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A Flexible Way of Coarse Coordinates Estimation
for Sodars

Kamil Stawiarski

Abstract—The publication presents a flexible approach to
implementing coarse coordinate estimation of an object observed
with a sodar. This flexibility permits any arrangement of sound
sources as well as microphones. Only minimal requirements
are imposed on the probing signal, which can particularly be
broadband. The algorithms have been tested on both synthetic
data and data recorded with an actual device.
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I. INTRODUCTION

SODARS (sonic detection and ranging) are devices similar
to sonars, allowing for the detection and estimation of

object parameters using acoustic waves, but with a distinction
– sodars typically operate in the air. They are used wherever it
is required to locate a sound source or determine the location
of objects based on the emitted acoustic wave, for example, in
alarms [1], robotics [2], or the study of atmospheric parameters
[3]. In this regard, they are similar to radars but do not em-
ploy electromagnetic waves. All three devices have analogous
signal processing. Usually, signal processing is divided into
several consecutive steps: signal compression, beamforming,
bandpass Doppler filtration, detection, and finally, coordinate
estimation [4]. All of these steps are applicable to both
pulsed and continuous wave devices. This sort of processing
requires certain assumptions and simplifications, such as the
narrowband character of the signal. The described approach
fits both pulsed and continuous wave devices, allowing for the
simplification of the beamforming process by expressing delay
as a phase shift. This paper attempts to implement the most
general method of processing and investigates whether current
processing units are capable of real-time operation. The objec-
tive is to derive a universal formula for coordinate estimation
in all three spatial dimensions – range, azimuth, and elevation.
This approach enables flexibility in signal waveform and
antenna pattern domains. The paper is organized as follows:
Section 2 provides a theoretical description of the problem,
including all mathematical derivations and signal processing
descriptions. Assumptions regarding the device, waveform,
and propagation path shape are also presented here. Section
3 delves the reader deeper into the implementation method,
presents the parameters of the simulation, its conditions and
the resulting results. Section 4 describes the operation of the
algorithm using actual recorded data, including specifications
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of the actual device. Section 5 provides theoretical consider-
ations on computational complexity, ways to reduce it, and
implementation possibilities in real-time devices. Finally, in
the last section, Section 6, a summary of the entire paper is
provided, with emphasis on areas where the algorithm could
be enhanced.

II. THEORY

A. System description

At the outset, it is crucial to determine the overall shape
of the device and the signal channel (path of propagation).
The device is assumed to consist of an N -element micro-
phone array, an M -element acoustic transducer array (array
of speakers), and a K-element set of objects that disperse
the soundreaching them in an omnidirectional manner. The
general scheme is depicted in Fig. 1. It illustrates an example
of a device constructed based on N microphones (n1 ∼ n4), a
single sound source (M = 1), and K = 2 point objects (k1, k2)
being observed. The dotted lines represent the paths between
the sound source and the observed objects, as well as between
the observed objects and the microphones. The total number of
signal paths is equal to M ·K ·N . While the microphones and
loudspeakers in Fig. 1 are placed collinearly, this arrangement
is not mandatory. In general, each object (microphone, speaker,
or observed object) can have any position in space, which can
be described using the three-dimensional Cartesian coordinate
system. Accordingly, the positions of microphones (P n),
sound sources (Pm), and reflective objects (P k) are expressed
in matrix form as follows:

PN =


pn,1

pn,2
...

pn,N

 PK =


pk,1

pk,2
...

pk,K

 PM =


pm,1

pm,2
...

pm,M

 . (1)

In the formula above, a single row of the matrix represents
the coordinates of one microphone/speaker/reflective object.

pn,n =
[
nn,x nn,y nn,z

]
pk,k =

[
kk,x kk,y kk,z

]
pm,m =

[
mm,x mm,y mm,z

]
.

(2)

PN and PM are a known values, while the positions of
the objects are unknown.

It’s also assumed that the signal generated by each of the M
speakers may be controlled separately. It’s important that they
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Fig. 1. Simplified schematic of a sodar with one sound source, four
microphones, and two objects.

can generate mutually orthogonal signals, which is a crucial
aspect for the operation of the entire system. Additionally, the
signal at each of the microphones is directly sampled, and all
processing is conducted in the digital domain.

B. Waveform

To avoid mutual interference of signals from different sound
sources, it’s crucial that each speaker emits a signal orthogonal
to the others. In real-world scenarios, limited amplitude is
also important to prevent power amplifier overdrive. These
requirements are fulfilled by the entire family of CAZAC [5]
(constant amplitude zero autocorrelation waveform) signals.
The chosen waveform for this project is a signal with linearly
modulated frequency. It can be expressed as:

s(t) = sin (t · 2π(fc −∆f +∆f · t/TL)) . (3)

In Eq. 3, t is a time, TL represents the length of the
LFM signal, fc is the central frequency (which occurs at time
t = 0.5 · TL), and ∆f is half of the frequency deviation.
This form allows us to limit the signal frequency to the range
[fc −∆f ; fc +∆f ] with a bandwidth of 2∆f . Furthermore,
for a wideband signal, it can be assumed that two mutually
time-shifted signals are orthogonal.

s(t) ∗ s(t+∆t) =

{
1, if ∆t = 0,

0, if ∆t ̸= 0.
(4)

This property allows achieving orthogonality by emitting
signals with additional delays, different for each of the speak-
ers (∆tm). However, despite similar properties, noise should
not be used as a signal. The lack of a deterministic form of the
function would make it impossible, in its case, to determine
the distance with greater precision than would result from the
sampling frequency of the signal in the actual device.

C. Signal path

As depicted in Fig. 1, the signal emitted by the speaker mm

and reaches the object kk, reflects off its surface, and then
reaches each of the microphones. Consequently, the sound
propagation time ∆tm,k,n along the path of speaker mm,
object kk, and microphone nn can be calculated by:

∆tm,k,n =
dm,k,n

c
, (5)

dm,k,n =
∥∥pm,m − pk,k

∥∥
2
+
∥∥pk,k − pn,n

∥∥
2
=∥∥[mm,x mm,y mm,z

]
−
[
kk,x kk,y kk,z

]∥∥
2
+∥∥[kk,x kk,y kk,z

]
−
[
nn,x nn,y nn,z

]∥∥
2
,

(6)

where ∥2·∥2 is the L2 norm operator and c is the signal
propagation velocity (typically around 343 meters per second
for sound in the air). Given the above relationships, the signal
recorded by the nn-th microphone (wn(t)) can be expressed
as a superposition of the signals reflected by the objects:

wn (t) =

M∑
m=1

K∑
k=1

am,k,ns (t−∆tm −∆tm,k,n)+ ν (t) , (7)

where am,k,n is the unknown amplitude of the signal after
passing through the path from speaker m to object k to
microphone n, and ν(t) is additive Gaussian noise representing
noise and interference in the system. Due to the known
constant sampling period, the sampled signal in digital form
at the n-th microphone can be expressed as a vertical vector
wn[j] of length SL = TL · fs:

wn [j] =

M∑
m=1

K∑
k=1

am,k,ns (j/fs −∆tm −∆tm,k,n) + ν [j] ,

(8)
where j denotes the sample number and fs is the sampling

frequency. Equation 8 can be rewritten in matrix form as:

wn = Snan + ν, (9)

Sn =
[
s1,1,n · · · sM,1,n s1,2,n · · · sM,K,n

]
,

an =



a1,1,n
...

aM,1,n

a1,2,n
...

aM,K,n


,

where sm,k,n is a vertical vector of values
s (j/fs +∆tm +∆tm,k,n) representing the sample numbers.
The signal recorded by a set of microphones can be
represented by a matrix W :

W =
[
w1 w2 · · · wN

]
. (10)
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D. Algorithm

Due to convergence with the Cramér-Rao [6] constraint,
the basic variant of the algorithm is based on the maximum-
likelihood estimator, which under Gaussian data distribution
is equivalent to the least squares method [7] and can be
represented by the formula:

P̂K = argmin
P̃K

(
N∑

n=1

∥∥∥wn − Sn,P̃K
an

∥∥∥2) . (11)

In Eq. 11, Sn,P̃K
is the matrix of unweighted signals

recorded by the n-th microphone when objects are placed
in P̃K coordinates. Assuming that the values of the vector
an can be estimated using the Moore-Penrose inverse [8], the
equation will take the form:

ân,P̃K
=
(
ST

n,P̃K
Sn,P̃K

)−1

ST
n,P̃K

wn, (12)

P̂K = argmin
P̃K

(
N∑

n=1

∥∥∥wn − Sn,P̃K
ân,P̃K

∥∥∥2) . (13)

In simpler terms, the mean-square error is calculated by
comparing the recorded signal (wn) with the synthetic signal
(Sn,P̃K

ân,P̃K
), that would be observed if the objects were

located at P̃K coordinates. With zero noise, the mean squared
error will be smallest for estimated object coordinates that
match the real ones (P̃K = PK). The function will have
local extrema when the coordinates of one of the objects
agree (assuming fewer object’s coordinates are estimated than
in reality) and on sidelobes (occurring due to some signal
correlation).
The baseline version of the algorithm requires searching for
a global extremum within 3K dimensions, leading to an ex-
ponential increase in computational complexity as the number
of estimated coordinates increases.
However, if the signals are not highly correlated, it’s observed
that the vector ân,P̃K

alone indicates the signal amplitude
assuming the existence of an object at coordinates P̃K . If
there is indeed an object there, the amplitude should be much
higher than in the absence of the object. With this in mind,
estimation can be performed by searching for the maximum
amplitude. In other words, the vector ân,P̃K

can be interpreted
as a weight vector when decomposing the signal wn using the
Sn,P̃K

function. To express Equations (11)-((13)) in a simpler,
linear way, the data from N microphones must be combined
into a single column vector:

W# =


w1

w2

...
wN

 , S#

P̃K
=


S1,P̃K

S2,P̃K

...
SN,P̃K

 . (14)

Using the above transformation, the vector âP̃K
can be

represented as:

âP̃K
=
(
S#T

P̃K
S#

P̃K

)−1

S#T

P̃K
W#. (15)

Due to the lack of strong correlation between signals from
different objects, the estimation can be carried out in an
iterative manner, adding more object coordinates in successive
iterations. Additionally, Eq. 15 can be simplified. Assuming no
correlation, the S#T

P̃K
S#

P̃K
matrix is approximately a matrix of

the form of the rescaled unit matrix:

S#T

P̃K
S#

P̃K
≈ 1σs → âP̃K

≈ σ−1
s S#T

P̃K
W#, (16)

where σs = ∥sm,k,n∥2 denotes the identity matrix of
appropriate size. This approximation is not recommended
in situations of nearby object placement. Additionally, from
a practical standpoint, it’s beneficial to introduce additional
biasing to the matrix in Eq. 14 during the initial iterations.
This will expedite the convergence of the algorithms that locate
the extrema by disrupting the correlation and, consequently,
”blurring” the extremes of the weight vector into neighboring
positions.
Once the extremes in the amplitude matrix have been detected,
the coordinates can be refined using a realization of Eq. 13.
The coordinate matrix P̃K can therefore be interpreted as the
initial values to be searched ”on the grid” before the final
coordinate estimation. Determining the number of objects in
the observed signal, as well as discerning which extremes are
actually from an object (and not false alarms), necessitates
dedicated detection algorithms and is beyond the scope of this
publication.

III. IMPLEMENTATION AND SIMULATIONS

The algorithm was implemented using Octave as a single-
threaded application.

A. Parameters of simulation
Operating parameters assumed during the simulation were

as follows: estimation was conducted in 2D space (X , Y
coordinates mapped into range, azimuth system, the plane
Z = 0), with a single speaker M = 1 located at coordinates
P1,n = [−0.05 0 0], and N = 8 microphones arranged in a
uniform linear array with coordinates:

PN =


0 0 0
d 0 0
...

...
...

7d 0 0

 , (17)

where d = 0.01524. All coordinates shown are expressed in
meters. The length of the probing signal is TL = 30 ms with
the rest of its parameters: fs = 93.75 kHz, fc = 3.5 kHz,
∆f = 2.5 kHz. With such parameters, the signal covers the
5 kHz frequency from 1 kHz to 6 kHz and can therefore be
considered broadband. The speed of sound in the air was set
at c ≈ 331.29 m/s . The simulation assumes K = 3 objects
with coordinates:

PK =

 0 0.5 0

0.45
√
2 0.45

√
2 0

−0.5 0.6 0

 . (18)

Amplitude of each path was set as am,k,n = 10 for each
signal path, and the noise variance was set as σ2

n = 1.
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B. Simulation results
The concise determination of the amplitude based on Eq.

15 and Eq. 16 was done in distance-azimuth coordinates
due to its better suitability for this type of equipment. Each
coordinate was converted to Cartesian form. The coordinate
matrix PK consisted of XY Z coordinates obtained from the
transformation of a set of angular coordinates with values
r = [0.2 0.22 · · · 1.2] [m], α = [−75 − 72.5 · · · 75] [◦]
(combined on a one-to-one correspondence). In total, this
translated into 3111 coordinates. Matrix of amplitudes is
shown in the figures below:

Fig. 2. Matrix of amplitudes obtained based on Eq. 15

Fig. 3. Matrix of amplitudes obtained based on Eq. 16

In the Fig. 2 and Fig. 3 there are 3, clearly visible peaks.
At each of one, with the circle is marked true object location.
Comparing both of them, the version based on Eq. 15 has
narrower mainlobe. In both cases there is clearly visible that
mainlobe in the range dimension is much narrower in that
estimate of the amplitude in that domain is changing rapidly.
In the azimuth domain – there are much broaded mainlobes
which is due to the small number of samples on which the
estimate was based.

IV. TESTS BASED ON RECORDED DATA

A. Device description
To conduct tests using real signals, a device was built with

8 microphones (INMP441) and one speaker (JBL Go). The

signal from the microphones was captured in digital form (I2S)
using a logic state analyzer and stored in computer memory.
A photo of the device is shown in Fig. 4.

Fig. 4. Photo of the constructed device

B. Testing enviornment

The parameters of the signal as well as the device were the
same as in the simulation from Section 3. The only difference
was the presence of one object, which initially used a standard
0.5L can. However, it turned out that the echo of the reflected
signal was so weak that the microphones were unable to
record it. Therefore, two simulations were performed - in
the first, there was no object from which the signal could
bounce, only the direct sound from the speaker was recorded.
In the second simulation, the speaker was moved to a certain
distance from the microphones, and the sound coming out
of it simulated reflection from an object. Finally, the two
signals were summed. This problem could be avoided by using
microphones with better sensitivity and by generating sound of
higher intensity. For the above reasons, the exact coordinates
of the simulated object are not known. It was placed at an
angle 45◦ around 1m away - so it should be detected at half
of that distance.

C. Results

The effects of both algorithms are shown in the figures
below.

Fig. 5. Matrix of amplitudes obtained based on Eq. 15
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Fig. 6. Matrix of amplitudes obtained based on Eq. 16

In both cases there is a visible peak placed around position
0.5m and 45◦. In the full version of the algorithm (Fig. 6),
there are also peaks at low distances - these come from the
signal directly from the speaker.

V. COMPUTATIONAL COMPLEXITY

Assuming the parameters presented in Section 3, the data
is recorded at a rate of fsN real numbers per second. This
is synonymous with the rate at which the data must be pro-
cessed. Generating synthetic data requires calculating KMN
propagation paths. Each requires about 3 multiplications, 1
summation and 1 trigonometric function value calculation per
sample, which requires about 400 CPU cycles. In total, the
generation of synthetic data alone requires about 400KMNfs
clock cycles per second. The data for the coarse estimation
(Eq. 16) can be generated before the running stage of the
algorithm. This will leave the execution of N multiplications
and additions which will require about 20Nfs CPU cycles per
path. Assuming the operating frequency of modern processors
at 3 GHz, it should not be a challenge to realize the processing
of data from several hundred microphones.

VI. SUMMARY

This paper presents and tests two methods of coarse co-
ordinate estimation with different computational complexity
and estimation quality. Simulations and tests using real signals
were performed.
The presented algorithms enable the device to operate in real
time, even with a significant number of recorded signals.
The discussed methods still have potential for improvement.
The method presented was based on a single scan of the space.
By making a series of them, it is possible to extend the whole
by another dimension. This would make it possible to estimate
the Doppler shift and even the velocity vector of the observed
object.
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