixed precision for all the numbers in the representa-
tion range (in floating-point arithmetic precision decreases as
absolute value of the number grows). Consequently, running
floating-point software simulation may output signals that are
different from output of hardware implementing the same
algorithm, but using fixed-point arithmetic. For complex CFR
algorithms of practical interest, this may lead to situations
when selected set of parameters cause the resulting hard-
ware to fail 3GPP requirements (e.g. EVM, ACPR). This
is unacceptable due to extremely high cost of redesign. The
obvious solution is to emulate fixed-point arithmetic in MAT-
LAB simulation. Unfortunately, due to floating-point nature of
the software this requires additional operations that increase
overhead and extend simulation time of the reference scenario
by the factor of 2.8, up to 150 s on average. This slow
down is unacceptable if the large number of simulations
is required, e.g. in architecture/parameter space exploration.
Using floating-point simulator for vast exploration and fixed-
point for only some sets of parameters seems like a solution,
but such approach requires two versions of the simulator being
developed and managed simultaneously which is impractical.

re

dout cast

and

not

en

Idata

Qdata

nd

Idata

Qdata

nd

rfd

Inverter

Logical

Output FIFOInput FIFO

Convert
to Bool

From Register
<<'Start'>>

System
Generator

Fig. 2. Simple SG model for running in FR mode. This model was used to
verify throughput of JTAG and Ethernet communication interfaces.

Above mentioned issues can be solved by moving simula-
tion to configurable accelerator (e.g. FPGA device) and use
fixed-point arithmetic. Although moving may yield additional
overhead during model development this cost is incurred only
once. After hardware model is developed, simulations in fixed-
point arithmetic yield high throughput and give results that
are closer related to what is expected from the final CFR
module. Such approach also enables detection of situations
mentioned earlier, when the proposed CFR architecture and
set of parameters misses the requirements. This allows algo-
rithm redesign in early stage, when the cost of architecture
modification is still low. Additionally, both Altera [10] and
Xilinx [11] provide dedicated signal processing primitives
that can be used in MATLAB/Simulink environment to easily
create and simulate signal processing algorithms. Since all
such blocks have underlying IP cores it is possible to use
MATLAB/Simulink models to synthesise hardware that may
be loaded to configurable device and run. Appropriate func-
tions allow communicating with hardware model directly from
MATLAB code as well as sending data to/from the hardware.
Although hardware constructed as a composition of predefined
IP cores is not necessarily as efficient as dedicated circuit, it
can still improve simulation and shorten time required to verify
sets of parameter values. As a result these technologies allow
for easy and straightforward development of efficient hardware
accelerated simulations.

IV. HARDWARE MODEL

We developed models for HW accelerated simulation using
Xilinx System Generator for DSP [11] that is high-level
tool for developing digital signal processing algorithms using
FPGAs. The advantage of SG is that it integrates with MAT-
LAB/Simulink environment providing simple system mod-
eling, code generation and mixed HW/SW simulation. We
developed three different types of models for three signal
processing blocks: DUC, CFR and both DUC+CFR. All types
of models were developed in Simulink environment – one was
composed of Simulink blocks; two other were build using
SG blocks for two different modes of operation: single-step
(SS) and free-running (FR). Simulink model was developed as
an intermediate step between transformation from MATLAB
reference simulation and target SG models.



366 M. NIKODEM, K. KĘPA

A. Single Step and Free-Running Modes

SS and FR models were developed to compare these two
modes. In SS mode hardware is kept in step lock with the
simulation and is provided a fixed number of clock pulses per
each simulation step. In this mode performance of hardware
accelerated simulation may be significantly limited due to the
overhead associated with the Simulink simulation and com-
munication. This is not the case in the FR mode as hardware
accelerator runs asynchronously to the Simulink simulation.
This ensures faster simulation times but also requires an extra
synchronization mechanism to be inserted between the SG
model and Simulink.

The need for synchronization also introduces different meth-
ods of interfacing signal to/from hardware model. Although
both methods are independent of the actually used commu-
nication interface (either JTAG or Ethernet) the hardware
model changes. Dedicated Gatway In and Gatway Out blocks
can be used in SS mode. These blocks are responsible for
converting signal representation (float to fixed and vice versa)
and synchronizing software and hardware parts of the simu-
lation so that signals are correctly transferred – they simply
do whatever is needed to transmit signals to/from hardware
simulation. In FR mode gateways are useless as hardware part
runs asynchronously to the software and there is a need to use
shared memories (FIFO buffers, and registers) and additional
signalling to indicate data is available for processing (cf.
Fig. 2). Shared memories are accessible from both hardware
and software thus allowing data exchange between both parts
of the simulation.

Another consequence of using shared memories is the
requirement for converting signal representation before writing
the data to input shared memory (sending data to hardware
model) and after reading the data from shared memory (re-
ceiving from hardware). This is due to the fact that hardware
interprets content of the shared memories as fixed point values,
while MATLAB interprets the same content as floating-point
representation. Consequently, to make sure data is correctly
interpreted we need to convert representation before writing
to shared memory. For the same reason data received from
hardware needs to be represented in floating-point format
to make sure it is correctly interpreted by MATLAB. Al-
though representation can be also converted in hardware,
such approach requires additional hardware resources and
increases amount of data transmitted. Therefore, we decided
to implement it in software.

B. Programming and Communication Interfaces

Xilinx’s System Generator for DSP offers two programming
and communication interfaces – JTAG and Ethernet. JTAG
interface is primarily used for FPGA programming but can be
also used to transmit data between hardware and software part
of the simulation. Some development boards (e.g. ML 506)
also support programming over the Ethernet connection but
such possibility is restricted to the small number of boards and
requires the FPGA device to be programmed with dedicated
initial design beforehand. For other types of development
boards Ethernet interface can be only used as a communication

Fig. 3. Throughput for Ethernet and JTAG interfaces as a function of block
size.

interface for data transmission, while programming of the
FPGA is done over the JTAG. SG model is independent of
the used interface, but it has to be decided before synthesis.

Figure 3 presents a throughput of both interfaces when used
for data transmission to a simple hardware model presented in
Fig. 2, as a function of the block size. As expected Ethernet
interface is more than 8 times faster comparing to JTAG and
hits 59 Mb/s for a 100 Mb/s Ethernet interface (we used the
ML 507 board which supports 1 Gb/s Ethernet but it was
unattainable with 100 Mb/s Ethernet card in the computer).
For all the tests presented in this paper Ethernet interface and
8192 samples shared FIFOs were used in hardware models.

V. SIMULATIONS, MEASUREMENTS AND RESULTS

We simulated Simulink and SG models for each block
(DUC, CFR, DUC+CFR), for operation with two 10 ms long
carrier signals. We measured time required to perform simu-
lations and compared it with time required to run MATLAB
simulation (both floating and fixed point). We also compared
the resulting output signal with the output of corresponding
software simulation to estimate its quality. The difference
between signals is expressed in absolute values, root mean
square value (RMS), average and peak relative difference
between absolute values.

To run hardware accelerated simulations efficiently we
developed a set of MATLAB functions that are responsible
for loading the model into the FPGA, converting input and
output signals, and supervising the simulation process. The
simulation procedure is composed of six steps: (1) model
loading; (2) CFR/DUC configuration and setup; (3) input data
conversion; (4) processing; (5) output data conversion; and (6)
disconnection.

Programming the FPGA device is the first step of the simu-
lation. When loaded the hardware model can be parameterized
and shared memories can be associated with software objects.
Sample parametrisation may include definition of clipping
threshold, allowable EVM or number of input carrier signals.
Third step is responsible for converting the floating-point to
fixed-point representation, and is implemented in software.
Due to relatively large overhead of this operation the conver-
sion is done prior to actual simulation. This approach allows
4th step to only consist of data transmission to/from hardware
model and simulation execution with no additional delays on
data conversion. Due to the same reason output conversion



HARDWARE ACCELERATED SIMULATION OF CREST FACTOR REDUCTION BLOCK FOR MOBILE TELECOMMUNICATIONS 367

TABLE I
AVERAGE SIMULATION TIME FOR DIFFERENT SOFTWARE AND

HARDWARE SIMULATIONS OF DUC, CFR AND DUC+CFR MODELS

Model HW / Time [s]
(signal length [ms]) SW DUC CFR DUC+CFR

Floating-point MATLAB (10) SW 44.24 10.10 54.34
Fixed-point MATLAB (10) SW 117.54 16.23 133.77

MATLAB/Simulink (10) SW 23.26 45.28 75.69
SG in FR mode (10) HW 47.35 23.58 16.06
SG in SS mode (0.4) HW 3 220.3 857.5 4 499.3

TABLE II
DETAILS OF SIMULATION TIME FOR DUC+CFR MODEL SIMULATED IN

FREE-RUNNING MODE WITH 10 MS SIGNAL

Step Time [s] Percentage
Loading 12.163 75.75%

Configuration and setup 0.005 0.03 %
Input conversion 0.159 0.99 %

Processing 3.632 22.62 %
Output processing 0.034 0.21 %

Disconnection 0.001 0.01 %

is also carried out in software after the whole simulation is
finished. The last step ensures that FPGA disconnects properly
and all the resources, that are associated with shared memories,
are released.

It follows from results presented in Tab. I that SG model
of DUC+CFR, running in FR mode, outperforms MATLAB
simulators by a factor of 3.3 and 8.8 with respect to floating
and fixed point simulation. For SG model running in FR mode
simulation times of DUC and CFR block are slightly longer
than corresponding MATLAB simulation but differences are
small. For Simulink and SG model running in SS mode results
are worse as both models introduce additional overhead due to
step lock simulation mode. Note also that SS mode has been
simulated only for 0.4 ms input signal, in contrast to 10 ms
input signal used in remaining simulations. Since simulation
time for SS mode is proportional to signal length thus simula-
tion for 10 ms long inputs would take approximately 22, 6 and
31 hours for DUC, CFR and DUC+CFR models respectively.

Worse performance of SG models running in FR mode
is a consequence of an up-sampling factor that yields large
amount of data (approx. 6x106 samples) to be transmitted
to/from the FPGA. This is not an issue for DUC+CFR model
as internal signals are not transferred from the model back to
PC (approximately only 0.45x106 output samples are transmit-
ted). Second explanation for relatively long simulation times
for SG in FR mode is that total time results from completion
time of all six simulation steps. Table II compares average time
required to execute each step of the simulation procedure for
a simulation of DUC+CFR block in FR mode. It follows that
loading accounts for three quarters of the overall simulation
time. This time is constant for different models and indepen-
dent of signal length. Negligible times for configuration, setup
and sample representation conversion suggest that, in practical
simulations, hardware model should be loaded once and then
run for a large number of test signals and parameters settings
(configured through shared registers). In such approach FR
mode will outperform MATLAB simulation as loading time
can be discarded – cf. Tab. III.

TABLE III
TIMING AND SPEED COMPARISON FOR SOFTWARE AND FREE-RUNNING

HARDWARE SIMULATION FOR A 10 MS LONG SIGNAL. FOR
FREE-RUNNING SIMULATION LOADING TIME IS DISCARDED

Model Time [s]
DUC CFR DUC+CFR

Floating-point MATLAB (SW) 44.24 10.10 54.34
Fixed-point MATLAB (SW) 117.54 16.23 133.77

SG in FR mode (HW) 35.06 11.48 3.83
Speed improvement for SG in FR mode (HW)

vs. float-point MATLAB 1.2 0.8 14.2
vs. fixed-point MATLAB 3.3 1.4 34.9

−5 0 5 10 15 20

x 10
−3

10
0

10
1

10
2

10
3

10
4

10
5

Absolute value error

N
um

be
r 

of
 o

cc
ur

s

Fig. 4. Histogram of absolute error for output signals from software and
hardware accelerated simulations of DUC+CFR block.

The signal produced by the hardware models was veri-
fied against the signal which is obtained from the software
simulation. For each model and output signal we calculated
difference in absolute value, mean and peak relative amplitude
error and root mean square error (RMS). Figure 4 presents
a histogram of absolute value difference. It follows that for
89.5% of samples the difference between referential and
actual signal is below 10−3 and for 99.6% – below 10−2.
Relative error measures (Tab. IV) also confirm that outputs
of software and hardware models are consistent. The highest
relative amplitude difference occurs for input samples of
a small value (close to zero). The reason is that these values
cannot be represented precisely using fixed-point format and
consequently, samples are truncated to zero. The EVM value
for output of hardware accelerated DUC+CFR simulation,
relative to unclipped signal, equals 5.658%. It is slightly more
pessimistic (by 0.15%) when compared to the EVM values
for output signal of floating-point MATLAB simulation which
yields EVM of 5.508%.

Another benefit from using hardware accelerated simulation
over pure software simulation is reduced power consumption
per test (Fig. 5). We measured how much energy is consumed
by a simulation setup (i.e. laptop and LCD monitor for
software simulation; and laptop, LCD monitor and ML 507
FPGA board for hardware simulations). Software floating and
fixed point simulations consume around 51 W (compared to



368 M. NIKODEM, K. KĘPA

TABLE IV
MEASURED RMS AND RELATIVE ERRORS BETWEEN OUTPUT SIGNAL

AMPLITUDES FOR SOFTWARE AND HARDWARE ACCELERATED
SIMULATION

Error measure Error value [%]
DUC CFR DUC+CFR

RMS 0.097 0.034 0.246
Mean relative absolute error 0.083 0.005 0.143
Peak relative absolute error 0.383 1.508 4.015

Fig. 5. Power consumption during hardware (blue) and software floating-
point (red) simulation of DUC+CFR blocks.. Note different simulation times
for both models.

37 W when laptop is idle). Using FPGA introduces additional
power cost of approximately 12 W yielding a total power
consumption of 49 W when no simulation runs. During
hardware accelerated simulation average power consumption
varies between 58 and 60 W with instantaneous peak power
consumption of about 62 W. This is both a consequence of
higher consumption from hardware running as well as from
laptop that consumes energy on managing and transmitting the
data. Output conversion introduces another increase in power
consumption, however, it is insignificant as time required
to perform this operation is short. Nevertheless increased
power consumption, total energy consumed per each HW
accelerated simulation is almost 73% lower when compared
to the software floating-point and 92% lower compared to
software fixed-point simulation (0.29 Wh vs. 1.11 Wh and
3.90 Wh respectively).

VI. CONCLUSIONS

System Generator for DSP is an intuitive and straightfor-
ward environment for modeling, software simulation, verifica-
tion, hardware synthesis and hardware accelerated simulation
of DSP algorithms. Ease of modeling and software simulation
does not however go in line with hardware implementation.
This is caused by the implicit requirement to synchronise
model’s elements. This requirement does not exist in MAT-
LAB/Simulink simulations but is crucial in hardware models.
Consequently, it is easy to develop, simulate and verify SG
model in MATLAB/Simulink but it is much more difficult to
develop model that may run in hardware. Single-step simu-
lation is a solution that overcomes synchronization problem
but at the cost of lower performance. Thus in order to fully
benefit from hardware capabilities it is necessary to develop
more complex SG models that can run in free-running mode.

Our SG models does not supports resource sharing between
different SG blocks. It is therefore impossible to tradeoff

throughput and speed for complexity or lower resource re-
quirements. Consequently FPGA utilisation grows quickly
with model complexity. In our case dedicated multiplier blocks
(DSP48E) were limitation as only 128 were available. This
is escalated by standard settings for some SG blocks (e.g.
multiplier, FIR filters, ect.) as they use DSP48E by default. If
multiplication is a common operation you may easily exceed
available resources.

Despite limitations using SG and FPGA devices for hard-
ware accelerated simulation is easy. It allows for significant
improvement in simulation speed, reduces overall energy con-
sumption and simplifies DSP modeling. As presented, it can
improve simulation speed by a factor of 14 for a complex
model. Further improvement are possible either by limiting
amount of data transmitted or improving model architecture
(i.e. building dedicated circuits from simple elements instead
of using standard blocks).

ACKNOWLEDGMENT

Authors would like to thank Maciej Klemensowicz and
Łukasz Skomra from the Nokia Siemens Networks European
Software and Engineering Center in Wrocław, Poland for their
significant support and engagement in this project.

REFERENCES

[1] “3rd generation partnership project; technical specification group radio
access network; E-UTRA, UTRA and GSM/EDGE; multi-standard
radio (MSR) base station (BS) radio transmission and reception,” 3rd
Generation Partnership Project, Tech. Rep. version 11.0.0, release 11,
March 2012.

[2] O. Vaananen, J. Vankka, and K. Halonen, “Reducing the peak to
average ratio of multicarrier GSM and EDGE signals,” The 13th IEEE
International Symposium on Personal, Indoor and Mobile Radio Com-
munications, vol. 1, pp. 115–119, 2002.

[3] ——, “Simple algorithm for peak windowing and its appli-
cation in GSM, EDGE and WCDMA systems,” Communica-
tions, IEE Proceedings-, vol. 152, no. 3, pp. 357–362, 2005,
DOI: 10.1049/ip-com:20059014.

[4] P. Swaroop and K. Gard, “Crest factor reduction through in-band and
out-of-band distortion optimization,” in Radio and Wireless Symposium,
2008 IEEE, jan. 2008, pp. 759–762, DOI: 10.1109/RWS.2008.4463603.

[5] C. Zhao, “Distortion-based crest factor reduction algorithms in multi-
carrier transmission systems,” Ph.D. dissertation, Grorgia Institute of
Technology, 2007.

[6] V. Lin, R. Speelman, C. Daniels, E. Grayver, and P. Dafesh, “Hardware
accelerated simulation tool (HAST),” in Aerospace Conference, 2005
IEEE, march 2005, pp. 1475–1483, DOI: 10.1109/AERO.2005.1559437.

[7] T. Suh and H.-h. S. Lee, “Initial Observations of Hardware/Software
Co-Simulation using FPGA,” in in Architecture Research, 2nd
Workshop on Architecture Research using FPGA Platforms, 2006,
DOI: 10.1.1.84.3965.

[8] R. Zoss, A. Habegger, V. Bandi, J. Goette, and M. Jacomet, “Comparing
signal processing hardware-synthesis methods based on the Matlab
tool-chain,” in Electronic Design, Test and Application (DELTA), 2011
Sixth IEEE International Symposium on, jan. 2011, pp. 281–286,
DOI: 10.1109/DELTA.2011.58.

[9] M. Chugh, D. Bhatia, and P. T. Balsara, “Design and implementation of
configurable W-CDMA rake receiver architectures on FPGA,” Parallel
and Distributed Processing Symposium, International, vol. 4, p. 145b,
2005, DOI: 10.1109/IPDPS.2005.162.

[10] “DSP builder handbook - volume 2: DSP builder standard blockset,”
Altera Corporation, Tech. Rep. 12.0, June 2012.

[11] “System Generator for Digital Signal Processing - User Guide,” Xilinx
Inc., Tech. Rep. 14.1, April 2012.


