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Abstract—Magnetic Resonance Imaging (MRI) reconstruction
algorithm using semi-PROPELLER compressed sensing is pre-
sented in this paper. It is exhibited that introduced algorithm
for estimating data shifts is feasible when super- resolution
is applied. The offered approach utilizes compressively sensed
MRI PROPELLER sequences and improves MR images spatial
resolution in circumstances when highly undersampled k-space
trajectories are applied. Compressed Sensing (CS) aims at signal
and images reconstructing from significantly fewer measurements
than were conventionally assumed necessary. Compressed sensing
(CS) aims at signal and images reconstructing from significantly
fewer measurements than were traditionally thought necessary.
It is shown that the presented approach improves MR spatial
resolution in cases when Compressed Sensing (CS) sequences
are used. The application of CS in medical modalities has the
potential for significant scan time reductions, with visible benefits
for patients and health care economics. These methods emphasize
on maximizing image sparsity on known sparse transform do-
main and minimizing fidelity. This diagnostic modality struggles
with an inherently slow data acquisition process. The use of CS
to MRI leads to substantial scan time reductions and visible
benefits for patients and economic factors. In this report the
objective is to combine Super-Resolution image enhancement
algorithm with both PROPELLER sequence and CS framework.
All the techniques emphasize on maximizing image sparsity on
known sparse transform domain and minimizing fidelity. The
motion estimation algorithm being a part of super resolution
reconstruction (SRR) estimates shifts for all blades jointly,
emphasizing blade-pair correlations that are both strong and
more robust to noise.
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I. INTRODUCTION

N typical MRI procedures, several different types of images

(e.g. T1, FLAIR, DWI) are being captured within 30 min-
utes or more. This could be perceived as somewhat inappropri-
ate and uncomfortable. Moreover, due to that inherent patient
motion often results in image artifacts. In this background, one
can approximate many structures as rigid bodies, with three
degrees of freedom applied to the entire MRI volume in a time-
varying manner. PROPELLER has been revealed to be quite
effective in mitigating patient motion [6], but it is obviously
not error-free. Imprecise estimates of motion can lead to
corruption of otherwise motion-free data sets, as well as result
in non-optimal correction of motion-corrupted data sets. The
applied in SRR new shift estimation algorithm [6] is shown to
be useful in cases when patient motion is present. Additionally
acquiring incomplete k-space data may accelerate the process
of collecting of MR measurements. The method recognized as
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Compressed sensing exploits the image sparsity information.
During the recent years compressed sensing (CS) has gained
importance, mostly inspired by the positive theoretical and
experimental results shown in [1], [2], [3]. The sparsity in
Magnetic Resonance Imaging (MRI) is applied to significantly
undersample k-space. Compressed sensing MRI may become
an essential medical imaging tool with an inherently slow data
acquisition process. Combining CS and MRI offers potentially
significant scan time reductions, with benefits for patients and
health care economic factors. Technically, MRI requests two
major features for successful application of CS:

a) medical imagery is physically compressible by sparse
coding in an appropriate transform domain (e.g., by wavelet
transform)

b) MRI scanners are able to acquire encoded samples. The
compressed sensing theory is available even from the samples
collected at lower than the Nyquist rate as long as the unknown
image is sparse or compressible.

It is obvious that each imaging device has its own inherent
resolution, which is determined based on physical constraints
of the system detectors that are in turn tuned to signal-
to-noise and timing considerations. Super Resolution (SR)
technology has been proved to be useful in medical imaging
modalities including Magnetic Resonance Imaging (MRI),
functional Magnetic Resonance Imaging (fMRI), Computed
Tomography (CT) and Positron Emission Tomography (PET)
[5]. Magnetic resonance imaging (MRI) is well known as a
non-invasive method routinely used to produce high-quality
images of the body’s internal tissues. Recently, sampling of
MR signals on a Cartesian grid in k-space has been the
most common acquisition trajectory. These regularities lead
to direct use of the Fast Fourier Transform. It turned out to be
too simple sampling model. Currently, non-uniform sampling
patterns of the k-space, such as radial, spiral, PROPELLER
or SPARSE- SENSE, are gaining their importance in various
MRI applications. The MR image reconstruction problem is
closely related to the problem of reconstructing a band-limited
signal from nonuniformly sampled set of observations in the
frequency domain space. The motion of a subject during the
MRI acquisition may generate artifacts and blurring in the
resulting image. This obstacle may be overcome by using
many different k-space trajectories (i.e. PROPELLER or set
of CS k- spaces). In case of MRI if the imaging volume is
acquired two or more times with small spatial shifts between
acquisitions, a combination of data sets by an iterative SR
algorithm gives improved resolution and better edge defini-
tion in the slice- select direction than simple low-resolution
(LR) images averaging as well as native PROPELLER k-



space based reconstruction. The motion correction is still
the significant difficulty both to MRI and SR concepts. In
this paper as motion analysis core of SR technique a three
degrees of freedom-based approach is adopted. Preliminary
tests confirmed its usability in PROPELLER MRI [6]. This
work goal is to reconstruct a High Resolution (HR) Magnetic
Resonance image, from a Compressed Sensing (CS) k-space
while keeping all the PROPELLER advantages. The presented
framework uses “semi-PROPELLER” sequence because the
CS idea is nested in its core. It is shown that, indeed,
the new technique enhances the MRI images. In this paper,
the authors propose a different image reconstruction method
utilizing the CS sampling scheme resulting in the improvement
of spatial resolution of MR images. Conducted simulation and
experimental studies have revealed that the spatial resolution is
clearly enhanced compared to the images achieved in standard
CS based on Fourier transform imaging.

II. COMPRESSED SENSING IN MRI

Recently, the application of CS in MRI has been gaining
importance in research interest. Compressed Sensing model
was first described in the literature of Information Theory and
Approximation. The essence of this technique is it measures
a small number of random linear combinations of the signal
values — much smaller than the number of signal samples
nominally representing it. What is crucial, the signal may be
reconstructed with sufficient accuracy from these simplified
measurements by a nonlinear procedure. In MRI this model
refers to a special case of CS, where the sampled linear
combinations are directly Fourier coefficients (collecting k-
space samples). In these circumstances, CS is claimed to be
able to reconstruct MRI image from a small subset of k-space
rather than an entire k-space grid. The CS approach requires
that the desired image have a sparse representation in a known
transform domain and the aliasing artifacts caused by the k-
space undersampling are incoherent in that transform domain.
Moreover a nonlinear reconstruction must be done to impose
both sparsity of the image representation and consistency with
the acquired data. CS appeared in the literature of information
theory and approximation theory as an abstract mathematical
idea [7], [9]. One measures a relatively small number of
“random” linear combinations of the signal values (much
smaller than the number of signal samples nominally defining
it). However, because the underlying signal is compressible,
the nominal number of signal samples is a gross overestimate
of the “effective” number of “degrees of freedom” of the
signal. As a result, the signal can be reconstructed with good
accuracy from relatively few measurements by a nonlinear
procedure. In MRI, we consider a special case of CS where
the sampled linear combinations are simply individual Fourier
coefficients (k-space samples). In that setting, CS is claimed to
be able to conduct accurate reconstructions from a small subset
of k-space, rather than an entire k-space grid. A successful
application of CS establishes following requirements:

A. Transform sparsity

The desired image should have a sparse representation in
a known transform domain (i.e., it must be compressible by

transform coding.

B. Incoherence of undersampling artifacts

The artifacts in linear reconstruction caused by k-space un-
dersampling should be incoherent in the sparsifying transform
domain.

C. Nonlinear reconstruction

The image should be reconstructed by a nonlinear method
that requires both sparsity of the image representation and
consistency of the reconstruction with the acquired samples.

The first condition is clearly met for MR images, as ex-
plained above. The fact that incoherence is important, that MR
acquisition can be designed to achieve incoherent undersam-
pling, and the fact that there are efficient and practical algo-
rithms for reconstruction will not, at this point in the article,
be at all obvious. Planning a CS scheme for MRI can now
be expressed as selecting a subset of the frequency domain
that can be efficiently sampled and is incoherent with respect
to the sparsifying transform. Before the notion of incoherence
will be introduced we should note that narrow optimization
of incoherence must not be pushed too far [7]. Some of the
most impressive and powerful results about CS assume that
one samples a completely random subset of k- space, which
indeed gives very low coherence [7]. Though random sampling
is an inspiring and instructive idea, sampling a truly random
subset of k-space is generally impractical. All the practical
sampling trajectories must satisfy hardware and physiological
constraints. Hence sampling trajectories must follow smooth
lines and curves. Furthermore, a uniform random distribution
of samples in spatial frequency does not take into account the
energy distribution of MR images in k- space, which is far
from uniform. Most energy in MRI is concentrated close to
the center of k-space and rapidly decays towards outside of
k-space. Therefore, eligible patterns for CS in MRI should
have variable density sampling with denser sampling near
the center of k-space, matching the energy distribution in k-
space. Brain scans are the most common clinical application
of MRI. Most brain scans use 2-D Cartesian multislice ac-
quisitions. It has been proven that the brain images exhibit
transform sparsity in the wavelet domain [7]. The concepts
of CS promise to reduce collection time while improving
the resolution of current imagery. A formal approach for
reconstruction could be briefly described the in following way.
Represent the reconstructed image by a complex vector m,
let ¢ denote the linear operator that transforms from pixel
representation into the chosen representation. Let Fs denote
the undersampled Fourier transform, corresponding to one of
the k-space undersampling schemes. The reconstructions are
obtained by solving the following constrained optimization
problem:

Minimize ||¢ym|,, so that |Fsm — y||, < & where y is the
measured k-space data from the MRI scanner and controls the
fidelity of the reconstruction to the measured data.

The threshold parametere is roughly the expected noise
level. The I; norm means |z||, = >, |z;|. Minimiz-
ing the l; norm of |[¢)m||; promotes sparsity [6]. The



constraint| Fym — y||, < & enforces data consistency. For-
mally, among all solutions that are consistent with the acquired
data, we want to find a solution that is compressible by
the transform . It is worth mentioning that when finite
differencing is used as the sparsifying transform, the objective
becomes the well- known total variation (TV) penalty [5].
The authors in [6] tested the application of CS to brain
imaging by acquiring a full Nyquist-sampled data set, which
has been retrospectively undersampled. For each slice they
selected a different random subset of 80 trajectories from 192
possible trajectories, a speedup factor 2.4. It has been shown
that undersampling each slice differently reduces coherence
compared to sampling the same way in all slices [6]. CS
exhibited both meaningful resolution enhancement over LR at
the same scan time, and significant reduction of the aliasing
artifacts compared to the linear reconstruction with the same
undersampling.

In [9] has been likewise presented, a two-step bootstrap
reconstruction approach to derive the temporal principal coef-
ficients. It is worth to be mentioned that an initial k-t SPARSE-
SENSE reconstruction with temporal FFT as the sparsifying
transform has been implemented.

The [y norm minimization problem could be solved using a
nonlinear conjugate gradient with backtracking line search. CS
exhibited both meaningful resolution enhancement over LR at
the same scan time, and significant reduction of the aliasing
artifacts compared to the linear reconstruction with the same
undersampling.

III. TOEPLITZ STRUCTURED MATRICES AS MR-CS
SENSING

Latest advances in compressed sensing theory reveals that
sensing matrices whose elements are drawn independently
from certain probability distributions guarantee exact recovery
of a sparse signal from “an incomplete” number of measure-
ments with high probability.

Due to practical reasons it cannot be formulated in this way.
In turn it could take Toeplitz matrix form.

This fact prompted the authors [11] considered Toeplitz block
matrices as the sensing matrices. They proved that the proba-
bility of perfect reconstruction from a smaller number of filter
outputs is also high if the filter coefficients are independently
and identically-distributed random variable.

In this paper its applications in semi-PROPELLER MR modal-
ity is discussed.

Strictly, the compressive measurement could be expressed
by a highly underdetermined system y = ®z, where the vector
y € R"what may be interpreted as the samples obtained from
the sparse signal z € R by the M x N sensing matrix ®.

One of the key obstacles in CS is to formulate “appropriate”
matrix ®. This matrix should allow for exact recovery of x
from y with high probability. Cand‘es and Tao [13] provided
a sufcient condition for this property.

Precisely, a matrix ® € R™*% is a “good” CS matrix if it
satisfies the restricted isometry property (RIP) of order 3m,
where m is the sparsity of the signal x.

Moreover, Baraniuk et al [12] have shown that matrices
whose entries are drawn independently from certain proba-
bility distributions satisfy RIP of order 3m with probability
> 1 — e~“" provided that n > cyml, whereci,co > 0
are some positive constants, and hence are “appropriate”
compressed sensing matrices.

Nevertheless, the application of these fully random sensing
matrices in medical imaging is still limited due to the structural
inconsistence with the encoding matrices present in most
medical modalities.

Most imaging systems can be expressed by their point spread
functions. Thus it could be prerequisite for employing Toeplitz
block encoding matrices.

In this article every single PROPELLER-blade is com-
pressively sensed. The author introduces new term ‘“‘semi-
PROPELLER” to describe the potential method of sensing its
sampling sub-structures.

IV. PROBLEM FORMULATION

The major drawback in compressed sensing (CS) is to
recovery a vector x € R™from its linear measurements y of
the form

y1 = (x,¢1) 1 <i<n, forn << N.

The assumption that x is sparse, and the need for recovery
x from a sample ywhich is much smaller in size than z links
to solving a convex program with a suitably chosen sampling
basis ¢1,1 <i<n.

We can characterize it in given below matrix-vector form:

y = ®x, where ® is an n X Nmatrix.

In [13] Cand ‘es and Tao formulated the restricted isometry
property as a condition associated with matrices ¢ which
provides a guarantee on the performance of ® in compressed
sensing. They indicated that if ¢ satisfies RIP of order 3m
and constant ds,, € || (0,1):

(1= 03m) 1215 < @72l < (1+ G3m) |11
v e RITI

where T C {1,...,N}, |T <||3m| , the signal = can be
exactly recovered from y by solving the convex optimization
x := a subject to Px = y.

The Toeplitz block matrix could be characterized in the
following way:

Sy DPpqg - Py Dy
31 O 0 P3 Py
B By e - Dy

where [ < kand the blocks ®; =€ R%*¢ are themselves
(truncated circulant) Toeplitz matrices:
G Pp1 o by 9
I )
o; = . oo . € RN
Ly Py e e B
whose elements gf)é,, ;_1, ..., ¢4 are drawn independently from
certain probability distributions ¢ < p.



V. SUPER-RESOLUTION IMAGE RECONSTRUCTION

The requirements for better resolution in all medical imag-
ing applications still characterize a very significant research
challenge. Most imaging applications highly depend on high-
resolution imagery. Enhancing image resolution by improving
detector array resolution is not always a possible solution
to increasing resolution. For instance, while improvements
in semiconductor manufacturing have translated into higher-
resolution image sensors, decreasing pixel sizes has a ten-
dency to minimize signal-to-noise ratios (SNR) and light
sensitivity. In addition, practical cost and physical constraints
limit the ability to change detectors for most legacy imaging
systems. To overcome this problem, the image processing
community is developing a collection of algorithms known
as super-resolution for generating high-resolution imagery
from systems having lower-resolution imaging detectors. In
2001 and 2002 preliminary attempts were made to adapt
SR algorithms to medical imaginary applications. Early re-
search deals with the magnetic resonance imaging. Medical
imaging applications differ from typical photographic imag-
ing in several key aspects. For one thing, as distinct from
photography, medical imaging modalities usually use highly
controlled illumination of the human subject during image
acquisition. As with any imaging system, stronger illumination
energy provides to higher signal-to-noise ratios. In the case of
medical imaging, though, due to health issues an illumination
radiation is limited, thus limiting the SNR to well below
that of photographic imaging. For another, imaging speed and
robustness is more important in medical imaging applications
than in photography. Short examination times limit patient
discomfort, radiation dose amounts and minimize imaging
artifacts associated with patient movement. Third, unlike pho-
tography, the goal of medical imaging is to make possible
the making a correct diagnosis, to detect abnormalities rather
than take pictures. Therefore, image artifacts are much less
tolerable in medical images than in photography. Fortunately,
medical imaging devices operate under extremely controlled
environments. Researchers can utilize prior knowledge about
the patient anatomy to get better image quality. Accurate
measurement and map of structure in living tissues is basically
limited by the imaging system attributes. Super-resolution
methods allow for overcome limitation of the acquisition
devices without any modifications within hardware.

VI. DISPLACEMENT ESTIMATION

In SR image reconstruction, the LR images represent differ-
ent views of the same scene: they are subsampled, mutually
(sub- pixel) shifted so that they contain complementary infor-
mation, hence, they can be merged into a single image with
higher resolution. The shift estimation (registration) methods
can be divided into two groups. Methods belong to the first
operate in the spatial domain space. Algorithms from the
second solve the registration issue in the frequency domain
space.

Assuming that the relative displacement of LR images has
been calculated, samples of “continuous” image (projected by
camera lens on its sensor) in nonuniformly spaced sampling

points are obtained. After LR samples mapping onto the image
plane computation of samples on the dense HR grid is done.
It could be done directly, although more complex iterative
procedures result in smaller interpolation errors. The motion
estimation is done by the method presented in [6]. In this
method it is needed to solve a set of linear equations for the
relative shift between each pair of blades. First, p;; (d;,d;)is
being calculated for each blade pair (4, j). For Nblades, there
are N (N — 1) /2 unique blade pairs. A quadratic approxima-
tion of over the region near the maximum yields:

pij (81, 85) = aij (8; — 6;)% + bij (6 — 0;) + ¢

In this method, the parameters for this second-order fit were
obtained using a least-squares fit to the 11 points about the
maximum value. This algorithm has been designed to jointly
maximize the correlation for each blade pair. Once a;; and b;;
are known, finding the maximum of the equation given above
is achieved by solving

0pi;
06;

Taking the derivative with respect to J; functionally yields
the same equation. The authors in [6] suggested a few practical
modifications before it is solved.

First, equations are weighted based on the maximum value
of the blade pair correlation. Regular blade correlation, which
is caused by blades corrupted from motion, may result in
biased solutions. Its degree and type is highly unpredictable
and not well modeled. It has been recommended to multiply
each blade pair by:

= 20,”' (61 — 6]) -+ bz’j = 0

2
ey [17 1\4{1,,7:(55,;j)j|
w=e€

where o is used to denote a “substantial” change in corre-
lation. The calculated value weights the contribution of the
corresponding equation to the final solution by the degree
of maximum correlation. A Gaussian function was chosen so
that the weights were comparable for blade pairs with “good”
correlations near 1.0, and then rapidly approached O as the
blade pair correlation decreased.

The second applied modification is required because the
matrix is not full rank. Because every equation solves for
relative displacement, adding a constant value to all elements

of the solution vector of ¢ produces an equally valid
solution. Adding the equation:

2.0

to the system forces the solution to be unique, with zero
average displacement. These two modifications result in a final
matrix equation.

It is trivial to extend this to N blades with N (N —1) /2
blade pairs. The unknown variables §; are then estimated
by multiplying the right-hand vector by the Moore-Penrose
pseudoinverse of the left-hand matrix. Hence, the final solution
for the set of di is biased toward those equations with large
a;; (“tight” peaks) and a maximum correlation near 1.
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VII. THE ALGORITHM

The idea of super-resolution is based on infra-frame motion
side information. Precise subpixel image registration is a basic
requirement for a good reconstruction, see figure below.

Assuming the PROPELLER blades based low-resolution
MR images are accurately registered, the samples of the
different images can be combined to reconstruct a high-
resolution image. In this paper the projection onto convex
sets (POCS) approach [5][10] supported by biharmonic spline
interpolation with Green functions at its core has been utilized.
The POCS algorithm can be expressed as follows (Malczewski
et al., 2006) [5]:

9"t =BRg" =B [¢" + 5, (9 - ¢")]

where g” is the reconstructed image after k iterations and S,
is a sampling operator that extracts values (luminance) on the
irregular grid v. The R (sample replacement operator) and B
(ideal low pass filtering) are projections s you really mean
something that alternates).

In practice, if a suitable discretization must be applied, last
equation is implemented as follows:

95" = B [gh + x0s (n — 95 (98))]

Low pass filtering B is realized over a grid of sampling
points Aand x is a convergence and stability parameter. The
19§ is an interpolation operator, here it denotes biharmonic
spline scheme. The derivation of the technique in two or more
dimensions is similar to the derivation in one dimension. In
two dimensions the Green function is equal to:

P2 () = [2* (1)

It is worth to be noticed that all the blades are being
processed separately. This set of aligned image frames is
finally combined into one High Resolution MR image.

VIII. THE EXPERIMENT

All experiments were conducted on a 1.5T MR Signa Excite
scanner sequences. All the CS SR reconstruction parts have
been implemented in Matlab. Furthermore, CS-semi- PRO-
PELLER and two different linear schemes were applied for

Fig. 2. The Results. From left to right: PROPELLER with no motion
correction, PROPELLER with the motion correction [6], CS SR MR image
(proposed algorithm).

comparison. The PROPELLER based sequences consisted 23
blades for all slices.

Technically semi-PROPELLER k-spaces have been acquiring
by compressive-sensing native PROPELLER blades. The low-
resolution acquisition has been included in centric-ordered
data with the same number of data samples as the undersam-
pled sets, see figure 2.

Technically, the goal of the simulation was to examine the
performance of the CS SR reconstruction and its associated
motion artifacts with increased undersampling compared to
the LR and Zero Filling with density compensation methods.
The further objective was to present the advantage of variable
density random undersampling over PROPELLER blades in
Super-Resolution. From the “full” irregularly sampled k-space
trajectoried sets of randomly undersampled data with uniform
density as well as variable density have been constructed. In
this trial test a T2-weighted multislice k-space data of a brain
has been acquired.

The CS and CS SR MR images have been reconstructed by
using proposed algorithms. To demonstrate the image as well
as enhanced resolution, the reconstruction algorithms have
been compared. Figure 2 shows the simulation results. The
LR reconstruction, as expected, shows a poor image quality
with visible acceleration of the reconstruction time. In turn, the
regular CS exhibits a decrease in apparent SNR because of the
incoherent interference. The uniform density undersampling
interference is much more visible and more “structured” than
the variable density. It is worth to be noticed the CS leads
to increased acceleration in comparison to the regular k-space
sampling pattern.

IX. THE GOAL OF THE FUTURE RESEARCH

The new SPARSE-SENSING MRI Super-Resolution algo-
rithm has been presented. This report presents the successful
use of a super-resolution algorithm to enhance the resolution
of MR images. With an increase in scan time for one FOV,
a patient trial showed that the super-resolution technique in
the axial direction is feasible in a clinical setting without
increasing the radiation dose and with no changes in hard-
ware. As expected, the proposed method improves the spatial
resolution, but also enhances noise and artifacts. This effect
gets more distinctive as the number of super resolution image
reconstruction algorithm iterations increases. Preliminary trial
results show that the super-resolution approach can be applied
to MR imaging, noticeably improving the spatial resolution
achievable. The presented algorithm is really simple in use and
need no hardware modifications. In general, when applying SR
to MRI we can overcome inherent resolution limitations of
existing MR imaging hardware. It has been demonstrated that



the sparsity of MR images can be exploited to significantly
reduce scan time as well improve the resolution of MR
imagery. Conducted simulation and experimental studies have
revealed that the spatial resolution is undoubtedly enhanced
compared to the images obtained from different sampling
schemes. However the motion estimation differs from the
original PROPELLER reconstruction it still may suffer from
local motion caused image deformations.
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