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Detection of human finger joints in ultrasound
images: structure and optimization

Artur Bąk, Kamil Wereszczyński, Jakub Segen, Paweł Mielnik, Marcin Fojcik, and Marek Kulbacki

Abstract—Synovitis is the inflammation of a synovial mem-
brane surrounding a joint. Its assessment is an important step
in the diagnosis and treatment of rheumatoid arthritis. Joint
detection is the first stage of an automated method of assessment
of a degree of synovitis, from an Ultrasound (USG) image of a
finger joint and its surrounding area. A joint detector consists of
three parts: image preprocessing, feature extraction, and classi-
fication. Each part contains adjustable parameters that must be
set experimentally to ensure the proper operation of the detector.
Both the structure of a joint detector and a procedure for finding
a near-optimal configuration of the adjustable parameters are
described. The optimization process is based on two evaluation
measures: Area Under the Receiver Operating Characteristic
Curve (AUC) and False Positive Count (FPC). The optimization
process decreases the number of pictures with multiple detections,
which was the main point of works presented in this paper.
This was achieved by increasing the number of components of
the homogeneous mixed-SURF descriptor which has the greatest
influence on the final result. Non-SURF descriptors achieve
poorer classification results. Our research led to the creation
of a better joint detector which could positively influence the
final results of inflammation level classification.

Keywords—SVM; USG; SURF; synovitis; feature extraction;
classification

I. INTRODUCTION

BOTH diagnosis and treatment of rheumatoid arthritis rely
in part on determining the degree of synovitis, which

is an inflammation of a synovial membrane that surrounds
a joint. The assessment of synovitis is commonly done by
a specialist examining ultrasound (USG) images of finger
joints and surrounding areas [1]. An objective of the research
conducted by the authors is the construction of a synovitis
estimator for automated assessment of a degree of synovitis.
The application of such an estimator is an automatic assist is
a form of primary assistance in rheumatoid arthritis diagnosis
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by doctors. The main aim of the whole system is to speed up
the work of radiologists preserving the level of its reliability.
The presented work aims to optimize one of the modules of
such a system: a joint detector.

The main system consists of several modules: low-level
biological structure recognition (joint, skin, and bones that
are depicted in Fig. 1), synovitis extraction, and marking of
the inflammation level. This article presents the optimization
process of a joint detector which is one of the low-level
detectors and was described in [2]. As was mentioned in the
cited paper, the original version of the joint detector returns
more than one point recognized as a joint center in the case of
ca. 30% of images. The Synovitis extraction process demands
one joint center as the input. Therefore further processing for
images that have more than one joint detection cannot proceed.
To overcome this problem, the optimization of joint detection
is necessary and should lead to a decrease in the number of
multi-detections of the joint center.

Fig. 1. An example USG image with marked biological structures: 1-
synovitis, 2-bones, 3-skin, 4-joint area

In a previous work [2] we proposed different methods of
efficient description of pixels used in the automatic search
of joints in images. We have shown that using the same
methods, but with different parameters, improves the result.
In the current work, we present the results of the examination
of this fact in more detail. We have proven that adding
another version of the same method with different parameters
reduces the number of multiple detections. We also present
the results of an examination of some other methods, but they
turned out to be less effective than those mentioned above.
The investigations of the non-homogeneous concatenations
of different methods also proved that their results were not
satisfactory. Based on previous work, we also assumed that
the last part of the detector (classification method) should not
be changed. It has been shown, that the selected classification
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method combined with proposed descriptors obtains the best
effectiveness among many other tested classifiers.

To summarize, this paper presents the process of joint detec-
tor optimization. The main assumption is that the optimization
process will lead to a reduction in the number of images
with multiple detections obtained in previous work. First, we
describe several methods and their combinations with partial
results, and then we present the final result of the selected
combination of methods.

The results will be shown in reference to the annotation
made by domain experts using commonly known measures,
which are described in section II. We assume at this point that
if the automatically indicated joint center is not far from the
center of the joint indicated by the domain expert, both the
precision of joint detection and selection process are sufficient.
The meaning of the ”far” concept is also introduced in section
II.

II. MATERIALS AND METHODS

The joint detector consists of three parts: (a) image pre-
processing, (b) feature extraction, and (c) pixel classification.
Each of these parts can be configured with adjustable param-
eters. For example, one of such parameters is the type of
feature extraction. There are many types of pixel descriptors
like SURF [3], [4], and others. Another example of a parameter
is the size of the window used for Gaussian filtering. The
values of the parameters could significantly affect the results
of the detector. The optimal value (e.g. best pixel descriptor
or best Gaussian filter value) should be determined in the
optimization process. The final version of the joint detector
uses these selected parameter values as input information. We
could not expect that the optimum values for each parameter
will be achieved, because of their large amount. Therefore
we expect sufficiently optimal parameter values. The decision
if a given set of parameter values is sufficiently optimal is
made according to achieved results. We are not able to check
all possible values of all parameters. Therefore we introduce
some measures for partial results. If we find that the partial
results of one of the parts of the joint detector are reasonable,
we will use these results for the optimization of the next part
of the joint detector. In the current section, each of these three
parts and measures of partial results evaluation are shortly
described.

Finally, we take some promising sets of parameter values
using partial results and compare the final joint detections with
joint centers indicated by domain experts. This operation is
made on the images that were not used in the optimization
process. We assume that in all cases there will be sufficient
detection, and the meaning of the ”sufficient” term will be
described in subsection II-A. All sets of parameters for which
the detector will not give a sufficient response will be assumed
as not correct. On the other hand, we attempt to reduce
the number of images that have more than one response.
The measures used for the evaluation of this reduction are
described in subsection II-F.

Regional Committee for Medical and Health Research
Ethics, Region West, Norway has approved the study (ref.
2013/743). All participants signed an informed consent form.

A. Data sets

The training data set is a collection of annotated USG
images of finger joints. The image annotations contain in-
formation added manually to an image by human experts
- the medicine doctor who annotates the ultrasound images
professionally and the persons who were trained by him to
recognize the joint, bones, skin, and the area of synovitis
in an ultrasound image. The bones and skin are marked in
the image by lines, while a joint region and a synovitis area
are denoted by outlines (closed curves), as shown in Fig. 1.
The information contained in the annotations is used to train
and optimize detectors and classifiers, as well as to test and
evaluate the results.

A polygon marks the area of the joint in Fig. 1. The mean of
its apexes is assumed as the indicated joint center. The mean of
the distances between the indicated center of the joint and each
of the apexes is called the indicated joint radius. A detection
is considered sufficient if it lies within a circle centered at the
indicated center of the joint. The radius of this circle is the
multiplication of the indicated joint radius and ε, which is the
parameter of the evaluation process.

For creating the joint detector a set of 190 ultrasound images
was used. The images come from different sessions. The
session is the set of USG pictures made in one examination.
We assume that different sessions may have been performed
on different patients. One session may contain a sequence of
almost the same pictures. For our set of photos, we took only
one photo from such a session. We divided this set of 190
images into two subsets: training (64 pictures) and evaluation
(126 pictures). In the process of training classifiers, the cross-
validation procedure involves further divisions of the training
set. All results presented in this paper were obtained from the
evaluation set and the pictures in this set were not used in the
training process.

B. Image preprocessing

The first part of the joint detector is a series of image-
processing operations. Several different operations were exam-
ined in the final classification context. The best final detection
result was obtained for grayscaling and Gaussian smoothing.
Gray-scaling is the process of changing the values of the RGB
color image into the corresponding values of one channel color
image. In the resulting image each pixel obtains a new value
from the range [0,255] connected with the original image with
function: G = 0.299R+0.587G+0.114B, where R is the value
of the red channel, G - green channel, and B - blue one. The
ultrasound images have the grayscale itself, but there are some
additional color layers. Therefore the format of the file does
not maintain this property. Gaussian smoothing is a mask filter
with a Gaussian Kernel.

The decision process of joint detection determines if a pixel
belongs to the joint area or not. This has to be processed
for each pixel of the given USG image and makes the whole
process long. That is why the count of pixels used in further
analysis should be reduced. This operation will be called pixels
preselection. For this purpose, several methods were examined
(see Fig. 2). The first approach finds the pixels that are distinct



DETECTION OF HUMAN FINGER JOINTS IN ULTRASOUND IMAGES: STRUCTURE AND OPTIMIZATION 273

within their neighborhoods, for example, the positions where
the determinant of the Hessian matrix has a local maximum.
This method uses known feature detectors like SURF [3],
BRISK [5], FAST [4], ORB [6]. The preselected pixels are
located in the picture area where the detected density of points
is high.

The other method that we examined is a simpler method that
generates denser selections. In this method, every n-th pixel for
every n-th row of the image is included in the preselected pixel
set. As a result, n×n mesh of pixels is obtained. In the training
phase, this mesh is extended by adding the pixels taken from
the joint area. In the detection phase, only the mesh of pixels
is used.

C. Feature extraction

The result of the image preprocessing phase is a modified
image and a set of preselected pixels, which is used for
feature extraction. In the feature extraction phase, feature
vectors are computed for the preselected pixels by applying a
chosen descriptor function to each pixel’s neighborhood. The
following descriptors were examined: SURF [3], ORB [6],
BRISK [5] and FAST [4].

(a) (b) (c)

Fig. 2. Preselection of pixels using methods with local neighborhood
detectors: (a) - false preselection using FAST detector: joint center (red circle)
is outside of preselected area, (b) correct preselection using FAST detector,
(c) correct, dense-like preselection

In a previous work [2] we proved, that using two con-
catenated SURF descriptors with different window sizes gives
better classification results than using only one. In the current
work, we investigated more complex versions of descriptor
concatenation. Feature vectors created by concatenating de-
scriptors of different types (non-homogeneous) and the same
type descriptors with different parameters (homogeneous)
were evaluated in the optimization of the feature extraction
part. Several homogeneous and non-homogeneous mixtures of
the descriptors mentioned above were examined. Consistent
improvement was achieved with a homogeneous mixture of
SURF descriptors.

D. Classification

Several well-known classifier types were examined as can-
didates for the classification part of the joint detector: Support
Vector Machine (SVM) [7], Decision Trees (DT) in its specific
version Classification And Regression Tree (CART) [8] and
Nearest Neighbor (NN) [9].

A CART version of the Decision Trees classifier was used
with the following parameter selection: surrogate splits, 10-
fold built-in cross-validation, and pruned branches that were
physically removed from the tree.

The Nearest Neighbor classifier was formed on a set of
pixel descriptor clusters built from positive training examples
obtained from the descriptors of pixels inside the joint area
collected from all images in the training set. In the classifi-
cation phase, if a pixel descriptor is close enough to one of
the cluster centers, it is classified as ”in joint”; otherwise it is
classified as ”outside joint”.

E. Experiments

Each joint detector is composed of three components:
image preprocessing, feature extraction, and classifier. Each
component configuration is a candidate for the final version
of the joint detector. Each joint detector candidate with specific
values of parameters is described by one scenario in a scripting
language called MEDUSA script that was developed for the
synovitis estimator project [10]. The set of scenarios for one
candidate is called a scenario template. The scenarios within
a template differ only by their parameter values.

Within our experimental environment, a very large number
of such scenarios can be generated (using scenario templates),
executed, and evaluated using two measures: AUC (Area
Under the Receiver Operating Characteristics Curve) [11] and
FPC (False Positive Count), which are described in the next
subsection. The best scenario found using this search process
is used to configure the final joint detector and its parameters.

F. Evaluation process

As was mentioned in Section II-E, two measures were used:
AUC and FPC. AUC is suitable for assessing the quality of
a classifier. It was observed that the preprocessing phase has
little impact on the AUC value. Therefore, in the first step of
the evaluation process, the AUC value was computed for each
scenario template.

As a result, the best classifier with a preprocessing com-
ponent was chosen. While the feature extractor has a very
small impact on AUC value, it has a significant influence
on FPC. Therefore, a second step was introduced, which is
to examine the influence of the feature extractor on FPC. In
this step, the image preprocessing and classifier component
settings obtained in the previous step remain unchanged. The
final result of the evaluation process was the best joint detector
components with the best parameter values.

1) Area Under the Receiver Operating Characteristics
Curve (AUC) measure: AUC methods rely on a measure R
which is a proportion of true positive rate (TPR) to false
positive rate (FPR) :

TPR =
tp

tp + fn
, FPR =

fp
fp + tn

, R =
TPR

FPR
(1)

For each image from the test set, a trained joint detector
processes the image pixels assigning to each pixel a label: ”in
joint” or ”outside joint” - this step is called detection. Each
detection result is qualified as true or false by comparing it
with the label computed from the annotations of the image
by an expert. Each symbol used in Equation 1 represents the
number of detection results belonging to a given category,
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TABLE I
DESCRIPTION OF THE SYMBOLS IN EQUATION 1

Detector
in joint outside joint

Expert in joint true positive tp false negative fn
outside joint false positive fp true negative tn

TABLE II
VARIANTS OF THE JOINT DETECTOR (GRAY - GRAYSCALE, HIST.EQ -

HISTOGRAM EQUALIZATION, BLUR - GAUSSIAN BLUR, SVM - SUPPORT
VECTOR MACHINE, NN - NEAREST NEIGHBOR CLASSIFIER, DT -

DECISION TREE CLASSIFIER, SURF - SPEEDED UP ROBUST FEATURES,
AUC - AREA UNDER THE RECEIVER OPERATING CHARACTERISTICS

CURVE)

Name Preprocess. Comp. Feature Extractor Classifier AUC
SVM1 gray,hist.eq,blur 2xSURF SVM 0.966

SVM2+ gray 2xSURF SVM 0.981
SVM3 gray,hist.eq.,blur 1xSURF SVM 0.961
SVM4 gray 1xSURF SVM 0.975
SVM5 gray,blur 2xSURF SVM 0.978

SVM6+ gray,blur 1xSURF SVM 0.981
NN1 gray,hist.eq.,blur 2xSURF NN 0.911
NN2 gray 2xSURF NN 0.928
NN3 gray,hist.eq.,blur 1xSURF NN 0.912
NN4 gray 1xSURF NN 0.925
DT1 gray,hist.eq.,blur 2xSURF DT 0.710
DT2 gray 2xSURF DT 0.749
DT3 gray,hist.eq.,blur 1xSURF DT 0.889
DT4 gray 1xSURF DT 0.887

where possible categories are: true positive, false positive, true
negative, and false negative values. The meanings of these
categories are explained in Table I.

Executing the classifier on the test set with a specified
setting of the classifier parameters will produce an R value.
The set of the R values for various parameter settings will
create a curve called the Receiver Operating Curve (ROC).
The area under the ROC is a quality measure for the classifier.
One AUC value is obtained for each joint detector. The joint
detector with the highest AUC value is considered the best.

G. False Positive Count (FPC)

In the case where two joint detector candidates have close
AUC values and produce at least one true positive result for
each test image, we further compare them using the False
Positive Count (FPC), which is the number of separate clusters
of false positive pixels per image. For each test image, we
compute the FPC and collect the FPC values from the test set
in the form of an FPC histogram. The percentages of images
that have 0 FPC and those that have maximum FPC in the
test set are secondary measures of detector quality. The better
detector is the one with a higher 0 FPC. If both detectors have
the same 0 FPC value, the one with the lower maximum FPC
is better.

H. Methodology

This section details the steps and assumptions that lead to
determining the target detector configuration.

1) A set of candidates for the best joint detector is found,
given the partial results.

2) The exemplary variants are listed in Table II. Parameters
for image pre-processing and feature extraction are fixed
for each variant (e.g. sigma for Gaussian blur or window
size for SURF). Since the current examination deals with
the number of feature vectors, separate candidates are
created for each number of components.

3) There are two separate image sets: the training set and
the evaluation set.

4) For each classifier, based on the partial results, the
parameter with the greatest impact on the final result
is selected. Each candidate is trained on a training set
of pictures with varying values of this parameter. For
each value of this parameter, the trained joint detector
generates results for the evaluation set.

5) Comparing the results on the evaluation set with an-
notation, the number of positive and false detections
is calculated for each value of the changing parameter.
The R value is also calculated for each parameter value
(see subsection II-F1). All R values computed for one
candidate create the ROC. The area under this ROC
(AUC) is computed and used as a quality measure for
the joint detector candidate.

6) The best joint detector candidates with the highest AUC
value are selected. Additionally, other candidates are
considered, but only those that differ from the best
candidates in the number of SURF components.

7) FPC histograms are created for each candidate. The best
joint detector is the one with the largest number of
pictures that has FPC=0.

III. EXPERIMENT

This section discusses the partial and final results obtained
during the experiments.

A. Partial results

Partial results are obtained in three phases, described sep-
arately below, to find promising sets of parameter values for
the methods.

1) Preselection: Preselection of the pixels was made for
SURF, ORB, FAST, ORB, and BRISK detectors. The results
were very similar. Generally, this approach does not generate
satisfactory results: the preselected area was too small and
does not contain the joint center, or is too vast (ca. 50% of the
image). Therefore the dense-like selection was used in further
processing.

2) Feature extraction: Figure 3 shows the results obtained
from the two descriptors: SURF [3] and ORB [6]. The i-th
series in both graphs represents the SURF and ORB descriptor
values of the same pixel (indicated joint center) obtained from
the same image. The plot is made for 5 visually different
pictures. It can be observed that the series plots for SURF
are visually more similar to each other than those for ORB.
This was also confirmed experimentally: for ORB [6], BRISK
[5], and FAST [4] descriptor classification results were not
satisfying: 95% of pixels were assigned to one class.
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Fig. 3. The results obtained in the feature extraction step from the two
descriptors: SURF [3] and ORB [6]

3) Classification: Table II lists 14 scenarios selected from
several thousand. The selected scenarios produce the best
results in each detector class when evaluated using classifier
tests. There are 6 scenarios selected for the SVM, 4 for DT,
and 4 for NN. The best results were obtained for SVM with
Radial Basis Function Kernel: K(xi, xj) = e−γ||xi−xj ||2 with
γ = 0.85.

B. Final results

The final results were generated from AUC analysis and
FPC analysis, and details are in the following subsections.

1) AUC analysis: AUC analysis described in Section II-F1
has been applied to thousands of joint detector candidates.
The best 14 detector configurations and their AUC values are
presented in Table II. The ROC plots for the best detectors
based on different classifiers are shown in Figure 4. Detectors
using the SVM classifier have much higher AUC values than
others (see the last column AUC in Table II) and at the same
time, the worst result of the SVM detector has a higher AUC
than the best detector using another classifier (as shown in

Fig. 4. ROC plots for 7 of all examined detectors. ROC - Receiver Operating
Characteristic Curve, SVM - Support Vector Machine, NN - nearest neighbor
classifier, DT - decision tree classifier, tpr - true positive rate, fpr - false
positive rate

Table II). The two best detectors have the same AUC value of
0.981, which are named SVM2 and SVM6 marked by ”+” in
Table II. The SVM2 was chosen for the FPC analysis because
it has a simpler preprocessing component.

Fig. 5. ROC plots for 7 of all examined detectors. ROC - Receiver Operating
Characteristic Curve, SVM - Support Vector Machine, NN - nearest neighbor
classifier, DT - decision tree classifier, tpr - true positive rate, fpr - false
positive rate

2) FPC analysis: Figure 5 shows improvements resulting
from applying SVM2 multi-component SURF descriptors with
varying sizes of the window on which the descriptor is
computed. The plots SURF, 2xSURF, and 3xSURF display
the effect on the FPC histogram calculated for consecutive
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components being added to the feature vector. In the best case
of 1 component SURF feature vector (window size=250 pix-
els), only about 24% of the images had 0 false detections and
the maximum number of false detections was 5. Applying the
second SURF component (window size=150 pixels) increased
the frequency of images with 0 false detections to 61% and
decreased the maximum number of false detections to 3. The
feature vector with 3 SURF components and window sizes:
250, 150, and 80 pixels gave even better results: over 73%
of images had 0 false detections and the maximum number
of false detections was 2. Windows larger than 250 pixels
were not used due to the high computational complexity of
the SURF descriptor.

IV. CONCLUSION

The described experimental design procedure led to the
formulation and implementation of a joint detector with the
following properties: in all test images there is at least one true
positive detection and the count of false detection clusters is
minimized. Furthermore, in 73% of the test images, there are 0
false detections and the maximum number of false detections
in each image does not exceed 3. Three useful observations
were made from the experimental results: changing the image
with filters except blur degrades the performance of the joint
detector, combining SURF descriptors with different window
sizes reduces the number of false detections, and the non-
SURF local descriptors were inferior to SURF in computing
the neighborhood similarity at characteristic points in USG
images. The optimized joint detector produces surprisingly
good results considering the visual variability of a joint in
USG images.

The main assumption was proven true. The optimization
process decreases the number of pictures with multiple detec-
tions from a level of 72% in previous work [Wereszczynski,
2014] to 27% in current works. We also proved that increasing
the number of components of homogeneous mixed-SURF
descriptors also decreases the count of pictures with multiple
detections from 76% in the case of one descriptor, to 27%
in the case of 3 components. The maximum number of false
detection is also decreased from 5 to 2. Due to the high compu-
tational complexity, experiments with larger numbers of SURF
components have not been performed. Such experiments may
be performed in the future using CUDA processors.

We have proven that non-homogeneous mixtures of descrip-
tors give very poor results compared to homogeneous SURF
descriptors. The reason appears to be not homogeneity by
itself, but the fact that the different descriptors tested, produced
very poor results. To confirm this statement, further research
should be carried out for non-homogeneous descriptors.

In summary, our research led to the creation of a better joint
detector which should have a positive influence on the final
results of inflammation level classification.
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