
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 4, PP. 381–388
Manuscript received October 31, 2012; revised Decemer, 2012. DOI: 10.2478/v10177-012-0052-0

Overlay Multicast Optimization: IBM ILOG CPLEX
Michał Kucharzak, Dawid Zydek, and Iwona Poźniak-Koszałka

Abstract—IBM ILOG CPLEX Optimization Studio delivers
advanced and complex optimization libraries that solve linear
programming (LP) and related problems, e.g., mixed integer.
Moreover, the optimization tool provides users with its Academic
Research Edition, which is available for teaching and non-
commercial research at no-charge. This paper describes the usage
of CPLEX C++ API for solving linear problems and, as an
exhaustive example, optimization of network flows in overlay
multicast is taken into account. Applying continuous and integral
variables and implementing various constraints, including equa-
tions and inequalities, as well as setting some global parameters
of the solver are presented and widely explained.

Keywords—Overlay multicast, maximum flows, linear pro-
gramming, mixed integer programming.

I. INTRODUCTION

L INEAR PROGRAMMING is one of the most important
areas of optimization. It takes various linear equalities

and inequalities related to specific situation and, in general,
determines the optimal value obtainable under defined con-
straints. Recently, there is a huge number of practical appli-
cations employing linear programming dedicated for industry.

In order to model various problems and solve them with
linear (or linear-based) programs, one could imagine it is
necessary to implement some algorithms completely from
scratch. Fortunately, there exist a lot of tools and libraries
that might be incorporated to solve linear problems. Among
variety of examples, it is worth mentioning GLPK [1] based
on GNU licenses; GuRoBi [2], QSopt [3] library that provides
a set of functions for creating, manipulating, and solving linear
programming problems; GAMS/XPRESS linear and mixed-
integer programming solver [4] (actually it is not actively
supported); XA [5]; LiPS [6]; LP Solve [7] and a lot of
preliminary academic or experimental versions of solvers.
Even Matlab or Microsoft Excel deliver some tools with
methods of the linear optimization.

This paper shows an example usage of linear solver, namely
IBM ILOG CPLEX, that is one of the most advanced opti-
mization tools. Although, its commercial use requires appro-
priate, more-or-less paid licenses, IBM also provides academic
licenses for non-commercial use at no-charge. The paper
discusses taking advantage of CPLEX C++ interface and as an
optimization problem, overlay multicast flow maximization is
taken into consideration.

The paper is organized as follows. In Section II, a general
illustration and explanation of multicast and overlay networks

The research leading to these results is co-financed by the European Union
as part of the European Social Fund according to the Operational Programme
Human Capital National Cohesion Strategy.

M. Kucharzak and I. Poźniak-Koszałka are with the Department of Systems
and Computer Networks, Wrocław University of Technology, Poland (e-mails:
michal.kucharzak@pwr.wroc.pl; iwona.pozniak-koszalka@pwr.wroc.pl).

D. Zydek is with the Department of Electrical Engineering, Idaho State
University, USA (e-mail: zydedawi@isu.edu).

is given. Section III describes the problem of maximum
flow assignment in overlay multicast system. It also includes
a mixed integer program model of the Maximum Flow Trees
(MFT) problem. IBM ILOG CPLEX C++ implementation is
presented and discussed in Section IV. There are some listings
with C++ code as well that show example usage of the CPLEX
API. Next in Section V, an alternative and relaxed version of
the MFT problem is defined. This section explains Fractional
Spanning Trees (FST) packing problem that is used for maxi-
mum flow assignment in overlay multicast systems. Moreover,
Section V presents a sample implementation of the FST linear
program in C++ with CPLEX studio and illustrates a random
heuristic that might be used for solving the maximum flow
problem. Results of experimentation results are presented in
Section VI, where using some CPLEX parameters and useful
methods is also shown. Finally, the paper is summarized in
Section VII.

II. OVERLAY NETWORKS AND MULTICAST

In contrast to traditionally understood networks, where
nodes and links usually represent physical resources (e.g.
routers, switches, cables or wireless links), overlay networks
are a kind of abstraction and describe virtual or logical
networks that lay over the physical resources and over trans-
portation layers. Such overlay networks actually employ un-
derlying physical network technologies in order to provide
end-system (end-host) related communication and over the
years overlays have been getting more and more attention
in research community as well as in business world. Since
overlays tackle many drawbacks present in pure ”link-router-
network” engineering, they have become an excellent solution
for multimedia-oriented applications. A good example com-
prises multicast communications, where the same content is
being delivered to a group of users (e.g., video streaming,
e-lectures, e-conferences, etc.). Figure 1 illustrates general
concepts of multicast implementations, where network layer
approach (e.g., IP Multicast [8]) uses physical infrastructure
and overlays implement multicast in application layer of end-
hosts. Readers who are interested in the research subject may
find more details on the overlay multicast and its optimization
in [9]–[19] and references therein.

Fig. 1. Implementations of multicast communications: network layer multi-
cast (left), end-host based multicast (right).

382 M. KUCHARZAK, D. ZYDEK, I. POŹNIAK-KOSZAŁKA

III. MAXIMUM FLOW PROBLEM

A. Problem Description

Multicast system defined for overlay networks uses routing
implemented by end hosts and might be optimized in central-
ized manner by employing linear programming techniques. We
consider an overlay multicast system with a single server and
multiple receivers, where the achievable streaming rate needs
to be sustained for all receivers in the session. In addition, we
address the problem for multicast systems that are relatively
static, i.e. all participants are known in advance and no
unexpected joins or disconnections of nodes are possible. Even
though one could imagine overlay-based multicast systems as
rather dynamic in their behavior, some static versions might
be easily distinguished. Let us bring into discussion, e.g., VoD
or IPTV systems based on set-top boxes, where users who
paid for such services are intended to exist in a multicast
group. Moreover, some systems applied for dissemination of
critical information might comprise well known set of nodes,
for instance, weather forecasting system with weather stations;
software updates for static set of servers; stock exchange data
with defined market players; traffic information systems or
even e-lecture and teleconference systems with fixed topology
and defined number of receiving nodes. Without loss of
generality, such an assumption is also valid for quasi-static
systems with relatively slow changes, where time required
for routing convergence is shorter than topology changes and
in case a new peer appears or disappears from the system,
a new multicast structure is assigned. Additionally, multicast
routing is assigned in a centralized way, i.e., a multicast server
is responsible for calculating multicast flows and propagating
them to other participants.

We assume the multicast stream can be split into several
separate substreams and the substreams might be illustrated
as separate spanning trees rooted in the same vertex. Such
a concept assures the load in the network is balanced and
user resources are utilized in more effective way. Moreover,
multiple trees might satisfy some coding requirements or even
provide reliability of the systems.

Eventually, the MFT problem defined for overlay systems
describes multicast routing with maximum achievable stream-
ing rate among all overlay nodes, where the nodes have limited
access link capacities.

B. Modeling

Overlay multicast flow (stream) is allowed to be split into at
most T substreams, which are realized on separate spanning
trees. The main scope of the MFT formulation is twofold:
it provides us with creating a set of overlay multicast trees
(xijt) as well as streaming rate rt assigned to each tree.
Finally, maximized throughput in the system is expressed
by the objective (1). Equation (2) refers to the completion
constraint and assures each node except of the root has exactly
one predecessor in each tree t. Constraint (3) is derived from
the flow conservation concept and guarantees the structure of
fractional flow t is a directed spanning tree rooted at node s.
The equation assures that there is conserved only one logical
inflow for every receiver j (j relays all flows but one directed
from s to j). Formula (4) bounds logical flow f variables with

MFT Problem

indices
i, j = 0, 1, ..., V − 1, end hosts (peers, overlay system

nodes)
t = 0, 1, ..., T − 1, trees, multicast substreams

constants
s s, root node, server
ui available upload capacity of node i
dj available download capacity of node j

variables
rt flow assigned to tree t
xijt =1 if tree t contains arc (i, j); 0 otherwise (binary)
fijt conceptual flow on arc (i, j) in tree t (integral)
yijt flow assigned to overlay arc (i, j) in tree t

objective

max
r,x,f,y

∑
t

rt (1)

constraints ∑
i 6=j

xijt = 1 ∀j 6= s ∀t (2)

∑
i 6=j

fijt −
∑
i 6=j,s

fjit = 1 ∀j 6= s ∀t (3)

fijt ≤ (V − 1)xijt ∀i ∀j 6= s, i ∀t (4)

yijt ≤ uixijt ∀i ∀j 6= s, i ∀t (5)∑
j 6=s

∑
t

yijt ≤ ui ∀i (6)

∑
t

rt ≤ min{dmin, us} (7)

∑
i 6=j

yijt = rt ∀j 6= s ∀t (8)

tree variables x. The equations represent arc (i, j) cannot be
traversed by more logical flows than V − 1 (to all receivers)
only if tree t contains this arc.

Having created T trees (feasible x), formulas (5) and (6)
refer to as upload capacity constraints. The only non-zero flow
yijt can be assigned to overlay link (i, j) in tree t if and only
if the link is used in the tree (xijt = 1), in such a case, yijt
cannot exceed upload capacity limit of node ui. Additionally,
total throughput transmitted from node i among all trees is
also subject to ui. Eventually, each tree t is supposed to route
rt traffic flow in such a way every link of tree t realizes the
same volume of flow. Since every receiver is guaranteed by (2)
to have single predecessor in each tree, constraints (8) ensure
each link of tree t carries flow rt. Therefore, the total system
stream carried by all multicast substreams equals to

∑
t rt. In

order to provide feasible throughput,
∑

t rt cannot be greater

OVERLAY MULTICAST OPTIMIZATION: IBM ILOG CPLEX 383

than the minimum download capacity limit among all nodes
and available upload capacity of the source node us (7).

IV. IBM ILOG CPLEX USAGE

Full versions of the latest releases of the IBM ILOG CPLEX
Optimization Studio are available at no-charge, along with
professionally-developed courseware, to registered members
of IBM Academic Initiative for teaching and non-commercial
research. At the beginning, everyone who wants to use CPLEX
should refer to exhaustive installation guide available at [20].
Note that the product cannot be used without installing and
verifying a valid license key.

This work presents IBM ILOG CPLEX usage under Mi-
crosoft Visual Studio 2008 and Windows, however CPLEX
also provides its versions for Linux and Mac OS.

A. Environment and Model Objects

C++ projects require including CPLEX libraries and the
main CPLEX interface is to be included with the statement
shown in Listing 1.

Listing 1. Include CPLEX interface.
1 #include < i l c p l e x / i l o c p l e x . h>

Before creating modeling objects, it is required to construct
an object of the class IloEnv. This object is known as the
environment and it is constructed with the statement in line 1
of Listing 2. Next, to formulate a full optimization problem,
the objects that are part of the problem need to be selected.
This is done by adding them to an instance of IloModel, which
is the class used to represent optimization problems (line 2).

Listing 2. Environment, model and variables declaration.
1 IloEnv env ;
2 IloModel model (env) ;
3

4 IloNumVar ∗ r ;
5 IloNumVar ∗∗∗ x ;
6 IloNumVar ∗∗∗ f ;
7 IloNumVar ∗∗∗ y ;

Finally, objects of IloNumVar represent specific variables
defined for the MFT problem. Note that first we only declare
pointers or pointers to pointers (to pointers) to IloNumVar in
order to further dynamic memory allocation.

B. Defining Variables

Listing 3 presents how to define variables under previously
declared pointers. In line 1, new T variables that represent flow
assigned to every multicast tree are prepared, and from now,
r[t] represents rt.

Next, every object r[t] is attached to the environment env
object and represents continuous variable (ILOFLOAT) with
range from 0 to UPPER_R, where UPPER_R is a maximum
achievable flow on tree t and might be easily taken from
minimum values between us or minj{dj 6=s}.

In lines 8-19, variables x are defined, where every
x[i][j][t] represents binary xijt (ILOBOOL). By analogy,
variables f and y are defined in lines 21-32 and 34-46,
respectively. Auxiliary variables f refer to every fijt and are
used in flow balance constraints, whereas variables y represent
each continuous yijt and help to bound feasible rt for all t’s.

Listing 3. Variables definition.
1 r = new IloNumVar [T] ;
2

3 for (int t=0;t<T ;t++)
4 {
5 r [t]=IloNumVar (env , 0 ,UPPER_R ,ILOFLOAT) ;
6 }
7

8 x = new IloNumVar∗∗[V] ;
9 for (int i=0;i<V ;i++)

10 {
11 x [i] = new IloNumVar∗[V] ;
12 for (int j=0;j<V ;j++)
13 if (i !=j && j !=s)
14 {
15 x [i] [j] = new IloNumVar [T] ;
16 for (int t=0;t<T ;t++)
17 x [i] [j] [t] = IloNumVar (env , 0 , 1 ,ILOBOOL) ;
18 }
19 }
20

21 f = new IloNumVar∗∗[V] ;
22 for (int i=0;i<V ;i++)
23 {
24 f [i] = new IloNumVar∗[V] ;
25 for (int j=0;j<V ;j++)
26 if (i !=j && j !=s)
27 {
28 f [i] [j] = new IloNumVar [T] ;
29 for (int t=0;t<T ;t++)
30 f [i] [j] [t] = IloNumVar (env , 0 ,V−1,ILOINT) ;
31 }
32 }
33

34 y = new IloNumVar∗∗[V] ;
35 for (int i=0;i<V ;i++)
36 {
37 y [i] = new IloNumVar∗[V] ;
38 for (int j=0;j<V ;j++)
39 if (i !=j && j !=s)
40 {
41 y [i] [j] = new IloNumVar [T] ;
42 for (int t=0;t<T ;t++)
43 y [i] [j] [t] =
44 IloNumVar (env , 0 ,UPPER_R ,ILOFLOAT) ;
45 }
46 }

C. Defining Objective
In order to define objective function, it is worth using

IloExpr object that defines mathematical expressions embrac-
ing defined variables. The MFT objective is expressed by
formula (1) and total streaming rate is to be maximized.
First step (Listing 4, lines 1-4) defines expression obj

that sums all r[t] up. In line 6, an object objective of
IloObjective class is created. The object is initialized with
obj expression and the optimization goal is set to maximize
(IloObjective::Maximize). In the next step, objective is
added to the model

Listing 4. Objective definition.
1 IloExpr obj (env) ;
2

3 for (int t=0;t<T ;t++)
4 obj+=r [t] ;
5

6 IloObjective objective (env ,obj ,IloObjective : : Maximize) ;
7 model .add (objective) ;
8

9 obj .end () ;

Note that variables need not be added to the model ex-
plicitly, as they are implicitly considered if any of the other
modeling objects in the model use them, i.e., the objective
uses only r variables; however, there are also x, y and f
applied to the model. When using an expression is finished
(i.e., any constraint is created with it), it is desired to delete
the expression by calling its method end() (line 9).

384 M. KUCHARZAK, D. ZYDEK, I. POŹNIAK-KOSZAŁKA

D. Defining Constraints
Listing 5 presents a source code that defines and applies all

constraints (2)-(8). The easiest way to add the constraints to
the model instance is to do it by employing aforementioned
objects of IloExpr. In lines 1-15 completion constraints (2)
are implemented. Loops for and conditions if guarantee ap-
propriate indexing scheme. For example (2) defines constraints
for j = 1, ..., V : j 6= s and for t = 1, ..., T , where every left-
hand side of such expressions equals to

∑
i 6=j xijt. Finally,

model.add(parent == 1) applies constraints to the model.
Similarly to the expression instance used in the objective,
end() method deletes the expression after applying it to the
optimization model object.

Listing 5. Defining constraints.
1 for (int j=0;j<V ;j++)
2 if (j !=s)
3 {
4 for (int t=0;t<T ;t++)
5 {
6 IloExpr parent (env) ;
7

8 for (int i=0;i<V ;i++)
9 if (i !=j)

10 parent+=x [i] [j] [t] ;
11

12 model .add (parent == 1) ;
13 parent .end () ;
14 }
15 }
16

17 for (int t=0;t<T ;t++)
18 for (int j=0;j<V ;j++)
19 if (j !=s)
20 {
21 IloExpr flow (env) ;
22

23 for (int i=0;i<V ;i++)
24 if (j !=i)
25 flow+=f [i] [j] [t] ;
26

27 for (int i=0;i<V ;i++)
28 if (j !=i && i !=s)
29 flow−=f [j] [i] [t] ;
30

31 model .add (flow==1) ;
32 flow .end () ;
33 }
34

35 for (int t=0;t<T ;t++)
36 for (int i=0;i<V ;i++)
37 for (int j=0;j<V ;j++)
38 if (j !=s && i !=j)
39 model .add (f [i] [j] [t] <= (V−1)∗x [i] [j] [t])

;
40

41 for (int i=0;i<V ;i++)
42 for (int j=0;j<V ;j++)
43 if (i !=j && j !=s)
44 for (int t=0;t<T ;t++)
45 model .add (y [i] [j] [t]<=x [i] [j] [t]∗u [i]) ;

46

47 for (int i=0;i<V ;i++)
48 {
49 IloExpr upload (env) ;
50

51 for (int j=0;j<V ;j++)
52 if (i !=j && j !=s)
53 for (int t=0;t<T ;t++)
54 upload+=y [i] [j] [t] ;
55

56 model .add (upload<=u [i]) ;
57 upload .end () ;
58 }
59

60 IloExpr download (env) ;
61 for (int t=0;t<T ;t++)
62 download+=r [t] ;
63 model .add (download<=dmin) ;
64 download .end () ;
65

66 for (int t=0;t<T ;t++)
67 for (int j=0;j<V ;j++)
68 if (j !=s)

69 {
70 IloExpr boundYR (env) ;
71

72 for (int i=0;i<V ;i++)
73 if (i !=j)
74 boundYR+=y [i] [j] [t] ;
75 model .add (boundYR == r [t]) ;
76 boundYR .end () ;
77 }

Flow conservation or flow balance constraints (3) are de-
fined in lines 17-33, where flow is an instance of IloExpr

and aggregates
∑

i 6=j fijt−
∑

i 6=j,s fjit for every t and j 6= s.
The constraints are created by assuring flow equals to 1. In
order to apply constraint given by formula (4), a snippet of the
code in lines 35-39 is employed. Note that it is not obligatory
to use expression instances of IloExpr to formulate model
constraints and f[i][j][t] <= (V-1)*x[i][j][t] refers to
fijt ≤ (V − 1)xijt. In the same manner constraints (5) are
implemented in lines 41-45 in Listing 5. Without explicit using
IloExpr, the constraints are added to model object by sim-
ple expression model.add(y[i][j][t]<=x[i][j][t]*u[i]);.
Upload capacity constraints defined by (6) are coded in lines
47-58 and download capacity constraint defined by (7) is
applied in lines 60-64, where dmin represents a minimum
value among minj 6=s dj and us. The last set of constraints
(8) coupling y and r variables is defined in lines 66-77,
where boundYR is an expression comprising

∑
i 6=j yijt. The

constrains yield boundYR == r[t] for t = 1, ..., T and j =
1, ..., V : j 6= s.

E. Solving the Model
This subsection introduces the C++ class IloCplex. An

instance of the class IloCplex is used to solve the model.
Actually, IloCplex derives from IloAlgorithm and not every
model might be solved by the IloCplex instances.

Listing 6 presents the simplest usage of CPLEX algorithms.
In line 1, the cplex object is created by the constructor
IloCplex(model). This constructor extracts the data from the
model into the appropriate efficient data structures (sparse
matrices), which CPLEX uses for solving the problem. It is
done by extracting each of the modeling objects previously
added to the model and each of the objects referenced by
them. For every extracted modeling object, corresponding data
structures are created internally in the cplex object.

Listing 6. Solving the model
1 IloCplex cplex (model) ;
2 cplex .solve () ;

After the model is extracted to the cplex object, the problem
might be solved by calling solve() method (line 2). For most
problems, this is everything that is needed for solving the
model. Nonetheless, CPLEX offers a variety of controls and
parameters that provide specific adaptation for the solution
process. For detailed descriptions please refer to the documen-
tation, especially please see method IloCplex::setParam.

V. PROBLEM RELAXATION

A. FST
In contrast to the previous MFT formulation, FST includes

a predefined set of trees t ∈ {1, 2, ..., T} and a corresponding
set of variables rt describing the steaming rate allocated to tree
t. Thereby, the MFT problem is relaxed to only find maximum
flows and there is no need for simultaneous multicast trees

OVERLAY MULTICAST OPTIMIZATION: IBM ILOG CPLEX 385

Fig. 2. An illustrative example of FST packing for overlay multicast.

construction. Such a concept is derived from the fractional
Steiner packing trees described in [21].

The FST version of the problem comprises multicast trees
represented by vector β, which contains a number of chil-
dren of every node in each tree t. The problem is to find
a maximal stream assignment to predefined trees regarding
available capacity limits of participants’ access links. Every
tree t represents a fractional multicast stream. Note that the
vector β does not define an exact topology of every tree
(actual arcs in the tree cannot be resolved), but such a tree
representation is sufficient in order to formulate node capacity
constraints and overlay multicast flows.

Figure 2 illustrates an example overlay system with V = 8
nodes and a set of T = 5 predefined trees, where, i.e., for t = 1
β1 = [2, 0, 1, 0, 1, 0, 1, 2], for t = 2 β2 = [3, 0, 1, 1, 0, 0, 2, 0],
for t = 3 β3 = [2, 3, 0, 1, 0, 1, 0, 0], etc. Additionally, not every
tree is required to carry non-zero substream, e.g., r2 = 0 and
r3 = 0 in the presented example.

FST Packing Problem

indices
i, j = 0, 1, ..., V − 1 overlay nodes
t = 0, 1, ..., T − 1 predefined trees

constants (additional)
s source, root node, server
ui available upload capacity limit of node i
dj available download capacity limit of node j
βti number of i’s children in tree t; 0 if i is a leaf

variable
rt flow assigned to tree t

objective

max
r

∑
t

rt (9)

constraints∑
t

βtirt ≤ ui ∀i (10)

∑
t

rt ≤ min{dmin, us} (11)

The objective function (9) maximizes summarized through-
put of all fractional streams assigned to multicast spanning
trees spread among V nodes with a single source of the
content s. Next, node capacity constraints are introduced and
each node i can neither contribute to the system exceeding its
upload capacity nor download more than its download limit.
Constraints (10) formulate upload limit based on available
upload capacities ui of every node in the system. Note that
node i is a parent node in tree t, it uploads content of size rt
exactly βti times. Therefore i’s total upload given by

∑
t βtirt

cannot exceed its upload limit ui. Upload capacity limit is
defined for every node in the system, therefore there are
exactly V inequalities. By analogy to upload bound (10),
a set of constraints (11) is introduced in order to guarantee
download limits of nodes are not surpassed. Basically, the
download limit expresses that

∑
t rt cannot be greater than

di, for every i. However, taking into account the overlay
system, where all overlay nodes are connected to all trees, the
actual throughput

∑
t rt is restricted not to exceed the minimal

download limit among all overlay nodes (mini 6=s{di}). Since
we consider the system where source node s only uploads
the content, the download capacity limit of s is not taken
into consideration in this multicast flow allocation problem.
Moreover, a source’s upload limit affects the total stream∑

t rt to be less or equal than us, i.e., all flows originate from
root node s and the root cannot produce more throughput than
its available upload limit us. Finally, a minimum value among
dmin or us limits overall throughput packed into the multicast
system. In such a way, a number of capacity constraints that

386 M. KUCHARZAK, D. ZYDEK, I. POŹNIAK-KOSZAŁKA

corresponds to the overall multicast streaming rate in the
system is decreased to exactly one.

It is worth referring to some previous works on overlay
multicast, which employ FST linear formulation, e.g., see
[22]–[24].

The important point is to note in the abovementioned
formulations that in the MFT and FST models, all variables rt
may take both, continuous or integer values. However, whereas
continuity of variables is not directly applicable in most of real
networks (e.g., number of packets or number of bytes may be
rather integral values), the proposed linear-based models might
serve as continuous relaxations for actual models, often used
in (meta-)heuristic algorithms or protocols development and
as approximations.

B. CPLEX API
Listing 7 below illustrates an example implementation of

the FST model using CPLEX C++ API.

Listing 7. Example implementation of FST.
1 IloEnv env ;
2 IloModel model (env) ;
3

4 IloNumVar ∗ r ;
5 r=new IloNumVar [T] ;
6

7 for (int t=0;t<T ;t++)
8 r [t]=IloNumVar (env , 0 ,UPPER_R ,ILOFLOAT) ;
9

10 IloExpr obj (env) ;
11

12 for (int t=0;t<T ;t++)
13 obj+=r [t] ;
14

15 model .add (IloMaximize (env , obj)) ;
16 obj .end () ;
17

18 for (int i=0;i<V ;i++)
19 {
20 IloExpr upload (env) ;
21 for (int t=0;t<T ;t++)
22 upload+=r [t]∗beta [t] [i] ;
23

24 model .add (upload <= u [v]) ;
25 upload .end () ;
26 }
27

28 IloExpr download (env) ;
29 for (int t=0;t<T ;t++)
30 download+=r [t] ;
31

32 model .add (download <= dmin) ;
33 download .end () ;
34

35 IloCplex cplex (model) ;
36

37 cplex .solve () ;

In lines 1 and 2, environment and model objects are cre-
ated, respectively. Line 5 dynamically allocates T pointers to
IloNumVar that represent variables r. Next, loop for in line
7 defines variables in the model. In lines 10-16 the objective
is defined. Note that the objective is added to the model with
function IloMaximize and it is alternate to the approach shown
in Listing 4. Constraints (10) are implemented within loop for

(lines 18-26) and (11) is defined between lines 28-33. Line
35 instantiate the CPLEX solver and solves the problem by
calling solve method of IloCplex (line 37).

C. Random Algorithm with FST
On the one hand, exact algorithms such as these provided

by CPLEX might provide optimal benchmarks for the de-
fined problem. However, on the other hand, overlay multicast

systems are rather random-like in their behavior. Therefore
random algorithm is implemented in order to provide some
benchmarks representing random nature of overlays.

A pseudocode Algorithm 1 illustrates general random ap-
proach to solving the problem in a random based way and it
might be described in two steps. Loop in lines 2-4 initializes
vector β with randomly created T multicast trees and in line
5 optimal flow assignment is provided by solving the FST
model.

Algorithm 1 Random Algorithm
1: procedure RANDOMALGORITHM(V, T, s, d, u)
2: for all t ∈ T do
3: βt ← RandomTreeGenerator(V, s)
4: end for
5: Solve FST program (9)-(11)
6: end procedure

Taking into account the fact that the FST model requires
overlay nodes with their capacity limits as well as a predefined
set of spanning trees as an input, Algorithm 2 shows a
procedure that generates a random spanning tree among V
nodes with a single source and returns β describing a number
of children nodes served by every node in the tree.

Algorithm 2 Random Tree Generator
1: procedure RANDOMTREEGENERATOR(V, s)
2: A← s
3: B ← ∅
4: for all i do
5: βi ← 0
6: if i 6= s then
7: B ← B ∪ i
8: end if
9: end for

10: while B 6= ∅ do
11: j ← SelectRandomNode(B)
12: i← SelectRandomNode(A)
13: βi ← βi + 1
14: A← A ∪ {j}
15: B ← B\{j}
16: end while
17: return β
18: end procedure

At the beginning, two auxiliary sets are initialized in lines 2
and 3. Set A contains all nodes that are feasible to be parents
and before any new nodes join the tree, it includes only the
source node s. Set B will comprise nodes to be connected. In
loop for in lines 4-9, every node i but the source s is included
to the set B; and βi with hi are set to 0, where βi is a number
of children of node i and hi refers to a number of hops from
the source to node i.

Next, until all nodes are not connected to the tree and
B is an empty set, actual random and hop-constrained
tree is constructed in loop while (lines 10-16). Procedure
SelectRandomNode randomly chooses next child node j from
set B and its parent i from set A, in lines 11 and 12,
respectively. Next, a number of i’s children increases by 1 (line
13) and j extends the A set as well as might be selected as a
parent node in the further loop execution. After j is connected
to the tree (line 14), it is removed from set B in line 15. Final
step in line 17 returns a vector β that is unambiguously applied
to the FST linear program.

OVERLAY MULTICAST OPTIMIZATION: IBM ILOG CPLEX 387

VI. EXPERIMENTATION RESULTS

A. Environment and Scenario Configuration

This section illustrates comparison of maximum flow over-
lay multicast problem represented by MFT and random heuris-
tic with the FST linear program. Two overlay systems are
taken into consideration. The first comprises 10 nodes and
the second 20 nodes. All nodes are connected to the network
using ADSLs (Asymmetric Digital Subscriber Lines). Nodes
are proportionally distributed among top 11 Polish Internet
Service Providers (ISPs); and available upload and download
capacities of the nodes are taken from recent SpeedTest-based
reports that are provided by Net Index [25]. Available upload
capacity of nodes are distributed among values from 2.20 to
12.58 Mb/s, where the source s belongs to an ISP that provides
12.58 Mb/s. Download capacities are, depending on the ISPs,
from 5.67 to 28.79 Mb/s. Since the total flow of the stream
remains the same for all nodes, the upper bound of maximum
multicast flow equals to 5.67 Mb/s.

Computational experiments were carried out on an Intel
Core 2 Duo CPU with 2.13 GHz clock and 4GB RAM,
with x64 Windows 7 Professional. An experimentation system
was implemented in C++ under Microsoft Visual Studio 2008
and CPLEX 12.3 is employed for solving linear and mixed
integer programs (see [26] for former version). Measurements
of execution time are obtained with GetTickCount() function
from Windows.h library.

B. Useful CPLEX Parameters and Methods

Listing 8 shows how to apply some basic parameters to the
CPLEX solver.

Listing 8. CPLEX parameters and output.
1 cplex .setParam (IloCplex : : TiLim , 3 6 0 0) ;
2 cplex .setParam (IloCplex : : EpAGap , 0) ;
3 cplex .setParam (IloCplex : : MIPDisplay , 0) ;
4 cplex .setOut (env .getNullStream ()) ;

Parameter IloCplex::TiLim sets the maximum time, for
computations before termination. The time limit includes
preprocessing time and is given in seconds. Another way
to terminate the mixed integer optimization is to define
IloCplex::EpAGap that refers to an absolute tolerance on
the gap between the proved upper bound for maximization
problems and the objective of the best node remaining. When
this difference falls below the defined value in percents, the op-
timization process is stopped. In line 3 IloCplex::MIPDisplay

determines what CPLEX reports to the screen during mixed
integer optimization, here it is set to 0 and causes no node
log to be displayed until the optimization is finished. Since
displaying information might affect time efficiency, setting
IloCplex::MIPDisplay might be very useful while one would
decrease total computational time. However, the parameter
might be applied to mixed integer optimization only and it
does not remove all messages appearing on the screen, it
might be even easiest to use method getNullStream() of
IloCplex::IloEnv as it is shown in line 4. The method forks
all CPLEX output to a null stream and no information from
the solver appears, e.g., on screen.

Since cplex.solve() function finishes its operation and
the optimization is brought to the end or terminated, list-
ing 9 presents six basic get-based methods that are useful

while getting some results. Method IloCplex::getStatus()
in line 1 provides a status of the result, i.e., optimal, feasible,
infeasible, unbounded, infeasible or unbounded, unknown,
or if any error appeared while solving problems. Method
IloCplex::getObjValue() in line 2 returns an IloNum in-
stance with the best objective value if the solution status is
optimal or feasible. This value might be cast to, e.g., double.
In a similar way, IloCplex::getBestObjValue() in line 3
yields an upper bound of the MFT problem.

Listing 9. Getting CPLEX results.
1 cplex .getStatus () ;
2 cplex .getObjValue () ;
3 cplex .getBestObjValue () ;
4 cplex .getMIPRelativeGap () ;
5 cplex .getTime () ;
6 cplex .getValue (r [t]) ;

In line 4 getMIPRelativeGap() returns the gap between the
proved upper bound and the objective value, but note that its
applicable only to mixed integer optimization. Computational
time might be reported with getTime() in line 5. In order
to get actual values of variables, it is necessary to employ
getValue method that takes IloNumVar as its argument, what
is shown in line 6.

C. Results Summary

Table I reports optimization results of CPLEX MFT im-
plementation and random algorithm with CPLEX FST imple-
mentation for overlay multicast networks with V = 10 and
V = 20 nodes and T from 1 to 7. In order to limit more-
or-less unpredictable computational time of exact methods
implemented by CPLEX, IloCplex::TiLim is set to 3600
seconds (see an example in Listing 8, line 1). Feasible results
are provided in bold, and for only V = 10 nodes and T=1
multicast tree, MFT problem was solved in an optimal way.
Besides the fact that the CPLEX MFT implementation cannot
guarantee optimality within one hour computation for other
instances, it is easily noticeable that the total multicast flow
increases if more multicast trees might be utilized in the
routing structure. It ranges from 3.350 or 3.145 Mb/s if only
single spanning tree realizes the multicast stream to at least
5.296 or 4.996 Mb/s with 7 separate trees, for 10 and 20 node
systems, respectively. While the optimality is not guaranteed,
it is worth showing upper bounds in order to indicate a general
quality of feasible results.

Second part of Tab. I focuses on time and result efficiency
of the random multicast tree construction applied along with
CPLEX FST flow assignment problem. Such a heuristic, on
the one hand, provides feasible results extremely faster in
comparison to CPLEX MFT, especially for larger instances,
where optimal flow trees with maximum stream are even not
found. On the other hand, random-based results fall below
some distance to the results by CPLEX MFT and they might be
6.5-34% worse for 10 node overlay networks and even about
30-40% for bigger instances with 20 nodes. In order to present
an overall results quality of random approach, some statistics
should be provided. Here, 100 independent repetitions of the
random algorithm was performed to gather best (in bold),
average (avg.), median and standard deviation (std.). Note
that time reported for random algorithm refers to solve all
100 repetitions together; and solving a single random instance
actually requires fractions of seconds.

388 M. KUCHARZAK, D. ZYDEK, I. POŹNIAK-KOSZAŁKA

TABLE I
RESULTS FOR OVERLAY NETWORKS WITH 10 AND 20 NODES

V 10 20
T 1 2 3 4 5 6 7 1 2 3 4 5 6 7

CPLEX MFT [Mb/s] 3.350∗ 4.926 5.217 5.267 5.293 5.294 5.296 3.145 4.592 4.715 4.818 4.924 4.958 4.996
upper bound [Mb/s] 3.350 5.297 5.297 5.297 5.297 5.297 5.297 3.561 5.018 5.018 5.018 5.018 5.018 5.018

time [s] 5.0 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600
Random [Mb/s] 2.720 3.251 4.258 4.478 4.641 4.775 4.952 1.923 2.664 2.768 3.075 3.316 3.426 3.507
gap to MFT [%] -18.8 -34.0 -18.4 -15.0 -12.3 -9.8 -6.5 -38.9 -42.0 -41.3 -36.2 -32.7 -30.9 -29.8

avg. [Mb/s] 1.377 2.126 2.753 3.142 3.414 3.688 3.844 0.959 1.460 1.847 2.130 2.322 2.570 2.698
median [Mb/s] 1.303 2.208 2.775 3.227 3.439 3.743 3.875 0.906 1.418 1.841 2.130 2.337 2.588 2.678

std. [Mb/s] 0.513 0.584 0.623 0.626 0.620 0.534 0.542 0.281 0.367 0.346 0.384 0.374 0.381 0.353
time [s] 6.3 11.4 15.4 16.5 17.9 18.7 20.4 7.1 11.6 18.9 20.7 21.9 23.2 25.9

∗ optimal result

VII. SUMMARY

This paper described the usage of IBM ILOG CPLEX C++
API for solving linear problems in the area of computer
networks. Among different optimization packages, CPLEX
is one of the most advanced and provides ease and vari-
ety of applications. Moreover, it is available at no-charge
for non-commercial use and academic societies. Streaming
rate maximization problem in forms of MFT and FST in
multicast overlay system was taken into consideration as a
mixed integer and pure linear program example. The paper
showed model implementation that uses continuous, binary
and integral variables; various constraints including equations
and inequalities as well as solving the model and setting some
global parameters of the CPLEX solver.

REFERENCES

[1] GNU Linear Programming Kit, GNU Project, 2008,
http://www.gnu.org/software/glpk/glpk.html.

[2] Gurobi Optimizer Reference Manual, Gurobi Optimization Inc., 2012,
http://www.gurobi.com.

[3] QSopt Version 1.0, QSopt, 2003, http://www2.isye.gatech.edu/ wcook/q-
sopt/downloads/users.pdf.

[4] XPRESS Solver, FICO (Fair Isaac Corporation),
http://www.gams.com/dd/docs/solvers/xpress.pdf.

[5] XA Linear Optimizer System, Sunset Software Technology, Inc., 2012,
http://www.sunsetsoft.com/.

[6] Linear Program Solver LiPS, MIT, 2011,
http://sourceforge.net/projects/lipside/.

[7] lpsolve 5.5.2.0, LP SOLVE, http://lpsolve.sourceforge.net/5.5/.
[8] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram

internetworks and extended LANs,” ACM Transactions on Computer
Systems, vol. 8, pp. 85–110, 1990.

[9] B. Akbari, H. R. Rabiee, and M. Ghanbari, “An optimal discrete rate
allocation for overlay video multicasting,” Computer Communications,
vol. 31, no. 3, pp. 551–562, 2008, DOI: 10.1016/j.comcom.2007.08.025.

[10] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in in Proceedings of ACM Sigmetrics, 2000, pp. 1–12.

[11] Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal resource allocation in overlay
multicast,” in in Proc. of 11th International Conference on Network
Protocols, ICNP, 2003.

[12] M. Kucharzak and K. Walkowiak, “A mixed integer formulation for
multicast flow assignment in multilayer networks,” in Proc. Fifth Int
Broadband and Biomedical Communications (IB2Com) Conf, 2010, pp.
1–4.

[13] ——, “Maximum flow trees in overlay multicast: Modeling and opti-
mization,” in Proc. 2nd Baltic Congress Future Internet Communications
(BCFIC), 2012, pp. 260–267.

[14] ——, “Modelling of Minimum Cost Overlay Multicast Tree in Two
Layer Networks,” International Journal of Electronics and Telecommu-
nications, vol. 57, no. 3, pp. 317–322, 2011.

[15] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will
iptv ride the peer-to-peer stream? peer-to-peer multimedia streaming,”
Communications Magazine, IEEE, vol. 45, no. 6, pp. 86–92, 2007.

[16] C. Wu and B. Li, “Optimal rate allocation in overlay content distribu-
tion,” in Networking, 2007, pp. 678–690.

[17] ——, “On meeting p2p streaming bandwidth demand with limited
supplies,” in In Proc. of the Fifteenth Annual SPIE/ACM International
Conference on Multimedia Computing and Networking, 2008.

[18] G. Wu and T. Chiueh, “Peer to peer file download and streaming. rpe
report, tr-185,” 2005.

[19] Y. Zhu and B. Li, “Overlay networks with linear capacity constraints,”
IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 2, pp. 159–173, 2008.

[20] IBM, “Quick start to IBM ILOG optimization products,” Online,
available at http://ibm.com.

[21] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing steiner trees,” in
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2003, pp. 266–274.

[22] M. Kucharzak and K. Walkowiak, “Fractional spanning tree packing
problem with survivability constraints for throughput maximization in
overlay multicast networks,” in Proc. 3rd Int Ultra Modern Telecom-
munications and Control Systems and Workshops (ICUMT) Congress,
2011, pp. 1–7.

[23] ——, “An improved annealing algorithm for throughput maximiza-
tion in static overlay-based multicast systems.” in HAIS (1), ser.
Lecture Notes in Computer Science, E. Corchado, M. Kurzynski,
and M. Wozniak, Eds., vol. 6678. Springer, 2011, pp. 364–371,
DOI: 10.1007/978-3-642-21219-2 46.

[24] ——, “On modelling of fair throughput allocation in overlay multicast
networks,” in NEW2AN, ser. Lecture Notes in Computer Science,
S. Balandin, Y. Koucheryavy, and H. Hu, Eds., vol. 6869. Springer,
2011, pp. 529–540, DOI: 10.1007/978-3-642-22875-9 48.

[25] Ookla. (2012, October) Net index. [Online]. Available:
www.netindex.com

[26] IBM ILOG CPLEX 12.1, User’s Manual for CPLEX, 2009.

