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IMPORTANT MESSAGE FOR THE AUTHORS

The Editorial Board during their meeting on the 18" of January 2006 authorized the
Editorial Office to introduce the following changes:

1. PUBLISHING THE ARTICLES IN ENGLISH LANGUAGE ONLY

Starting from No 1°2007 of E&T Quarterly, all the articles will be published in
English only.

Each article prepared in English must be supplemented with a thorough summary in Polish
(e.g. 2 pages), including the essential formulas, tables, diagrams etc. The Polish summary
must be written on a separate page. The articles will be reviewed and their English
correctness will be verified.

2. COVERING THE PUBLISHING EXPENSES BY AUTHORS

Starting from No’2007 of E&T Quarterly, a principle of publishing articles against payment
is introduced, assuming non-profit making editorial office. According to the principle the
authors or institutions employing them, will have to cover the expenses in amount of 760
PLN for each publishing sheet. The above amount will be used to supplement the limited
financial means received from PAS for publishing; particularly to increase the capacity of
next E&T Quaterly volumes and verify the English correctness of articles. It is neccessary
to increase the capacity of E&T Quarterly volumes due to growing number of received
articles, which delays their publishing.

In case of authors written request to accelerate the publishing of an article, the fee will
amount to 1500 PLN for each publishing sheet.

In justifiable cases presented in writing, the editorial staff may decide to relieve authors
from basic payment, either partially or fully. The payment must be made by bank transfer
into account of Warsaw Science Publishers The account number: Bank Zachodni WBK
S.A. Warszawa Nr 94 1090 1883 0000 0001 0588 2816 with additional note: *“For
Electronics and Telecommunications Quarterly”.
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Dear Authors,

Electronics and Telecommunications Quarterly continues tradition of the ‘“Rozprawy
Elektrotechniczne” quarterly established 53 years ago.

The E&T Quarterly is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Science. It is published by Warsaw Science Publishers of PAS. The
Quarterly is a scientific periodical where articles presenting the results of original,
theoretical, experimental and reviewed works are published. They consider widely
recognised aspects of modern electronics, telecommunications, microelectronics, optoelec-
tronics, radioelectronics and medical electronics.

The authors are outstanding scientists, well-known experienced specialists as well as
young researchers — mainly candidates for a doctor’s degree.

The articles present original approaches to problems, interesting research results,
critical estimation of theories and methods, discuss current state or progress in a given
branch of technology and describe development prospects. The manner of writing
mathematical parts of articles complies with IEC (International Electronics Commision)
and ISO (International Organization of Standardization) standards.

All the articles published in E&T Quarterly are reviewed by known, domestic
specialists which ensures that the publications are recognized as author’s scientific output.
The publishing of research work results completed within the framework of Ministry of
Science and Higher Education GRANTs meets one of the requirements for those works.

The periodical is distributed among all those who deal with electronics and
telecommunications in national scientific centres, as well as in numeral foreign institutions.
Moreover it is subscribed by many specialists and libraries.

Each author is entitled to free of charge 20 copies of article, which allows for easier
distribution to persons and institutions domestic and abroad, individually chosen by the
author. The fact that the articles are published in English makes the quarterly even more
accessible.

The articles received are published within half a year if the cooperation between author
and the editorial staff is efficient. Instructions for authors concerning the form of
publications are included in every volume of the quarterly; they may also be obtained in
editorial office.

The articles may be submitted to the editorial office personally or by post; the editorial
office address is shown on editorial page in each volume.
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Point-to-Point and Point-to-Group Blocking Probability in
Mult-service Switching Networks with BPP Traffic

MARIUSZ GLABOWSKI
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Poznait University of Technology
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mariusz. glabowski @et.put.poznan.pl
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This paper presents three approximate calculation methods of occupancy distribu-
tion and blocking probability in switching networks which are offered multi-service traffic
streams generated by Binomial (Engset) & Poisson (Erlang) & Pascal traffic sources. The
proposed methods belong to the class of methods known as the effective availability methods.
The basis of the proposed calculation algorithms is the occupancy distribution in interstage
links as well as in the outgoing links (forming outgoing directions). These distributions are
calculated with the help of the full-availability group model and the limited-availability gro-
up model. The results of analytical calculations of the blocking probabilities are compared
with the simulation results of three-stage switching networks, and, therefore, the validity of
the assumptions used in the model is proved.

Keywords: BPP traffic, switching networks, blocking probability

1. INTRODUCTION

For the analytical modelling of traffic characteristics of multi-service switching
networks the multi-rate models [1, 2, 3, 4, 5, 6] are mainly used. In these models the
system services call demands having an integer number of the so-called BBUs (Basic
Bandwidth Units). In accordance with the bandwidth discretisation [2], the BBU is
defined as the greatest common divisor of all call demands offered to the system. To
define call demands of sources with variable bit rates, it is proposed to determine an
equivalent bandwidth for particular classes of traffic streams generated by the sources
(2,3, 7].
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Multi-service switching networks were the subject of many analyses [8, 9, 10, 11,
12, 13, 14]. The analytical methods of determination of traffic characteristics of such
systems can be classified into two groups. In the first one time-effective algorithms
of solving statistical equilibrium equations in a multi-dimensional Markov process are
searched for. However, in spite of its great accuracy, this method cannot be used for
calculations of larger systems which have practical meaning. The reason for this is an
excessive number of states' in which a multi-dimensional Markov process occurring wi-
thin the system can take place [8]. Methods of the other group consist in approximating
a multi-dimensional service process by the appropriately constructed one-dimensional
Markov chain, which is characterised by a product form solution [15, 16, 17]. Within
the latter group, the most effective methods of switching networks calculations are the
well-proven methods of the so-called effective availability [18, 19, 10]. The effective
availability is defined as the availability in a multi-stage switching network in which
the blocking probability is equal to the blocking probability of a single-stage network
(grading) with the same capacity of the outgoing group and at analogous parameters of
the traffic stream offered. The modern methods of calculating the effective availability
are based on works [18], [19] and [20], where all the components of this parameter
have been defined. In {10], the universal formulae for calculating the effective availabi-
lity have been derived for arbitrary multi-stage switching networks carrying a mixture
of different multi-rate traffic streams. On the basis of such formulae, the methods for
multiservice switching networks with point-to-point, point-to-group and point-to-group
with several attempts of setting up a connection have been proposed [10, 11, 12, 13,
14].

Despite numerous studies in analytical modelling of switching networks with
multi-rate traffic, in most of the published papers known to the author, only the swit-
ching networks with an infinite source population have been analysed. However, in
modern networks, the ratio of source population and the capacity of a system is often
limited and the value of traffic load offered by calls of particular classes is dependent on
the number of occupied bandwidth units in the group, i.e. on the number of in-service
traffic sources. Such systems are described by the generalized Multiclass Engset Model
(GMEnM) [21, 22, 23, 24, 25, 26]. One of the most exemplifying up-to-date systems
of this kind is the Universal Mobile Telecommunications System (UMTS) — system
in which obtaining of predefined Quality of Service parameters for particular services
is accompanied with a necessity to limit the number of concurrent users serviced
by a given base station. Simultaneously, the switching techniques used in the UMTS
system (and in Asynchronous Transfer Mode in particular) allow to determine equ-
ivalent bandwidths for particular classes of call streams and, in consequence, to apply
multi-rate models. The first method of point-to-group blocking probability calculation
in switching networks with a finite source population, limited to the case of Engset

! A state of a system in the multi-dimensional state space is explicitly described by the number of
calls of particular classes carried by the system.
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traffic streams, was published in [27]. The analytical method of blocking probability
calculation in switching networks with point-to-point selection and BPP traffic was
proposed in [28].

In this paper, based on considerations presented in [27] and [28], the new me-
thods of blocking probability calculation in the switching networks which are offered
multi-rate traffic streams generated by a finite and an infinite population of traffic so-
urces have been presented, i.e. PGBMF (Point-to-Group Blocking for Multi-rate traffic
with Finite source population) method, PPBMF (Point-to-Point Blocking for Multi-rate
traffic with Finite source population) method and PPFD (Point-to-Point blocking for
multi-rate traffic with Finite source population — Direct method) method.

The proposed methods lead to the following general calculation algorithm in swit-
ching networks. Firstly, the effective availability is calculated for all traffic classes.
Then the internal blocking probabilities for particular traffic streams are determined
using simple combinatorial formulae (different in each of the proposed methods) which
include the effective availability parameter. The external blocking for particular traffic
classes are calculated using the occupancy distribution in outgoing directions which
are modelled by the limited availability group. The presented algorithm of calculations
immediately imposes further organization of the article. Section 2 presents models of
link group in switching networks servicing multi-rate BPP (Binomial-Poisson-Pascal)
traffic. In Section 3, the PGBMF, PPBMF and PPFD methods of blocking probability
calculation in multi-service switching network with a finite and an infinite source
population are proposed. In Section 4, the calculation results are compared with the
simulation results of switching networks. Section 5 concludes the paper.

2. LINKS MODELS IN MULTISERVICE SWITCHING NETWORKS

2.1. LIMITED-AVAILABILITY GROUP WITH INFINITE POPULATION OF TRAFFIC SOURCES

Let us consider the limited-availability group (LAG) model, i.e. the system com-
posed of k separated transmission links (Fig. 1). The system services call demands
having an integer number of BBUs. Additionally, each of the links of the group has
the capacity equal to f BBUs. Thus, the total capacity of the system is equal to
V = kf. The system services a call — only when this call can be entirely carried by
the resources of an arbitrary single link. The group is offered M independent classes
of Poisson traffic streams having the intensities: A;, Ay, ..., Ay. The holding time for
calls of particular classes has an exponential distribution with the parameters: 1, iz,
-, M. Thus, the mean traffic offered to the system by the class i traffic stream is
equal to:

Ai = Aifp. )

A class i call requires ; BBUs to set up a connection.




3472 M. GLABOWSKI ETQ.

fink1 link2 link &
Ak y|1®|1@® 1 &
Ao, t, 2®|2e 2 ®
__._.__‘__..,,_;, & BN N
" . . .
A, fré|re f&

M tM }

Fig. 1. A limited-availability group

The occupancy distribution in the considered system can be determined on the
basis of the generalized Kaufman-Roberts recursion (GKRR) [16, 17]. The generaliza-
tion consists in the introduction of relevant conditional (state dependent) state-passage
probabilities o;(n) between the adjacent states of the system into the Kaufman-Roberts
recursion [16, 17]:

nPuly = 3 A (= 1) [Py, @)

where [P,]y is the probability of an event in which there are n busy BBUs in the system
and o(n), the so-called conditional state-passage probabilities, is the probability of
admission of class 7 call to the service when the system is found in the state n.

2.2. CONDITIONAL STATE-PASSAGE PROBABILITY

The conditional state-passage probability, that takes into account the dependence
between call streams and the state of the system, determines part of the incoming call
stream A; to be transferred between the states n and n + #; due to the specific structure
of the limited-availability group. The parameter o-;(n) can be calculated as follows [10]:

oin)=1-FV —-nk,t; - 1,O/FV - n,k, f,0)), 3)

where F(x,k, f, ) is the number of arrangements of x free BBUs in k links, calculated
with the assumption that the capacity of each link is equal to f BBUs and each link
has at least ¢ free BBUs:

| 4]

Fook f.)= ) (_1)1‘( l: )( x=k(t=D=1=i(f =141
i=0

k-1 @

Having the probabilities o;(i1), we can calculate the distribution [P,]y and subse-
quently the blocking probability e; for class 7 calls. The blocking state in LAG takes
place when no link has sufficient number of free BBUs to service class i calls. Thus
a state in which each link contains (7; — 1) free BBUs is already the blocking one. All
the blocking states can be determined by the following condition:
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V—k(t;i~1y<ngV (5)

and finally the blocking probability e; for a class i stream can be calculated as follows:

= va.:g/._k(,l_l)[[)n]v[l - O",‘(I?,)]_ (6)

The diagram presented in Fig. 2 is appropriate to the GKRR (2) for the system with
two call streams (M = 2,1y = 1,1, = 2). The yi(n) symbol denotes reverse transition
rates of a class 7 service stream outgoing from state n. These transition rates for a
class i stream are equal to the average number of class i calls serviced in state 7.
From Eq. (2) it results that the knowledge of the parameter y;(n) is not required for the
determination of the occupancy distribution in LAG with multi-rate traffic generated by
an infinite population of traffic sources. However, the value of this parameter, in a given
state of the group, is the basis of the method applied in this paper for the occupancy
distribution calculation in the group with a finite population of traffic sources. The
parameter y;(n) can be determined on the basis of the statistical equilibrium equations
in the considered group [29]:

yiln+1) =

{Aszx(”)[f’,gv/ Puigly for n+4<V 7

for n+t;, >V

Formula (7) determines the average number of class i calls serviced in the state 5 + 1.

Atrcn(n-3) Aoty an{n-2) Aztaoa(n-1) Astran(n Astyon(n+1)
Amm(n«z)‘ [ Abior(n-1) Astyor(n) A1t1m(n+1)‘ )
2] (n1Q Cn 2

n (n+1) (n+2

) JTRC () ) )

taya(n-1) bya(n) LyA(n+1) tay2(n+2) bya(n+3)

Fig. 2. A fragment of a diagram of the one-dimensional Markov chain in a multi-rate system
M =2,t = I, =2)

23. LIMITED-AVAILABILITY GROUP WITH BPP TRAFFIC

This section proposes an approximate recursive algorithm that allows to determine
the occupancy distribution in the limited-availability group which is offered several
classes of Erlang, Engset and Pascal traffic (BPP traffic) with different number of
demanded BBUs to set up a connection. We start the present considerations with a
short presentation of basic assumptions for the multi-rate Engset and Pascal model.
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2.3.4. Assumptions of Engset multi-rate model

Let us consider now the system servicing multi-rate traffic generated by a finite
population of sources. Let us denote as N; the number of sources of class j, the calls
of which require ¢; BBUs for service. The input traffic stream of class j is built by
the superposition of N; two-state traffic sources which can alternate between the active
(busy) state ON (the source requires {; BBUs) and the inactive state OFF (the source
is idle). When a source is busy, its call intensity is zero. Thus the arrival process is
state-dependent. The class j traffic offered by an idle source is equal to a; = A /u;,
where A; is the mean arrival rate generated by an idle source of class j and 1/u; is the
mean holding (service) time of class j calls. In the considered model, the holding time
for calls of particular classes has an exponential distribution. Thus, the mean traflic
offered to the system in the state of n BBUs being busy by idle class j traffic sources
is equal to:

Aj(n) = (N; - nj(n)a;, 8)

where n;(n) is the number of in-service sources of class j in state n.

2.3.2. Assumptions of Pascal multi-rate model

Considering Pascal traffic streams we also assume a finite number of traffic sources.
As in the Engset case, we assume that at the very beginning there are S, sources of class
g requiring ¢, BBUs. Each idle source generates calls with intensity y,. The holding
time has an exponential distribution with the intensity u,. Contrary to Engset Multi-rate
Model, in the Pascal case, arrival intensity of particular traffic classes increases with
the occupancy state of the system. This means that the arrival intensity of a class ¢
is equal (S, + ng(n))y,, where ny(n) is the number of in-service sources of class g in
state n. Thus, the mean traffic offered to the system in the state of n BBUs being busy
by class g traffic sources is equal to:

Aq(”) = (Sq + nq(”))ﬂq’ )

where B, = y,/i4 is the mean traffic offered by an idle source of class ¢.

2.3.3. Assumptions of Erlang-Engset-Pascal multi-rate model

Let us consider the group with the capacity equal to V BBUs which is offered
three types of traffic streams: My Erlang (Poisson) traffic streams, M, Engset (Binomial)
traffic streams and M3 Pascal traffic streams. The mean arrival rate of class i Erlang
traffic stream does not depend on the state of the system and is equal to A;, while the
mean arrival rate 4;(n) of class j Engset traffic stream and the mean arrival rate 1,(n)
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of class ¢ Pascal traffic stream depend on the number of calls being serviced in the
following way:

Ai(n) = (N, - n(n)y;, (10)

Ag(n) = (S + ny(n))y,. (1D

In the model considered we assume that the holding time for calls of particular
BPP traffic classes have an exponential distribution. The model of the system with
multi-rate BPP traffic will be, in the further part of the paper, designated by symbol
ErEnPaMLM.

2.3.4. Concept of determination of multi-service Erlang- ngset-Pascal distribution

As we can notice in Sections 2.3.1, 2.3.2 and 2.3.3, the dependence of the value
of the offered traffic on the number of active sources in Engset and Pascal streams
makes it impossible to apply directly the generalized Kaufman-Roberts formula. In
this section we will discuss the idea of modelling multi-service switching networks by
the application of the modified Kaufman-Roberts formula. The basis of this method is
formed by a determination of an approximate method of determining the number of
active traffic sources of a given class in Engset and Pascal streams.

Initially, we assume in the algorithm that the number of BBUs occupied in each of
the states n by respectively calls of class j Engset stream and class ¢ Pascal stream, is
the same as the number of BBUs occupied by the equivalent Erlang stream generating
the offered traffic with the intensity:

Aj = N, (12)

Ay = 8,84, (13)
which is equal in value to the traffic offered by all idle sources of class J Engset stream
and class g Pascal stream.

The above adopted assumption also implies that the number of in-service n;i(n)
and ny(n) sources of class j and g, respectively, in the state of n BBUs being busy,
can be approximated by the reverse transition rates y;(n) and y,(n), determined on the
basis of Equation (7) for the equivalent Erlang streams (Equations (12) and (13)):

ni(n) = yin), (14)

nq(n) ~ yq(”)- (15)

The determined values of y ;(n) and y,(n) enable us to make the mean value of
offered traffic dependent on the occupancy state of the group in the following manner:
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An) = [N; = yi(m]a;, (16)

q(”) {Sq + )q(”)]ﬁq amn

Having the traffic values A ;(n) (Equation (16)) and A,(n) (Equation (17)), Equation
(2) can be rewritten in the form that includes the traffic characteristics of Engset and
Pascal traffic, namely:

n[P,ly = ZAtl(r(n 1) [P,y + ZA (n —tp)tjo(n - )[ . ’/’]v+
(18)
+ Z Ay(n —t )t oq(n 1) [:P,lﬁ,q]v

g=1

The universal nature of Equation (18) should be particularly stressed. Depending
on type of the offered traffic, the equation can determine the occupancy distribution in
systems with just one type of traffic, for example only Pascal traffic, where M, = 0,
My = 0 and M5 # 0), or in systems with the mixture of traffic from different types of
sources as in, for instance, Engset and Pascal types of traffic, when M, = 0, My # 0
and Ms # 0).

2.4. FULL-AVAILABILITY GROUP

The full-availability group (FAG) is a discrete model of a single link that uses
complete sharing policy [2]. This system is an example of a state-independent system
in which the probability of admission of a new call does not depend on the number
of busy bandwidth units in the system (as long as the system have enough BBUs to
service a call of a given class). Therefore, the conditional state-passage probability
oi{n) in FAG is equal to 1 for all states and for each traffic class. Consequently,
the occupancy distribution and blocking probabilities in FAG with an infinite and a
finite source population can be calculated by the equations (18) and (6), taking into
consideration the fact that: YV, V,0:(n) = 1.

2.5. DISTRIBUTION OF AVAILABLE LINKS

On the basis of the occupancy distribution in LAG (18), the so-called distribution
of available links is determined [10]. This distribution determines the probability P, s)
of an event in which each of arbitrarily chosen s links can carry the class i call. In order
to calculate P(i,s) distribution, it is indispensable to know the so-called conditional
distribution of available links P(i, s | x). This distribution determines the probability of
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an arrangement of x(x = V —n) free BBUs, in which each of s arbitrarily chosen links
has at least ¢; free BBUs, while in each of the remaining (k — ) links the number of
free BBUs is lower than #; (Eq. (4)). Following the combinatorial consideration [10}:

\!l
( k ) 2 Fw, s, [t F(x = w,k—s,t; — 1,0)
W=St;

P(i, s|x) =

, 19
Flk,x, £,0) (19)
where: W = sf,ifx > sf,¥ = x,ifx < sf.

On the basis of the distribution P(i,s | x) and of the theorem of total probability,
the distribution of available links P(i, s) is equal to:

PG = 3 [PIvPLsV =), (20)

where [P,]v is the occupancy distribution in the limited-availability group with BPP
traffic streams.

3. SWITCHING NETWORK CALCULATIONS

In this section three approximate methods of blocking probability calculation in
multi-stage switching networks with multi-rate BPP traffic are presented, i.e. PGBMF
(Point-to-Group Blocking for Multi-rate traffic with Finite source population) method,
PPBMF (Point-to-Point Blocking for Multi-rate traffic with Finite source population)
method and PPFD (Point-to-Point blocking for multi-rate traffic with Finite source po-
pulation — Direct method) method. The presented considerations are based on PGBMT,
PPBMT and PPD methods, worked out in [10] and [12] for multiservice switching
networks with traffic streams generated by an infinite source population.

The presented general outlines of calculations of switching networks consist in the
reduction of calculations of internal blocking probability in a multi-stage switching
network to the calculation of the probability in an equivalent switching network model
servicing single channel traffic. Such an approach allows us to analyse multi-stage

switching networks with multi-rate traffic with the use of the effective availability
method.

3.1. BASIC ASSUMPTIONS

Let us consider a switching network with multi-rate BPP traffic (Fig. 3), consisting
of the switches of k x k links. Let us assume that each of the inter-stage links has the
capacity equal to f BBUs and that outgoing transmission links create link groups called
directions. In the paper we have assumed that an interstage link can be modelled by

the full-availability group and a direction can be modelled by the limited-availability
group.
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stage 1 stage 2 stage 3

direction |

direction %

Fig. 3. A three-stage switching network

In general, switching networks can operate with a point-to-group or point-to-point
selection. Let us consider first the switching network with a point-to-group selection.
Following the control algorithm of this kind of selection [10], the control device of
the switching network determines the first stage switch, on the incoming link of which
a class 7 call appears (switch ). Then, the control system finds the last-stage switch
(switch ) having a free outgoing link (i.e. the link comprising of at least #; free BBUs)
in a required direction. Next, the control device tries to find a connection path between
switches « and §. If such a path does not exist, the control system begins the second
attempt to set up a connection, i.e. the control system determines another switch 8 and
tries to find a new connection path between switches « and 8. The number of attempts
is limited to the number of the last-stage switches having at least # idle BBUs in the
considered direction. If such switches do not exist, a class ¢ call is lost. In the case of
a switching network with point-to-point selection, the number of attempts of setting
up a new connection is limited to one.

3.2. POINT-TO-GROUP BLOCKING FOR MULTI-RATE BPP TRAFFIC - PGBMF METHOD

Let us consider a switching network with point-to-group selection and multi-rate
traffic, presented in Fig. 3. Let us assume further that there are s links in the direction
which can carry a class i call. Further assumption is that there are d(i) last-stage
switches available for the given first-stage switch. The internal point-to-group blocking
phenomenon appears when all links (of the considered direction) belonging to the (i)
available last-stage switches have not sufficient number of free BBUs for the class i call.
Consequently, the point-to-group internal blocking probability El’f”' may be expressed

as follows:
k—d(i) , '
in __ _.,i‘_g_’i_).._ k N k
E = 1~ Py(i,0) K d(D) )/( d(i) )} o

s=1
where k is the total number of links in the direction, and P.(i,s) is the so-called
distribution of available links in the direction. The distribution Pi(i, s) determines the
probability of an event in which each of arbitrarily chosen s links in the required direc-
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tion can carry the class / call. In the proposed PGBMF method, the distribution P;(i, 5)
is approximated by distribution of available links P.(i,s) in the limited-availability
group.

The phenomenon of the external blocking occurs when none of outgoing links of
the demanded direction of the switching network can service the class ¢ call (i.e. does
not have #; free BBUs). The occupancy distribution of the outgoing direction can be
approximated by the distribution of available links in LAG with BPP traffic. Thus, the
external blocking probability can be calculated by the formula:

E& = P(i,0). (22)

The total blocking probability E; for the class i call is determined by external and
internal blocking probabilities. Assuming the independence of internal and external
blocking events, we obtain:

E; = Ef* + E'[1 - E“]. (23)

For blocking probability calculation E;, it is necessary to determine the value of
d(i). The parameter d(i) is known as the effective availability of the switching network
for the class 7 call stream and will be described in Sect. 3.6.

3.3. POINT-TO-POINT BLOCKING FOR MULTI-RATE BPP TRAFFIC — PPBMF METHOD

Let us consider now the PPBMF method for blocking probability calculation in
switching networks with point-to-point selection, servicing multi-rate BPP traffic. The
basis for the proposed method is the PPBMT method (Point-to-Point Blocking for
Multi-channel Traffic) worked out in [10] for switching networks with an infinite so-
urce populations. Modifications to the PPBMF method consists in the introduction of
appropriate group models with traffic generated by a finite source population, deter-
mined in Section 2, to calculations. In the method, blocking probability calculations
for the switching networks with point-to-point selection are made in accordance with
Lotze’s remark [30] that point-to-point blocking in z-stage switching network is equal
to point-to-group blocking in a (z — 1)-stage switching network. In such a system the
incoming links to the switch of the last z-stage are considered to be an outgoing group
(direction).

Let us assume that a certain switch B belonging to the last stage of the switching
network, chosen by the control system, has #; free BBUs necessary to set up the class
i connection. We can also assume that for the switch « (on the incoming links of
which there appears the class i call) there are d,(i) available interstage links coming
to the destination switch 8 from the last but one stage. The internal point-to-point
blocking phenomenon appears when none of the d,(i) available multiplexed links have
a sufficient number of BBUs for servicing the class i call. In the light of the above
consideration, the point-to-point blocking probability can be expressed by the formula:
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Ein _ k‘ﬁ") P( A 1) k—s k (24)
L -y b do (i) d.() )|’

where P(i,s A 1) is the so-called combinatorial distribution of available links in a
switch, described by Equation (25) in the further part of the paper. The phenomenon
of the external blocking occurs when none of outgoing links of the demanded direction
of the switching network can service the class i call (i.e. does not have ¢; free BBUs).
The occupancy distribution of the outgoing direction can be approximated by the
distribution of available subgroups (links) in the limited-availability group with BPP
traffic. Thus the external blocking probability, and consequently, the total blocking
probability, can be calculated by the formulae (22) and (23), respectively.

3.4. COMBINATORIAL DISTRIBUTION OF AVAILABLE LINKS IN A SWITCH

The probability of the internal point-to-point blocking for the class i call stream is
calculated with the assumption that at least one incoming link and one outgoing link
of the system have at least #; free BBUs. The fact that one of the incoming links of
the switch is available for the class i call does not mean simultaneously that one of its
outgoing links is also available.

The probability of available links in a switch P(i,s A 1) was determined on the
basis of conditional distribution (19) of available subgroups in the limited-availability
group. This probability determines an event in which s incoming links and, at the
same time, at least one of the outgoing links of a given switch (e.g. the switch ) are
available for the class i call. According to the consideration worked out in [10], this
distribution can be written as follows:

1%
2 P, sl = P>, 001 Py—xlv
PG, sA ) = “Ok , (25)

v
L- ;O E_:OP(I',HIX)P(LO|x)[PV—x]V

where P(i, s|x) — conditional distribution of available links in LAG with BPP traffic,
[P,]v — occupancy distribution in LAG with BPP traffic.

3.5. POINT-TO-POINT BLOCKING FOR MULTI-RATE BPP TRAFFIC — PPFD METHOD

In the other of the proposed method of blocking probability calculation in switching
networks with point-to-point selection and BPP traffic, the PPFD method, the evaluation
of the internal point-to-point blocking probability is made on the basis of the effective
availability quotient and the capacity of an outgoing group. The proposed method is
based on the PPD method, elaborated in [12] for switching networks with an infinite
source population.
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In order to explain the basic assumptions of the proposed method, let us consider
a switching network with point-to-point selection. An outgoing link belonging to a
given last-stage switch is considered to be available for the first-stage switch if it is
possible to set up a class i connection between these switches.

the considered
direction

d(i,X)

v - d(i,X)

stage :
1

© D0 00 O

g
N e e e e e e

Fig. 4. Available and unavailable switches in a switching networks

Let us assume that the z-stage switching network is in a state X. The control
system determines the first-stage switch, on the incoming link of which there appears
a class ¢ call (switch ). First, the control system finds the last-stage switch (switch
B) having a free outgoing link in the demanded direction. Then, the control system
tries to find a connection path for class 7 call between the switches @ and 5. Let us
assume that in the state X there are d(i, X) available last-stage switches for the switch
a. If the chosen switch 8 belongs to the group of d(i, X) available switches, then class
I connection is set up, otherwise connection is lost because of the internal blocking
event. Thus, the probability of the internal blocking can be determined as a ratio of
free links belonging to an unavailable group of V —d(i, X) switches to all free links in
a given direction (Fig. 4). If we assume that the probability of links occupancy is the
same for all links of the direction, the average value of internal blocking is equal to:

} V—dii,X )
5= = ), (26)

where Q is the set of all possible states X of a switching network and P(X) is the
state probability of a switching network. If we designate the average value of available
last-stage switches by d,(i), Equation (26) can be finally rewritten as follows:

V —d.()
T

The phenomenon of external blocking occurs when none of outgoing links of the
demanded direction in a switching network can service a class i call. The occupancy

E' = 1))
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distribution of the outgoing direction can be approximated by the occupancy distribu-
tion in the limited availability group. Consequently, the external blocking probability

ES* and the total blocking probability E; for class i calls, can be calculated by the

formulae (22) and (23), respectively.

3.6. EFFECTIVE AVAILABILITY

The concept of the so-called equivalent switching network [20] is the base for
effective availability calculation for class i traffic stream. Following this concept, the
network with multi-rate traffic is reduced to an equivalent network carrying a single-rate
traffic. Each link of the equivalent network is treated as a single-channel link with a
fictitious load ¢;(¢) equal to blocking probability for a class i stream in a link of a real
switching network between section [ and [ + 1. This probability can be calculated on
the basis of the occupancy distribution in the full-availability group with BPP traffic
streams (Sect. 2.4).

The effective availability in a real z-stage switching network is equal to the effective
availability in an equivalent switching network and can be determined by the formula
derived in [10]:

d()) = [1 = 7, (D)k + 7, (DY, () + (D, = n¥1(D]e (Do (D), (28)

where:

e d(i) — the effective availability for the class i traffic stream in an equivalent network,

e 7,(i) — the probability of non availability of a given last stage switch for the class
i connection. m,(i) is the probability of an event where the class i/ connection
path cannot be set up between a given first-stage switch and a given last-stage
switch. Evaluation of this parameter is based on the channel graph of the equivalent
switching network and can be calculated by the Lee method [31].

e k — the number of outgoing links from the first stage switch (Fig. 3),

e Y(i) - the average value of the fictitious traffic served by the switch of the first
stage:

Y1() = kei(i), (29)

o ¢.(i) — the blocking probability for the class i/ stream in an interstage link (between
stages ¢ and ¢ + 1) of a real network. The e (i) parameter can be calculated on the
basis of the full-availability group model with multi-rate traffic

e 1 —a portion of the average fictitious traffic from the switch of the first stage which
is carried by the direction in question. If the traffic is uniformly distributed between
all h directions, we obtain:

n = 1/h, (30)
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o 0(i) — the so-called secondary availability coeflicient [10] which is the probability
of an event in which the connection path of the class i connection passes through
directly available switches of intermediate stages [10]:

oy =1~ ﬂ: 7,(0). | (31)

In the description of o,(/) we use the terms “direct available switch” and “direct
availability”. Following [10], a switch of stage [ is directly available for the first-stage
switch if it is possible to set up a connection between these switches. The term direct
availability of stage / means the average number of directly available switches of stage /.

4. CALCULATION AND SIMULATION RESULTS

In order to confirm the adopted assumptions in the PGBMF, PPBMF and PPED
method, the results of the analytical calculations were compared with the simulation
results of a 3-stage switching network. The structure of the switching network con-
sisting of the switches of k X k links is shown in Fig. 3. The results presented in
the paper (Figs. 5-13) were obtained for the switching network with the parameters:
k=4,f =30,t; =1, = 2,15 = 6. The research was carried out for different values
of the ratio of the number of traffic sources (Pascal and Engset traffic streams) of all
classes and the switching network capacity. The results of the simulation are shown in
the charts in the form of marks with 95% confidence intervals that have been calculated
according to the #-Student distribution for the five series with 1,000,000 calls of this
traffic class that generates the lowest number of calls. For each of the points of the
simulation, the value of the confidence interval is at least one order lower than the
mean value of the results of the simulation. In many a case, the value of the confidence
interval is lower than the height of the sign used to indicate the value of the simulation
experiment. All the results are expressed in relation to the value of total traffic offered
to a single BBU at the entry to the network.

Figures 5, 6 and 7 show the results of point-to-group and point-to-point blocking
probability in the switching network with an infinite source population. The results
obtained allow us to compare the accuracy of the model of the switching network with
an infinite population of traffic sources with the accuracy of the proposed calculation
methods in the case of the switching network with a finite source population, both for
Engset (Figs. 8, 9, 10) and Pascal traffic streams (Figs. 11, 12, 13). We can notice that
the proposed methods of blocking probability calculation in switching networks with
BPP traffic ensures high accuracy.
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Fig. 11. Point-to-group blocking probability in the switching network with Pascal traffic streams,

Fig. 12. Point-to-point blocking probability in the switching network with Pascal traffic streams,
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Fig. 13. Point-to-point blocking probability in the switching network with Pascal traffic streams,
Atp t Aty 1A =101 01, 8 = 8, =853 = 320, PPFD method

5. CONCLUSIONS

The paper presents the approximate methods of point-to-group and point-to-point
blocking probability calculation in switching networks with multi-rate traffic gerflerated
by Binomial, Poisson and Pascal traffic sources (BPP traffic). The method is based
on the concept of effective availability. The analytical results of blocking probability,
obtained on the basis of the proposed methods, are compared with the simulation
results. The simulation results confirm high accuracy of the proposed analytical models.
Due to the limited space available in the paper, we have restricted ourselves to present
only the selected results. However, numerous simulation experiments indicate that
similar accuracy of the proposed analytical model can be obtained for various structures
of switching networks and for various number of traffic classes.
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This paper presents a hybrid continuous-discrete-time Delta-Sigma modulator for por-
table communication systems following a low-power strategy. The proposed design metho-
dology is extendable to different specifications. A multi-bit technique has been introduced
in an efficient manner to optimize the power consumption, and an adaptive algorithm is
used to allow a 3-fold reduction in the number of comparators.

Keywords: Hybrid Delta-Sigma modulator, auto-ranging algorithm, multi-bit feedback,
mismatch shaping encoder

1. INTRODUCTION

Delta-Sigma Modulators (DSMs) are widely used for Analog-to-Digital Conversion
(ADC) in both the audio and the radio communication areas. To comply with stringent
specifications of power consumption and performance, their implementation is often a
combination of different techniques, each of them having its own limitations. In this
paper a 0.18 pm CMOS technology has been used to design a Delta-Sigma Modulator.
A low-power design methodology is proposed in order to extend this implementation
toward a typical case of a wireless portable application.
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2. LOW-POWER STRATEGY

Fig. 1 describes the main blocks and design procedures of this modulator. The
main target of this work is based on low power techniques. The following approaches
have been applied:

Power
reduction

CT modulator o First amplifier

$
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Jitter sensitive coefficients
multi-bit e Overall modulator
quantizer l:::jl>° PLL
complex__ | large size
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DEM algorithm e Digital circuit
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Full clock-

cycle sampling e Buffer

VAV

Fig. 1. Low-power design strategy

— The input stage amplifier is working in a Continuous-Time (CT) to lower the first
integrator consumption.

— The clock jitter issue brought by the CT implementation is mitigated by increasing
the internal Number of Levels (NL).

— The Number of Comparators is reduced by an Auto-Ranging (AR) algorithm
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— The complexity of the digital mismatch shaping encoder, also referred to as Dy-
namic Element Matching (DEM), is lowered by an appropriate segmentation of a
tree structure [5].

~ Since both high-order modulators and the auto-ranging algorithm require an accura-
te control of the last feedback coeflicient, the upper stages are kept in a discrete-time
implementation.

—  Multi-bit discrete-time implementation allow a more aggressive quantization noise
shaping and therefore allow a lower sampling frequency, reducing therefore the
consumption of the overall modulator.

~ The continuous-time and discrete-time stages are isolated by a buffer whose con-
sumption is reduced by a full clock-cycle sampling scheme.

2.1. HYBRID CONTINUOUS-DISCRETE-TIME IMPLEMENTATION

In a low-pass Delta-Sigma Modulator each successive stage, starting with the
second one, benefits from the order error shaping provided by the previous stages. For
this reason, a significant part of the power consumption takes place in the first stage.

Continuous-time implementations consume less current than their Switched-Capa-
citor (SC) counterpart [6][7]. On the other hand, SC circuits offer an accurate control
of the filter parameters without tuning, which is essential to provide a Very aggres-
sive quantization noise shaping. Fig. 2 shows the tolerance of the first and last loop
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coeflicients for a low-pass modulator in a multi-path feedback topology. The plots
shows that the higher the order, the narrower the tolerance on the last coefficient. In
contrast, the first coeflicient tolerance remains quite large. Furthermore, high-order
modulators often include local feedbacks, providing an optimal distribution of the
Noise Transfer-Function (NTF) zeros, with coefficients that are usually very small and
also need an accurate control.

A hybrid architecture, such as proposed in [8][9][10], is implemented here where
only the first integrator is a CT, with a No-Return-to-Zero (NRZ) feedback. Fig.3(a)
describes the second-order hybrid modulator we have designed with the characteristics
of Tab.1.

Table 1

System characteristics

Internal quantizer | 11 levels
Emulated quantizer |33 levels

Sampling frequency | 32 MHz

Bandwidth 500 kHz
OSR 32
SQNR 938 dB
SNDR target 83.0 dB
Supply voltage 18V

CMOS technology |0.18 um

Input amplitude 500 mVpk,diff

According to Fig. 2, the second-order architecture does not require much accuracy,
but the implementation is intended to be extendable to higher orders. Fig. 4 shows an
equivalent DT block diagram. The modulator has been designed with an NTF with
two poles in the center of the complex unity circle and two zeros at DC. In such a
case, the maximum Signal-to-Quantization-Noise Ratio (SQNR) as a function of the
Over-Sampling Ratio (OSR) is given by

OS 2n+1
SQONR pax = %ﬂ(Zn +1) (-«-R-) (NL — 2" + 1)? (1)
T

where n is the modulator order, here equal to 2, and NL the internal Number-of-Levels.

The transition from Continuous to discrete-time domain is performed by a full-clock-
cycle-sampling scheme, using two sets of capacitors. A unity-gain buffer is necessary to
guarantee the proper CT operation of the first amplifier. The tasks of CT integration and
sampling are separated. This is an efficient way of maintaining low power consumption
in the first amplifier.
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Fig. 4. Equivalent discrete-time block diagram

As modeled in the equivalent discrete-time diagram of Fig. 4, the signal splits
into a direct path and a modulation [11] by (-sigma/2)"k, where sigma is the mismatch
between the sets of capacitors and k the discrete time-steps. As a first approximation,
this is equivalent to adding at that node a shifted version of PSD of F(f), weighted by
the power of the modulating signal. The error signal is further shaped by the modulator
before reaching the output with a PSD of M(f). Besides, the quantization noise PSD
of Q(f) at the modulator output is known. We can therefore write

PM::];ﬁ'%;-K1~z‘ﬂ(1+z”ﬂz (3)
tom i -

The degraded SNR can be evaluated by integrating the PSDs over the band of
interest fb.

SQNR |
—ng.LﬂKl—z”q<l+z“0rdf
4 O la - ar

®)

SNR =

1

Considering an OSR>>1, this relationship becomes a simple function of the OSR
and o

SQNR ©

SNR = 5
50 (OSR)
1+ [=
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As plotted in Fig. 5(f), BEq. 6 perfectly predicts the degradation except with a
Full-Scale (FS) input signal. Highlighted by the power spectral densities of Fig. 5(c)
and (d), the input signal modulated by the alternation folds around fs/2. This causes the
modulator to overload with a FS input signal resulting in harmonic distortion, causing
the SNR to drop prematurely. Fig. 5(c) shows the predicted folding and shaping of the
quantization noise.
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In pure SC implementations, the sampling device would be placed in front of
the modulator, not taking any advantage of this error shaping mechanism. In such a
case, full clock-cycle sampling would be impractical and the seftling accuracy more
stringent, having a double impact on consumption.

3. MULTI-BIT FEEDBACK

The multi-bit technique reduces the voltage steps, which is essential for the clock
jitter sensitivity of the CT stage. At the same time, for a given SQNR target, more
internal levels bring the benefits of reducing the sampling frequency. This is essential
to lower the current dissipated not only in the SC stage, but also in the digital circu-
its. Moreover, a lower frequency reduces the jitter sensitivity of the CT part. In CT
implementations the dominant jitter issue is related to the feedback DAC step size,
sampling errors being shaped by the modulator. On the contrary, a pure DT modulator
is affected only by sampling errors occurring at the modulator input that depend on
the signal amplitude-frequency product. Fig. 5(a) shows that a pure DT modulator is
ten times less sensitive to clock jitter in our case. Nevertheless, according to Fig. 5(b),
in presence of a large out-of-band interferer, the pure DT implementation is similarly
affected in the hybrid structure.

3.1. CLOCK HTTER ANALYSIS

By inverting Eq. 1 we can express the OSR necessary to reach a targeted SQNR
as

2 SONR
OSR — 2n+1 max 7
”( \/37r(2n+ IY(NL - 2" + 1)2] @

The SQNR is usually determined by the converter required resolution and the
modulator order n depends ‘on the architecture choice. To any value of NL is associated
a value of OSR, required to reach the SQNR. Thus, the set of NL and OSR form the
design solutions. As shown in [12], relative clock jitter sigma providing a degradation
of 3dB with respect to the SQNR is given by

1 [OsR .
73 = % Y SONR

where xi is the jitter transfer factor calculated as
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, front of The parameter ¢ is number of continuous-time integration stage. The variables f
In such a and fs are the input signal and sampling frequency respectively.
acy more The sensitivity to the relative clock jitter is traced in Fig. 6 for a targeted SQNR
of 94 dB and different modulator orders. A full-scale out-of-band signal at a frequency
fmax that is twice the band-of-interest fb is considered. The curves reveal an optimal
solution set of {NL, OSR}. For the second-order architecture chosen in this design the
highest efficiency is found at NL = 33 and OSR = 32.
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4. AUTO-RANGING ALGORITHM
The auto-ranging technique presented in [4] is an adaptive algorithm allowing
©) to emulate, in this design, 33 internal levels with only 10 comparators. This is an
extension of the technique used in 2 such that it can apply to higher-order multi-bit
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modulators and sustain large out-of-band signals which are common in DSMs dedicated
to communication receivers.

The algorithm is represented in the equivalent DT block diagram of Fig. 4 by
a non-linear block and a feed-forward digital path matching the behavior of the last
feedback of the DSM.

4.1. ALGORITHM PRINCIPLES

Based on the output of the 11-level quantizer R(z), the algorithm generates a
control signal corresponding to a shift to be applied at both the input and output of
the quantizer. The analog shift at the quantizer input is provided by the last feedback
path whose loop gain was by design set to 2. The digital shift at the quantizer output
is provided by a register and an adder. Both paths perform exactly the same operation
such that the shifts are the same. This way of reusing the last integrator to make
accurate analog shifts, reinforces the necessity of an SC stage as the last one. The
algorithm generates shifts proportional to the quantizer output such as to maintain the
quantizer output always in the center of its 11-level window. Its purpose is to track the
slow-varying high-range input signal. The auto-ranging loop is not be sensitive to the
fast-varying small-range quantization noise. For that reason, no shift is generated for
the tree mid-range quantizer output. Neither does it generate a shift as the modulator
output reaches the edges of the 33-level emulated window.

4.2. OPTIMAL EFFICIENCY

It is shown in [4] that the minimal reduced number of level NR is given by

NRpin = 2¥Ymax = 1 (10)

where gamma is the number of step-changes seen by the quantizer at each clock cycle.
The maximum of gamma is calculated as

/s
20SR

Yimax = (NL - 2" + l)sin[ ] +2" -1 11
for an nth-order NTE with all the poles placed in the center of the z-plan and all
the zeros at DC. The efficiency of the algorithm can be evaluated by the ratio be-
tween the internal number-of-levels NL, emulated by the algorithm, and the minimum
number-of-levels in the quantizer NRmin. In order to be conservative, we consider
the presence of a full-scale out-of-band input signal at twice the band-of-interest.
We therefore halve the OSR in Eq.11. Then, by inserting Eq.7 in Eqg.10 we find the
closed-form efficiency ratio
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NL/NRpin =
NL/2

s et 320+ DINL-27 4 1)
(NL - 27 + 1)sm[ \/%.1‘

12)

+20—1.5

This expression is traced in Fig. 7 for a 94 dB of SQNR and different modulator
orders. As in the analysis of the sensitivity of clock jitter, the curves reveal an optimal
solution set of {NL, OSR}. Again, for the second-order architecture chosen in this
design the highest efficiency is found at NL = 33 and OSR = 32.
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Fig. 7. Calculated algorithm efficiency as a function of the set of parameters NL and OSR providing
94 dB of SOQNR for different modulator orders

Fig. 8 shows the maximum input signal amplitude supported by the algorithm
with different reduced number-of-level in the quantizer. In this design with 10 compa-
rators NR = 11 and the algorithm can sustain up to 1 MHz full-scale signals without
any degradation of the modulator resolution. Faster out-of-band interferers need to be
attenuated by the anti-aliasing filter.
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NR. In this experiment, an in-band signal 40 dB bellow full-scale is applied together with a full-scale
out-of-band at different frequencies. The curves show the out-of-band signal amplitude reduction
necessary to prevent the modulator from overloading and to maintain an SQNR of 53 dB

Reducing NR significantly alleviates the capacitive load on the last stage. In this
design, the load was further decreased by a small input differential pair size in the
comparators. This results in large statistical comparator offsets. A 6-bit digital com-
pensation developed by [13][14][15] is used for each comparator. The cost in terms
of area and power are negligible. The compensation algorithm is activated only oc-
casionally, without need to interrupting the modulator operations. Its disturbance is
therefore imperceptible.

5. OPTIMAL ENCODER SEGMENTATION

The auto-ranging allowed increasing NL to 33 without the drawbacks of a large
quantizer. However, the hardware complexity of the mismatch shaping encoder, here
a tree-structured architecture, has grown exponentially. Additionally, using small DAC
elements of 25 fF lead us towards a second-order shaping, further increasing this
complexity.

Even though segmenting the encoder, as proposed in [4], drastically reduces the
number of switching blocks, the total number of DAC elements increases, each DAC
element representing an additional current and thermal noise source.
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Fig. 9. Tree-structured encoder with standard segmentation

M Using functional programming we generated all the 628 possible combinations

considering the Quartering, Halving and Full switching blocks, referred to as Q, H and
F blocks. Fig. 10 shows these structures classified according to the number of DAC
elements and the total current consumption 1. The curve links what we call here the

ber-of-levels
 a full-scale

reduction standard segmentation solutions as described in Fig. 7, where only H and F blocks are
3 dB considered. It can be shown that for a standard segmentation the analytical expression
of I is given by
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=N+ 2" 2D+ 2N "4+ m - DF + (mH (13)

where N and m are the encoder and segmentation depth respectively. H and F are the
power consumption of the two different switching blocks and D the consumption of a
DAC element. An optimal m value can be found, which provides the best solution in
terms of power consumption. In our case a depth of 2 was chosen giving a total of 38
elements.

6. CONCLUSION

Following this optimization strategy, we came up with a transistor-level design
that consumes 3.2 mA at 1.8 V, providing a Figure-Of-Merit (FOM), defined as FOM
= Power/ (2’ENOBxBandwidth), of 1.0 pJ. The ENOB is calculated based on the
peak SNDR. Tab. 2 provides a comparison with the other previously published hybrid
architectures. Fig. 11 shows the simulated PSD at transistor-level with an achieved
SNR of 90 dB, very close to the ideal SQNR of 93.7 dB. The remaining degradation
down to the target of 83 dB is left by design for thermal noise.

Table 2
Performance comparison in hybrid architectures
Reference Architecture k!fgz ENOB P;(;u\:/:r F(;JM
8 Séd;édgé 333 147 50 5.6
9 42;?}20?2(: 20 162 18 120
10 4_2;]1.?'1‘;?‘;% 20 15.5 37 39.9
This work Szbrfgcdzc 500 135 5.8 1.0

The floor plan of the circuit depicted in Fig. 12 highlights the reduced size of
the internal quantizer and the increased dimensions of the sampling capacitors. The
digital part, comprising the two DEM encoders, the auto-ranging algorithm and the
offset compensation for ten comparators, is relatively small with respect the total area
of 600 um x900 pm. Tab. 3 provides a detailed summary of the each block.

These results demonstrate that hybrid architectures have the potential to combine
the benefits of both continuous and discrete time implementations. The multi-bit tech-
nique is essential as a mean of reducing the power consumption of both the modulator
and the PLL, not included in FOM estimations. Adaptive quantization, digital offset
compensation in the quantizer, full clock-cycle sampling and encoder segmentation
further allows reducing the power dissipation.
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10.

Table 3

Consumption and chip arca summary

Component Current Areezx

1A mm

CT integrator amp. 205 0.03
SC integrator amp. 1150 0.04
Sampling amp. 425 0.04
i-DAC 100 0.04
SC-DAC 140 0.04
ADC comparators 545 0.05
Digital circuits 500 0.04
Interconnect and 10 pF - 0.07
Sampling capacitors - 0.10
Total 3200 0.54
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Investigation of substrate noise coupling and isolation
characteristics for a 0.35 um HV CMOS technology
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This paper presents the characterization of substrate noise coupling and the isolation
capability of ohmic substrate contacts in a HV CMOS technology. Layout variations of
contact sizes, distances, and several p+ guard structures are subject of this research. Metal
shielded DUT fixtures have been developed to improve the reliability and accuracy of the
measurements. All test cases are fabricated with a 0.35 pm HV CMOS technology (Vmax
<= 120V). This process features high resistive native substrate (20 Ohm.cm) together with
a 0.5 Ohm.cm pwell. The modeling section describes the distributed substrate “resistor” and
the DUT fixture behavior.

Keywords: substrate coupling, isolation, guard ring, HV CMOS

1. INTRODUCTION

Substrate coupling becomes more and more a hot topic for modern process techno-
logies [1] [2]. Especially in the case of mixed signal designs, it is absolutely essential
to estimate the possible interactions between digital and analog blocks in order to
avoid crosstalk [3]. The classical interaction generated by digital switching noise is
challenging to suppress to analoge circuits and often RF frontends are limited by these
interferences. Today excellent TCAD software is available but for such design issues
fiot accurate enough. Substrate effects are mainly determined by parasitics which are
the reason why simulations are not sufficient enough thus a testchip is a must.

The use of a multi die system is usually the best solution, but nevertheless, single
die solutions are more cost effective and thus highly preferred.
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2. SUBSTRATE COUPLING - OVERVIEW

Coupling paths. Substrate coupling is a very complex topic because there are many
possible coupling scenarios: Devices like CMOS/HBTs [4], resistors, capacitors and
interconnect structures inject additional currents into the substrate through inductive
and/or capacitive coupling.

Substrate coupling can also be regarded as a lack of isolation capability. To describe
such isolation effects the emphasis is put on special damping structures like guard rings.

Substrate. This paper basically investigates a very simple structure: Ohmic sub-
strate contacts. The novelty in this case is the investigation of a 0.35 pm high voltage
CMOS process, capable to handle with Vmax <= 120V. This process is based on
p-type substrate with 20 Ohm.cm and a 0.5 Ohm.cm pwell.

3. TEST CHIP DESIGN AND TEST SCENARIOS

In order to get a detailed picture of substrate coupling diverse structures have been
fabricated (Fig. 1). The test scenarios include distance and area variations of substrate
contacts (Fig. 2), p+ guard ring isolation structures with diverse contact spacings
(GRS), and ring thicknesses (GRT) (Fig. 3) [5]. Additionally structures with a metal
shield beneath the signal pad to avoid coupling to substrate are also subject of interest
(Fig. 2).

mames

RO GHONOMY BRI ey
) SIS STENS SAEw
Tl ST R BN

Fig. 2. Structure for substrate coupling measurement
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Fig. 3. Structure with p-+ guard ring isolation

4. MEASUREMENT SETUP

DC Measurement. The parallel and series resistances of the test structures have
been checked with a high precision multimeter. The obtained values are in accordance
with s-parameter measurements and were used as the main input for modeling.

RF Measurement. The noise coupling between “aggressor” and “victim” was
characterized with s-parameter measurements of the transfer parameter [S12] or |S21]
(in case of symmetrical structures both are of same magnitude). This was done with
an AGILENT"™ 8722D VNA from 0.1 to 40 GHz with Inifinity"™ GSG probes (100pm
pitch) on a manual Cascade™ probestation.

Measurement accuracy. DC measurements are basically most accurate and easy
to realize whereas RF measurements are critical. Especially the dynamic range of the
receiver in the VNA is the limiting part. In case of on wafer measurements additionally
probe crosstalk lowers the dynamic response dramatically, which is also a function of
distance of the probes.

5. CHARACTERIZATION RESULTS

Ohmic substrate contact. The first investigated structure includes ohmic substrate
contacts in pwell at distances varied from 25, 50, 100 and 200 um (Fig. 4) [6]. It can
be observed that in first order damping increases linear with distance but there is also
a trend observable, especially at 100 to 200 micron distance, that damping increases
much more. This effect is discussed later under the topic “additional effects”.

Fig. 5 shows the measurements for a similar test case like in Fig. 4 but includes now
P+ guard rings. The contact area was A = 10x10 um, guard ring spacing (GRS) 10 pm
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and the guard ring thickness contains three contact rows (GRT = 3). A clear trend of
distance variation can be seen. The most effective measure to obtain good damping
is the introduction of the guard ring. An increased distance between “agressor” and
“victim” as remedy for isolation is by far not as effective [7].

freg § BN

Fig. 4. Damping of pwell substrate contacts (area = 10x10 um)

1924) & 1812 7 1ab}

Frog / {QHe]

Fig. 5. Damping of pwell with p+ guard ring isolation at “victim” and “aggressor” side.
(A = 10x10 pm, GRT = 3, GRS = 10 pm)

Layout variations of p+ guard rings. Several layout variations have been investi-
gated with following values: Contact area with 10x10 um and with 20x20 um, guard
ring spacing varied from 2.5, 5 and 10 um and the guard ring were designed with
three, six and twelve parallel contact rows.
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ETQ.
T The results can be seen as an example in Fig. 6 and Fig.7, which are quite similar
ar trend of to Fig. 5. A tendency of some dB damping improvement can be seen only in the range
d damping <= 1 GHz for better guard ring to substrate connections with doubling the contact
essor” and rows (Fig. 7) and a placement of the guard ring as close as possible to the “aggressor”

and to the “victim” (quarter the GRS) (Fig. 6).

A small summary valid for freq. <= 1 GHz can be seen in the table below for
A = 10x10 um and for a substrate contact distance of 25 pm:

Fig. 4: No guard ring — 27 dB

Fig. 5: GRT =3, GRS = 10 mm  — ~68 db

Fig. 6: GRT =3, GRS =25 mm — -73dB

Fig. 7: GRT = 12, GRS = 2.5 mm — -75 db

1524 & 189217 )

frug £ {0}

Fig. 6. Damping of pwell with p+ guard ring isolation (A = 110x10 pm, GRT = 3, GRS = 2.5 pm)

1524 & (18 7 1)

r’’ side.

been investi-
0 pi, guafd ' frag £ IGMR
esigned with T

Fig. 7. Damping of pwell with p+ guard ring isolation (A = 10x10 um, GRT = 12, GRS = 2.3 um)
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Metal shielded DUT structures. To guarantee reliable measurements the influence
of the pad to substrate coupling had to be checked.

1824 K 1997 1 o

Trag { GHx

Fig. 8. Damping of pwell substrate contact and of pwell with p+ guard ring isolation — with and without
metal pad shield

In the case of substrate pwell connections there is no difference recognizable
(Fig. 8), but in the case of high isolation guard ring structures one can observe an
improvement of up to 10 dB. This can be explained in the following way: The pad to
substrate capacitance is negligible in the case of a pwell connection without guard rings
whereas in the case of additional guard rings this capacitance becomes an important
part. Thus metal shielded pads are essential to improve the s-parameter measurements
for substrate coupling.

6. MODELING SECTION

Ohmic substrate contact. In this section the modeling of a substrate contact
without any isolation structure (contact area = 10x10 wm, contact distance = 25 pm)
is presented (Fig. 9) [8] [9] [10].

The SPICE simulation (Fig. 10) is in good agreement with the measurement
(Fig. 11). The modeling takes over the resistancs from the DC measurements and
the additional inductive and capacitive values are fitted with a MATLAB™ routine
[11].

The core of the schematic consists of a Il-resistor network which reflects the
distributed “substrate resistor”; additional the parasitics are taken into account by in-
ductances and by the pad to substrate capacitors [12].

p+ guard ring. The resistance values are again from the DC measurements and
the inductances and capacitance values are calculated for best fit. The SPICE schematic
(Fig. 12) can reproduce the measurement (Fig. 14) in quite good agreement (Fig. 13).
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Fig. 9. Schematic for pwell substrate contact test structure. The resistances are taken over from DC
measurments, the remainder device data are fitted values

Fig. 10. Simulation of the schematic for a substrate connection
(because of symmetry: |S11] = |S22] and |S21] = [S12])

Fig. 11. Measurement data for comparison to Fig. 10




386 W. C. PELANZL., E. SEEBACHER

ET.Q.

Fig. 12. Schematic for pwell substrate contact structure with p+ guard ring.
Only the device values are changed

Fig. 13. Simulation of the schematic for an p+ isolated substrate connection

Fig. 14. Measurement data for comparison in case of a p+ isolated substrate contact
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7. ADDITIONAL EFFECTS

“Guard ring effect of bare structure”. Due to area saving no circle structures
have been fabricated [13] in order to get as much test szenarios as possible on one
chip. The disadvantage is that a kind of “guard ring effect” takes place which is shown

in Fig. 15:
GND [ GND
fh."'_
O
7 Yoo
GND [ £ GND
GND GND

GND GND

Fig. 15. Schematic for understanding the “guard ring effect” of bare structure due to grounding. The
upper structure mainly couples via substrate. The longer the distance between the substrate contacts
(bottom picture), more coupling takes place to the ground pads which is illustrated by thick arrows

Due to grounding the DUT structure, the interaction changes from the substra-
te contacts to the ground pads. This additional effect has to be taken into account
interpreting the measurement data. The longer the distance in between the substrate
contacts, the more of this effect can be observed.

8. CONCLUSIONS

Substrate coupling has been investigated for substrate contacts in a 0.35 um HV
CMOS process (Vmax <= 120 V, 20 Ohm.com substrate, 0.5 Ohm.cm pwell).

It is shown that p+ guard rings can provide a quite good damping behavior for
frequencies <= 1 GHz. The isolation does not strongly depend on the layout. For
: reliable measurements additional metal pad shields are applied to suppress unwanted
‘ capacitive pad to substrate coupling.

All measurement results are checked for plausibility and measurement accuracy.

tact
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de.org This paper presents an overview of advanced thermal analysis methods. The measured
A Triple-well heating or cooling curves allow the derivation of time constant spectra, structure functions
and complex thermal impedances. These characteristics contain a lot of information on the
device, and can be used to investigate the internal structure of the electronic package. The
entire methodology is illustrated based on the example of two silicon carbide power diodes.
These diodes provided by different manufacturers have the same ratings and package type
but one of the diodes exhibits oscillatory behaviour when used in a power converter. The
presented results of thermal tests and analyses confirmed that there exist between the two
devices important differences in their internal structures, possibly indicating the presence
of some imperfections in the die attach or the wire bonds.

Keywords: Thermal structure functions, electronic package properties, network identification
by deconvolution, thermal impedance

1. INTRODUCTION

Recent intensive research in the thermal management of electronic systems has
led to the development of new dynamic thermal analysis methods and tools. Some of
these tools turned out to be useful not only for the solution of purely thermal problems
but also found their application in the identification of structure geometry or material
Physical properties, fault detection, etc. In particular, this paper will demonstrate how
t apply these methods for the investigation of electronic device packages. First an
overview of the thermal measurement and analysis methods, together with some of




390 J. BANASZCZYK, M. JANICKI, B. VERMEERSCH, G. DE MEY, A. NAPIERALSKI ET.Q.

their underlying theory, is given. In the second part of the paper the example of two
SiC power diodes is used to illustrate how the proposed methods are able to indicate
internal package faults.

2. THERMAL ANALYSIS THEORY

Before different types of thermal analyses of a given structure can be carried out
it is necessary to perform adequate temperature measurements. Therefore, initially this
section will discuss some important issues related to electronic circuit temperature
measurements. Then, various thermal analysis tools and methods, such as the structure
functions and the thermal impedances will be explained in detail.

2.1. THERMAL TRANSIENT MEASUREMENT

The temperature measurements of an electronic circuit can be taken using a forward
biased p-n junction. When the bias current is constant; the voltage drop across the
junction serves as the measure of temperature. From the theoretical point of view
temperature should be measured as a response to the power step excitation. However,
this solution requires using the same junction both for heating and measurement, which
might cause some technical problems during the practical realisation. An alternative
approach, used also in this paper, is to heat the junction till steady state condition is
reached and to switch the power off. In this way a cooling curve is captured. Providing
that, as explained later, some basic requirements are met, and assuming that a given
system is linear, the cooling curve is the compliment of the heating curve and contains
exactly the same information.

The key issue in the measurements of thermal transient responses is the time re-
solution of the recorded data. Namely, measured structures usually consist of multiple
layers made of different materials (silicon chip, package, cooling assemblies), each
having different geometry and thermal properties. Consequently, the thermal respon-
se curves are a superposition of many exponential curves corresponding to different
time-constants, which might span even over 6 decades in time. Therefore, equidistant
sampling on the logarithmic time scale should be used for the acquisition of thermal
transient curves. Only then all the time-constants can be identified.

Similarly, since the thermal transients are very rapid, the most important tem-
perature changes happen in the very beginning. Thus, the logarithmic time scale is
advisable also when presenting graphically results of transient thermal measurements.

2.2. NETWORK IDENTIFICATION BY DECONVOLUTION

The thermal time-constants can be identified from the measurements employing
the Network Identification by Deconvolution (NID) method, which was originally de-
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veloped in the eighties by Szekely and van Bien [1]. This method uses thermal transient
data equally spaced on the logarithmic time scale as it was explained before. Next, a
deconvolution operation is carried out and the time-constant spectrum is computed.
Then, the spectrum can be further transformed into the structure functions, which are
introduced in the following subsection.

lﬁ(t) A w(t)

(a) g

(b) —>»
t t

P

Fig. 1. Dirac-delta (a) and unit-step (b) functions with their respective responses

From the network theory it is known that time responses of a linear circuit to ar-
bitrary excitations can be found as the convolution of a particular excitation and some
characteristic functions w(t) and a(t), which are circuit responses to the Dirac-delta
function 6(f) and the unit-step function A(z) respectively (see Figure 1). For the feasi-
bility reasons, the unit-step function A(¢) is usually used in practice. Conversely, if the
temperature response to a given excitation is known, it is possible to determine the
corresponding characteristic functions performing a deconvolution.

Bach real structure can be subdivided into smaller parts transferring heat to the
neighbouring regions. If power is applied to a single point of the structure, it is possible
to construct an equivalent one-dimensional model which produces exactly the same
temperature response. Such a model takes the form of an equivalent RC network.
Thus, each network can be fully characterized with the time-constant spectrum, by
specifying the exact position and the magnitude of its time-constants. Because real
physical structures are continuous their time-constant spectra are also continuous and
become spectral density functions. For such distributed systems, their thermal responses

to the unit step excitations can be found from the time-constant spectra using the
following formula:

o0

alt) = fR,h (M) [1 = exp (~t/t)]dr ¢))

0
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When the time variables ¢ and 7 in the above equation are replaced with their
logarithmic counterparts z and ¢ and exp(z — exp(z)) is represented as w,(z), the
following convolution integral can be derived [2]:

o0

d—‘ia@ - f Ry (©) - w, (2 — £)dé @)
Z
0

Consequently, for an exemplary time-constant spectrum shown in Figure 2, three
dominant time-constants can easily be identified at 7(, 75, 73.

Concluding, according to the NID method, the time-constant spectrum can be
found by subsequent execution of the following tasks: the acquisition of the he-
ating/cooling curve, the derivation of the recorded curve and the numerical deco-
nvolution.

A

R(t) [K/W]

\ T [s]

A 4

T1 To T3

Fig. 2. Exemplary time-constant spectrum

2.3. STRUCTURE FUNCTIONS

The computed time-constant-spectra can be used to obtain the so-called structure
functions which are extremely useful for the thermal analysis of electronic circuits. With
finite accuracy, continuous spectra can be discretized to obtain the Foster canonical
form representation, which in turn can be converted to the Cauer canonical form [3].

The Cauer networks can be represented, as illustrated in Fig. 3, by the so-called
cumulative structure functions Cx(Ry), which constitute a kind of thermal resistance
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and capacitance map for the entire heat-flow path. The origin corresponds to area
where the power is dissipated, while the singularity at the end can be associated to the
ambient. The plateaus in the curve relate to a certain mass of material from where the
C,, values can be read. ‘

The derivative of the cumulative thermal capacitance with respect to the thermal
resistance is the differential structure function. This function, also shown in Figure 3, is
extremely useful as well. The peaks, which are easily visible, correspond to the changes
in material through which heat is diffusing, so they can be attributed to different stages
of the heat flow path, such as the chip, the package or the cooling assembly.
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Fig. 3. Exemplary cumulative (a) and differential (b) structure functions
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Because the differential capacitance K is proportional to the square of the cross-sec-
tional area of the heat-flow path, it is possible to determine the dimensions of the parti-
cular layers in an examined structure. The structure functions allow the reconstruction
of the structure or the heat-flow path, with the resolution of about 20 points along
the path. They render possible the identification of the partial thermal resistances, as
well as the detection and the localization of the heat-transfer irregularities. Therefore,
structure functions are excellent tools for the thermal characterisation of electronic
structures and the detection of their faults.

2.4. THERMAL IMPEDANCE

Another possible way to describe the dynamic thermal behaviour of electronic
circuits is to utilize the complex thermal impedance. This impedance can be computed
performing the Laplace transform of the measured structure transient thermal response.

The manufacturers of electronic circuits usually provide in their data sheets the
junction-to-ambient thermal resistance. This value contains information only about
the steady state operation of the circuit. The information about the dynamic thermal
behavior is conveyed by the thermal impedance curve. The thermal impedance Zy,
is defined as the ratio between the temperature rise and the dissipated power. When
power is continuously supplied to the circuit the temperature increases until the system
reaches steady state. Then the thermal impedance and resistance are equal. The thermal
impedance as a function of frequency can be represented in the complex plane by the
Nyquist plot with the angular frequency as the parameter, as shown in Figure 4.

The thermal impedance plot is a very convenient tool, which characterizes the
thermal behaviour of the entire system including the silicon chip, the package and
the cooling mount. The Nyquist plot shown in Figure 4 corresponds to the thermal
time-constant spectrum presented in Figure 2. Each of the components in the transient
response corresponding to a dominant time-constant will give rise to a circular arc
in the Nyquist plot. The so called central frequency (i.e. observed in the point at
the bottom of the circles), is closely related to the reciprocal of the corresponding
time-constant 7. Note however that if the dominant time-constants are lying relatively
close to each other, the circles can no longer be distinguished separately. Some of the
arcs will merge together, leading to a curve as shown in Figure 4. More detailed theory
about the thermal impedance and its properties can be found in [4]-[6].

3. PRACTICAL EXAMPLE

To illustrate the capabilities of the NID method in practice, two silicon carbide
Schottky diodes were investigated. These devices, both in TO-220 packages and rated
for the same current and voltage, were made by different manufacturers from the same
semiconductor substrates. Thus, theoretically they should behave similarly. However,
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Fig. 4. Exemplary Nyquist plot of thermal impedance

when used in a power converter, unexpected oscillatory behaviour during the switch-off
of one of the diodes was observed. Such a result might be caused by a poor connection
or partial delamination inside the package, e.g. at the leads, as this introduces some
parasitic elements in the electrical circuit. To investigate this problem, the earlier de-
scribed thermal analyses were performed, providing us information about the internal
package structure.

For the investigation we used the thermal transient tester T3Ster manufactured by
the Micred company, a part of the Flomerics group. The tester is capable of apply-
ing a power step to the diode and sampling its junction temperature with the very
high time resolution of 1 ps. The result of the measurement is a temperature cooling
or heating curve. Based on the measured curves, the software, provided also by the
Micred company together with the thermal tester, allows the robust extraction of the
time-constant spectrum and the thermal impedances by means of the NID method.
A diode is a one-port device with one p-n junction which at the same time plays the
role of a heat source and a temperature sensor. Due to this fact it is impossible to
dissipate heat and measure the temperature of the junction simultaneously. That is why
in our measurements we had to resort to the cooling curves. As mentioned before,
when using cooling curves we assume that the system is linear. Furthermore, we need
to be sure that at the end of the heat-up phase the system has reached equilibrium
before the measurement is started, otherwise a special correction algorithm has to be
used [7].

In order to increase the resolution, the measurements were taken in the conditions
assuring small thermal impedance to ambient. Namely, the devices were attached to
a large heat sink and placed in a wind tunnel. The wind speed was set to the maxi-
Mum attainable in this tunnel, i.e. 4.15 m/s. Owing to this set-up, it was possible to
emphasize the heat flow path inside the package and gain information on the internal
package structure. The forward diode current was equal to 2 A, as in the original power
converter. This caused the temperature rise of almost 13 K for the power of 2.76 W.

The measured cooling curves, containing the information on the heat flow path
ween the junction and the ambient, were processed further in order to obtain the
rmal time-constant distribution, the thermal impedance plot and the corresponding
fferential structure function presented in Figures 5-7 respectively.

bet
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Fig. 5. Time-constant spectrum of the investigated diodes

The obtained time-constant distribution clearly shows that there are five peaks
located between the values of 100 us and 100s. These peaks correspond to the particular
sections of the heat flow path, i.e. the chip, the package and the radiator. As can be
seen, the replacement of the diode affects only the two peaks related to the most inner
parts of the package. The first time-constant is shifted by some 200 ps to the right for
the SPD04S60 diode.

Re(Zy) [K/W]

0 1 2 3 4 5
0.0 ' : ' - =
4= &
e SDP04S60
¢ = CSD04060) L emw ="
& A4 ¢

L P
LN

IM(Zy,) [K/W]
&
i

Fig. 6. Thermal impedance plots of the measured diodes

What is more, for the same diode the second time-constant corresponding to a
few milliseconds is considerably bigger, which confirms the presence of an additional
thermal impedance inside the package. This might indicate that there exist some wire
bond or die attach of high thermal and electrical resistivity. Otherwise the thermal
time-constant spectra are almost identical, signifying that the only differences are in
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the internal structure close to the semiconductor die and that the outer packages have
the same thermal properties.

By comparing the thermal impedance plots we make similar observations. The
leftmost circle, corresponding to ‘the internal part of the package, is much bigger for
the SPD04S60, while the low frequency parts of the plots have the same shape in
both cases. Again, this suggests a presence of an additional thermal impedance inside
the package. It is difficult to recognize circles in the portion of the plot related to the
package. If we take a look at the time-constant spectrum we will see that the time-
constants for the middle-frequencies are rather distributed than sharply defined. This
gives rise to many circles with similar centre frequencies, which merge and result in a
rather irregular curve. However, if the time-constants are sufficiently separated in time
the circles can be easily observed, as in the case of the leftmost and rightmost ones,
corresponding to the chip and the heat sink respectively.

s ——SDPO4SE0
10° 7 = = (CSDO4060
K
1044
&
N
~
[75]
=
N
6

Rin [K/W]

Fig. 7. Differential structure function

The analysis of the differential structure functions of the Schottky diodes leads to
similar conclusions. The peaks in these structure functions indicate consecutive layers
of material in the package. The first peak visible in both curves represents the silicon
substrate and the last one is the package body. Finally, the curves tend to infinity,
which represents the infinite thermal capacitance i.e. the surrounding ambient. As can
be seen, in the case of the SDP04SG0 diode the second peak is considerably flattened
and shifted. This indicates a presence of an extra thermal impedance of almost 1 K/W,
Presumably air voids in the die attach, caused by a faulty contact between the leads
and the substrate.
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4. CONCLUSIONS

The presented results of the research confirm that the NID method and other related
dynamic thermal analysis tools might prove extremely useful in the investigation of
the internal structure of electronic packages and the identification of package faults or
other imperfections. Similar results to the ones presented here were published in [8],
where the authors used the same equipment for the investigation of a power transistor
in the TO-220 package.
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This paper presents a design approach based on the splitting of the power transistor
for smart power applications. The design approach is applied to realize a High Side Power
Switch with a configurable output in Smart Power Technology. Experimental results are also
presented and discussed.

Keywords: Smart Power, High Side Power Switch, DMOS

1. INTRODUCTION

Protections and diagnosis became more and more important in automotive power
applications. Main reason for this trend are safety requirements, high reliability and
complex power management of modules in a car. Within the last few years the number
of power modules in the automotive environment has rapidly increased. Smart power
high side drivers are not simple switches any more, but also systems for providing
information about power and fault conditions. The high side power switch has to
withstand fault conditions like short circuit, reverse battery, inverse current operation
or overvoltage. The on-resistance of switches is typically in the range of 6 to 200 mQ.
Most of the applications require PWM operation with frequencies between 50 and
200 Hz typically to serve the needs of loads like bulbs, small motors or heating
systems.

Vertical Power MOSFETs have been attractin g a lot of attention in last few decades.
They are used for a variety of low voltage power switching applications because of
their superior forward conduction characteristics, high switching speed, high input
impedance, good thermal stability and easy integration [1]. High current, high power
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MOSFETs are integrated monolithically with a planar IC technology which allows
the design of controls, interfaces and protective circuits. The outcome is a technology
class known as “Smart Power” [2, 3]. Choosing both the processing technology and
the design methodology carefully, high performance with high fabrication yield and
low costs can be obtained {4]. This makes a large chip surface area more economically
viable, and the power dissipation for different current values can be optimized by sizing
the Power MOSFET (DMOS) area [5]. A trade off between optimum static losses and
DMOS area is still necessary due to chip cost constrains. By minimizing transition
times (rise and fall time) the energy dissipation during switching (which is significant
for loads driven with Pulse Width Modulation, PWM) can be reduced. A trade off is
also necessary between dynamic losses and switching time, due to Electro-Magnetic
Interference (EMI) [6]. EMI can be reduced using different techniques, but design effort
and area requirement for reliable results are quite demanding [7]. Due to the different
application trade offs, designing versatile and cost effective products is a challenging
task. In this paper we report a flexible solution for a High Side Power Switch realized
in smart power technology and we discuss the results of its implementation. An analog
approach can also be applied to Low Side Power Switches.

2. ADAPTIVE POWER SWITCH

A modern power switch is able to be much more than a simple relay. It is controlled
via digital inputs and can be equipped with a Serial Peripheral Interface (SPI) for use in
microcontroller-based applications. It performs load switching with a controlled output
slope (Slew Rate, SR) and timing (Turn ON/OFF Time, Ton/Topr) for controlling
switching losses and EMI. It has embedded protection features against output short
circuit (current limitation, Ijpv) and overtemperature (thermal shutdown) conditions
for improved reliability. It provides feedback on load current (a sensing current Isensg
= Iroap / K is provided at the Sense Pin IS), open load and overload for enhanced
diagnostic strategies [8]. In the steady state condition, the switch is characterized with
an On State Resistance (Ron). A block level description of a modern high side power
switch is shown in Fig. 1.

According to the load type and application, the suitably configured switch should
be selected. However, from the manufacturing and assembling point of view, it would
be cheaper to use the same switch type for different loads. In cars, the problem often
faced is where LED lightning is mixed with fluorescent bulb lightning; an example
of such an application is presented in Fig. 2. Here for LED and bulb back lights a
different power switch would be required, otherwise not all the loads can be driven in
the most efficient way. For this reason an adaptive power switch can be a cost-effective
solution when being used with such mixed load boards.

The switching module is equipped with a single versatile component and the most
suitable configuration is defined via software from the application itself. Each configu-
ration requires specific switching parameters, according to the following considerations:
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m often LED lights are mainly driven with PWM and the duty-cycle can vary in the full
example range 1-99% for dimming, so high slew-rate and short switching times are required.
lights a The fast switching does not have any drawback in terms of EMI due to the reduced
iriven in current consumption. For bulbs this is not the case, so the slew rate must be reduced
effective and the switching time consequently increased.
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e Load to Sense current ratio (K)
For the different nominal load currents, the constant “K” in the formula Isgnse =
ILoap/K must be adjusted. For an accurate diagnostic it is necessary to get, in both
cases, an Ispnse in the range of hundreds of microamperes for the nominal output
current.

e Power MOS On State Resistance (Ron)
It is a key parameter in case of bulb lamps and is directly related to power losses
(not so important in the case of LED).

3. DESIGN APPROACH

Design target in this paper is a High Side Power Switch capable of two different
output configurations named “Bulb” and “LED”. The configuration “Bulb” is optimized
for driving bulb lamps and the configuration “LED” is optimized for driving LED
lights. Differences between the two configurations are described in Table 1. The set
of parameters in “LED” mode are obtained scaling the values in “Bulb” mode by
a common factor N. Making use of the constant ratio N, it is possible to get the
desired results with the output configuration in Fig. 3, where N = 3 has been chosen.
A Power DMOS is used for switching, while a small part of the same device (Sense
DMOS) is used for output current sensing. The DMOS is driven with a constant
gate current (Icyarce/Ipiscuarce) and the switch T1 is programmed according to the
selected “LED” or “Bulb” mode. An Operational Amplifier (OA) ensures the same
biasing at the Power and the Sense DMOS for better sensing accuracy. All the circuitry
(charging/discharging block, current sensing block and current limitation block) are
designed according to the specifications in “Bulb” mode with the switch T1 closed.
Opening T1, the DMOS active area decreases to 1/3 of the original size and the
gate capacitance scales accordingly. In agreement to the gate charging equation (1), a
reduction in gate capacitance results in a faster switching:

OVoare _ Icare M
ot Ceate
Opening T1 increases the slew rate by a factor of three and the switching time

decreases by the same factor. Because the Sense and Power DMOS have the same
drain-source voltage, the load to sense current ratio can be written as:

_lroap PowerDMOS preq
B ]SENSE B SenseDMOSA,.ea

From equation (2), with T1 being open, the load to sense current ratio is three times
smaller. Since the current limitation circuit refers to Isgnsg, the output current limit
decreases by a factor three as well. The specifications for “LED” mode are obtained
simply by opening T1. No additional circuitry in the DMOS Driver stage is necessary

K (2)
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Design requirement: differences between “LED” and “Bulb”

Isense

apart for T, so the impact in terms of area is quite low if compared with other solutions
[9]. As a benefit for design robustness, no reconfigurations of the analog stages (i.e. gate
charging, gate discharging, current monitor and current limitation blocks) are needed.
Moreover, this approach brings a benefit in terms of current sensing accuracy based
on the fact that the DMOS Ron increases in “LLED” mode (higher DMOS drain-source
voltage reduces the impact of the operational amplifier offset on sensing accuracy).
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Fig. 3. Selection of switch configuration based on DMOS splitting

Mode selection, as shown in Fig. 3,

is done via an external pin, but can be
controlled via an internal SPI as well. In P

rinciple at each load switching a different
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switching mode can be selected. Two configurations have been implemented, but with
further partitioning of the DMOS and adding T, switches, the number of modes M
can increase according to the application. For the present realization the overall Power
DMOS area has been defined to have a 20 mQ ON resistance. Additional parameters
for “Bulb” mode are: SR = 200 mV/us, Ipm = 22 A, K = 3000.

4. EXPERIMENTAL RESULTS

A lot of twenty samples has been packaged in a power plastic package and me-
asured over a wide temperature range using automated test equipment for high volume
production [10]. The results are presented in figures 4-6. The three figures present key
parameters of all twenty samples as function of temperature. This way of presenting
results is typical for automated test equipment. Figure 4 presents the output to sense
current ratio “K”. The parameter has been measured with a load current of 2A in
“Bulb” mode and 0.5A in “LED” mode. “K” scales as expected (factor three) and due
to the increased resistance in “LED” mode the sensing accuracy remains good in the
low current range. Using the same loads, the switching performance has also been
measured.

K: LED MODE

* 1000

0.8 e T T o TP P T T T PP [T P P PP PP PP T PP PP PP e TPy

-40 -30 -20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
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Fig. 4. “K” factor measured over temperature on 20 samples for both “LED” and “Bulb” loads

Results are presented in Figure 5 as the output slew rate. The parameter scales
down from “LED” to “Bulb” mode by a factor about 2.7. Responsible for the shift
from target value are capacitances connected to the DMOS gate line in the driver stage.
Reducing them is possible to get closer to the target “LED / Bulb” ratio (three in this
case). The curve bending visible in Bulb mode at high temperature for the most of the
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samples is caused by a weakness of the DMOS driver and is not related to the splitting
concept. Figure 6 presents values of the current limitations measured under short circuit
condition with a battery voltage of 13.5V. The short circuit measurement set-up is the
same for both “LED” and “Bulb” mode. The current limit scales as expected.

"0 OUTPUT SLEW — RATE: BULB MODE
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Fig. 5. Slew-rate measured over temperature on 20 samples for both “LED” and “Bulb” loads
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Fig. 6. Output current limit measured over temperature on 20 samples for both “LED” and “Bulb” loads
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5. CONCLUSION

A design method for the realization of adaptive power switches has been introdu-
ced. M is defined as the number of potential output configurations of a single switch
or application modes. M is theoretically not limited. The configuration can be selected
at any time via a dedicated pin or, if available, SPI command. An implementation
of a high side power switch in Smart Power Technology with M = 2 optimized for
driving LED and bulb lamps has been presented. The measurement results confirm the
expectations, but also suggest a more accurate evaluation of the overall capacitance
at the DMOS gate line is needed. DMOS splitting technique appears as a promising
solution in terms of performance, design effort, cost and product reliability for the
realization of adaptive power switches and a variety of smart power circuits which
contain large power transistors.
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Prof. dr hab. inz. Krzysztof W. Wawryn
Politechnika Koszalifiska

Katedra Teorii Obwodow

i Uktadéw Elektronicznych

Mgr inz. Krzysztof Wiostowski
Politechnika Warszawska
Instytut Telekomunikacji

Dr Piotr Witoriski
Politechnika Warszawska

Instytut Mikroelektroniki i Optoelektroniki

Pik. dr hab. inz. Marian Tadeusz Wnuk
Wojskowa Akademia Techniczna
Instytut Telekomunikacji, Warszawa

Prof. dr hab. inz. Jacek Wojciechowski
Politechnika Warszawska,
Instytut Systeméw Elektronicznych

Prof. nzw. dr hab. inZ. Andrzej Wajtkiewicz

Politechnika Warszawska,
Instytut Systeméw Elektronicznych

Dr. inz. Wajciech Wojtasiak
Politechnika Warszawska
Instytut Radioelektroniki

Dr inz. Adam W. WoZniak
Politechnika Warszawska
Instytut Automatyki

Prof. dr hab. inz. Waldemar Wéjcik
Politechnika Lubelska
Katedra Elektroniki

Prof. dr hab. inz. Jézef Woiniak
Politechnika Gdariska
Katedra Systeméw Informacyjnych

Dr hab. inz. Zygmunt Wrébel
Uniwersytet élqski
Instytut Probleméw Techniki

Dr inz. Wojciech Zablotny
Politechnika Warszawska
Instytut Systeméw Elektronicznych

Prof. dr hab. inz. Janusz Zarebski
Akademia Morska

Katedra Radioelektroniki Morskiej,
Gdynia



