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On Some Aspects of Genetic and Evolutionary
Methods for Optimization Purposes

Marcin Woźniak and Dawid Połap

Abstract—In this paper, the idea of applying some hybrid
genetic algorithms with gradient local search and evolutionary
optimization techniques is formulated. For two different test
functions the proposed versions of the algorithms have been
examined. Research results are presented and discussed to show
potential efficiency in optimization purposes.
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I. INTRODUCTION

ALGORITHMS inspired by nature belong to Computa-
tional Intelligence (CI), which have been applied for

searching the most accurate solution for optimization problems
in the shortest time. These algorithms can be grouped for
instance as Evolutionary Algorithms (EA), Heuristic Algo-
rithms (HA), Swarm Algorithms (SA) or hybrids. To the
group of Evolutionary Algorithms among others we include
Genetic Algorithms (GA), which have origins in 1970s [1].
This has given an impulse to develop many derivative methods
simulating other real life into computer procedures to create
efficient optimization techniques applicable in various tasks.

Subsequently, CI methods were applied in various engi-
neering problems: active modules optimization [2], dynamic
systems work analysis [3] and [4], hydro-pneumatic modules
optimization [5] or even entire vehicle simulation and position-
ing [6]. Another approach is to optimize LAN or queueing
systems: [7], [8], [9], [10], [11] and [12]. It is possible to
apply CI to participate in the process of learning for Artificial
Intelligence (AI) and Decision Support Systems (DSS) [13].
Most recent research results show that CI is also applicable
in image processing [14] and [15]. Several CI applications,
have led to modifying, improving the original algorithm, and
to create efficient improvements tailored for specific purposes.
Swarm intelligence is applicable in cast simulation [16], [17],
[18]. Some other interesting computing techniques for logic
techniques applied in optimization can be found in [19], [20]
and [21].

There are many possible applications. In each of these cases
CI was used to find optimum values for some phenomena
represented in tailored mathematical models. Some of the
applied models are representing positioned object states in
multi dimensional spaces. Therefore it is important to in-
vestigate how GA methods optimize given models. In this
paper we try to present and discuss some aspects of GA
potential application, it’s classic version or modified GA in
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search of optimum of the multi variable functions. To perform
experiments some classic functions were taken and tests were
widely applied to verify optimization techniques.

II. TEST FUNCTIONS FOR COMPUTATIONAL
INTELLIGENCE OPTIMIZATION TECHNIQUES

In verification of examined methods we try to use test
functions that represent some classic optimization problems,
what is helpful to compare results. We define models at
object states represented in points x, that have i = 1, . . . , N
dimensions depending on optimization task.

De Jong functions group some type of benchmark functions
designed for efficiency tests. There are known many versions
of these functions, among them three basic functions can
be given. First De Jong function can be written for multi
dimensional model spaces as

fdeJong1(x) =

N∑
i=1

x2i , (1)

where for each N dimensions object state defined in point
x we have xi spatial coordinates to represent various aspects
to optimize. This function has minimum fdeJong1(x) = 0 at
point x = 0. In two dimension form fdeJong1(x1, x2) = x21 +
x22, it is presented in Fig. 1 Second De Jong function can be
written for multi dimensional model spaces as

fdeJong2(x) =

N∑
i=1

bxic, (2)

where notations are similar to (1). In two dimension
form fdeJong2(x1, x2) = bx1c + bx2c when pictured on
〈−5.12, 5.12〉×〈−5.12, 5.12〉 it has minimum at point x =
−5.12. This is shown in Fig. 2. Finally third De Jong function
in multi dimension form has equation

fdeJong3(x) =

N∑
i=1

i · x4i +N(0, 1), (3)

where notations are similar to (1) and N(0, 1) is normal
distribution. This function has minimum fdeJong1(x) = 0
at point x = 0. In two dimension form fdeJong3(x1, x2) =
x41 + 2x42 + N(0, 1), it is presented in Fig. 3 There are also
some hybrid functions that have origins in the above presented
De Jong functions. One of them is Rastragin function, which
for multi dimension form can be defined as

fRastr(x) = 10 ·N +

N∑
i=1

(x2i − 10 cos(2π · xi)), (4)
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Fig. 1. First De Jong function.

Fig. 2. Second De Jong function.

where notations are similar to (1). This function has minimum
fRastr(x) = 0 at point x = 0. In two dimension form
fRastr(x1, x2) = 10·2+(x21−cos(2π·x1))+(x22−cos(2π·x2)),
it is presented in Fig. 4

III. OPTIMIZATION TECHNIQUES

Optimization or solving methods have origins in analytical
attempt, which is based on gradient optimization. Analytical
attempt is giving precise method that by the use of derivatives
is able to calculate strict optimal solution for each function.
However it is not possible to have the analytical form of
each mathematic function ad-hoc, moreover there are some
computational restrictions for large scale functions. These
make optimization process complicated and prolonged in time.
Therefore CI methods are so important for optimization. Let
us discuss classic attempt and proposed CI methods.

A. Gradient Optimization – Derivative Attempt

Gradient descent is one of the local optimization methods.
We can define it in algorithmic attempt, that enables us to
omit analytical calculations of the derivative form and just
use computational power to find the optimum. Let us discuss
a numerical algorithm which uses the direction of the search
space of applied mathematical model solutions by the negative
gradient of the fitness function. In Fig. 5 is presented a sample
search operation using gradient attempt for given function
over the provided solution space. The algorithm starts with a
random selection of a point x0, which is a first randomly taken
optimum position. In the following steps, the negative gradient
−∇fxi

for point xi is calculated ∂f(x1,...,xn)
∂xi

. Gradient ∇fxi

is direction of the fastest function growth measured at point xi

and negative gradient ∇fxi
is direction of the fastest function

descent measured at point xi. Then, a new point based on the
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Fig. 3. Third De Jong function.

Fig. 4. Rastragin function.

Fig. 5. Sample representation of the gradient change for the following optimal points in numerical calculations.
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direction of the dxi is found using formula

xt+1
i = xt

i − λ · ∇fxi
, (5)

where for space points xi parameter λ represents the value of
the step size and t is time horizon represented by the following
iterations. Then, a value of the fitness function for the old and
a new points is calculated. For the case of minimization, i.e.
if the value of the fitness function for a new point xt+1

i is
smaller than for the old point xt

i , the new point xt+1
i replace

the old one. The algorithm is performed to comply with stop
condition, which for instance are a number of iterations (time
horizon t is defined in some way) or the method shall stop
after reaching a particular value for the fitness condition. The
method is presented in Algorithm 1.

Algorithm 1 Minimization Gradient Descent Algorithm
1: Start,
2: Define fitness condition φ(·),
3: Define step size λ and time horizon T ,
4: Randomize start point x0 for the search space,
5: t = 1,
6: while t ≤ T do
7: Calculate xt+1

i using (5),
8: if φ(xt+1

i ) ≤ φ(xt
i ) then

9: xt
i = xt+1

i ,
10: else
11: xt

i = xt
i ,

12: end if
13: t+ +
14: end while
15: Return xt

i ,
16: Stop.

B. Evolutionary Algorithms

The first implemented Evolutionary Algorithm was Genetic
Algorithm created by John Holland in 70s of 20th century
[1]. The main idea, which led to create this algorithm, was to
make a computer program solving problems in a similar way
to the natural evolution process. The first GA purpose was to
structure evolution of populations consisted of some amount
of individuals. In this population each individual had binary
genetic code set to it. These codes are equivalent to chromo-
somes in organisms, what make their elements equivalent to
the genes. Later were introduced some improvements, which
were inspired by operations that occur during the biological
process of evolution. Those operations consecutively were:
mechanism of transforming binary codes in similar way as
crossing-over in process of inheritance, mutation and selection.
Holland also noticed that usage of logic operators and selec-
tion can increase average value of population fitness. Using
encoding and genetic operators let to solve problems powered
by new technology, like advanced programming for efficient
computers what is most popular tendency nowadays.

1) Genetic Algorithm (GA): First step of GA is initial-
ization that leads to create the beginning population. This
process consists of setting the size of population, chromosomes

encoding and fitness function φ(·) formulation with set of
limitations. Chromosomes are usually presented in two ways.
The first of them is a binary code and the second one is a real
number. Elements of beginning population are found in a ran-
dom way. Important parameter is the size of population. Too
small number of individuals can quickly finish the algorithm
without getting right solution, in second case using too many
numbers can make calculations long and be aggravating for
the computer.

Next step is reproduction, this is when some individuals are
chosen to next operations. There are some ways of reproducing
selected ones to be passed to new population. One of them is
reproduction based on probability that individual xi belongs to
selected group. It is taken to next generation with a probability,
that is increasing with the higher level of fitness function at
this point φ(xi). For selected group in an existing population
P t we determine a random variable pr given by{

pr(x
t
i ) =

φ(xt
i )

xt
i

xt
i ∈ P t

. (6)

This random variable is sampled few times and distribution
function of reproduction probability is introduced

Pr(x
t
i ) =

i∑
j=1

pr(x
t
i ). (7)

Then random number α between (0, 1) is taken. If individual
xi follows the assumption

Pr(x
t
i−1) < α ≤ Pr(xt

i ) (8)

then it is reproduced. Reproducing is controlled by genetic
operators which should create diverse population. Classical
operators are mutation and crossover.

Mutation is a process of changing the chromosomes, like
adding a random real ξ from (0, 1) to the chromosome

xt+1
i mutated

= xt
i + ξ. (9)

Moreover, values of vector λ, which length is equal to the
amount of individuals in population is randomized. Each
chromosome is mutated if it follows the inequality

λi < pm, (10)

where pm is mutation probability.
Crossover is an operation in which genetic material between

two individuals called parents is exchanged. Crossover of two
parents creates two individuals which are added to population.
The parameter ξ is found as a random real number from (0, 1).
Then parental chromosomes are averaged using following
formula leading to create new individuals

xi
t+1
des1 = xi

t + ξ(xt
i+1 − xt

i )xides2, (11)

where xi and xi+1 are parent chromosomes and ξ is similar
to (9). In the next step all individuals must be evaluated how
they fit to the environment. New population replace the older
one. This process is called succession.

The one of the way of succession is to replace old popu-
lation with the new one. Another way is to leave some chro-
mosomes of old population and fill in with new individuals.
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Amount of remaining chromosomes from the old population
is described by parameter g ∈ (0, 100). There are several ways
of deciding which individuals should be left:

• leaving individuals which are best adapted,
• leaving individuals in random way,
• delete individuals similar to those of next generation,
• succession.

most effective is elite succession. It assumes that the best
individuals are left no matter from which generation they came
from. This is performed using some ”back-up” population,
where we store all the best individuals to stay in this and
later populations. Individuals from new and old generation
are sorted according to value of fitness function and some
number of the best is taken to new population. This method
of succession let the best ever individuals to survive.

2) Hybrid Genetic Algorithm (HGA): The solution obtained
using GA is often good, however usually requires some small,
local corrections to become a local optimum. This is one
of the most important reasons that the hybrid algorithm was
developed: to correct obtained solution. In according to this,
hybrids are modifications of the classic version of heuristic
algorithms with a better capability of the local search.

In the later 90s for the first time was used the term Memetic
Algorithm (MA). The word meme is the analogous term
to gene in natural evolution. It refers to the smallest unit
of cultural evolution, i.e. pattern of behavior. Memes form
create a large system, where are formed cultural patterns.
Culture changes in the interaction when certain memes gain
an advantage, while others are forgotten. In practice, the envi-
ronment forces acceptance of the certain memes or oblivion.
The main idea of MA is hybridization, namely a combination
of heuristics such as GA with local search. In this case,
local search is understood as learning individuals. In GA,
local search may be implemented between selected genetic
operators.

Algorithm 2 Schematic Memetic Algorithm
1: Start,
2: Define fitness condition φ(·),
3: Randomize initial population of individuals with random

solutions,
4: Evaluate individuals,
5: Define ξ, pm, α and time horizon T ,
6: t = 1,
7: while t ≤ T do
8: Sort population according to φ(·) values,
9: Selection,

10: Mutation in population using (9),
11: Crossing in population using (11),
12: Local search using Algorithm 1,
13: Evaluate fitness of the new individuals,
14: Replace the worst individuals of the population with

new ones,
15: end while
16: Return the solution,
17: Stop.

3) Baldwin Effect: J.M. Baldwin suggested the theory
that the skills acquired during the life of the individual are
transferred indirectly to offspring [22]. For example, in a given
environment the ability to increase chances of survival is better
with each year. In the case of individuals with this ability, they
will have a larger number of offspring inheriting the genes
with peculiar features. The development of language ability in
humans can be explained by general conclusion from Baldwins
theory, that skills are not inherited but the ability to acquire
them. The presented mechanism is called organic selection or
Baldwin Effect. This is a learning mechanism, which reflects
only in value of fitness function of the individual.

In practice, the Baldwin Effect is simple to implement.
Implementation is a simulation by performing local optimiza-
tion at the selection to determine the adjustment feature. The
genetic code remains unchanged and consequently, refers to
flattening fitness landscape within the basin of attraction. In
the experiments we have implemented local search mechanism
using gradient optimization presented in Algorithm 1.

C. Other CI methods
However Evolutionary Computation is still in progress and

nowadays we can give a number of newly developed heuristic
methods let us give only two selected examples.

1) Cuckoo Search Algorithm (CSA): Cuckoo Search Algo-
rithm is a very efficient gradient free optimization technique,
where some Gauss distribution versions are applied in opti-
mization. CSA simulates behavior of cuckoos. These birds,
accept for famous sounds, have special nature of breeding. A
cuckoo is flying and looking for nest to lay an egg. They are
choosing nest, where are already eggs. Moreover these eggs
must look similar to their. Cuckoos lay an egg and fly off.
When hosts come home they either get rid of intruder egg or
just simply accept new situation. This process is modeled and
applied as CI algorithm, where we assume:

• Cuckoo is simply xi in CSA.
• Each cuckoo has only one egg to lay.
• Best nests containing egg are transferred to next genera-

tion.
• Rest of cuckoo population is taken at random.
• Hosts may find that intruder egg is hosted with probability

1−pα ∈ 〈0, 1〉 and get rid of it. In this case a new cuckoo
is placed randomly.

We check fitness function for each of cuckoos. The best points
are transferred to next round. The rest of population is taken
at random to maintain constant level of cuckoos. Since these
all operations are completed we start next round in CSA. New
generation of cuckoos is placed and we start procedure from
the beginning.

In every generation we only model the choice of place to
lay an egg with particular equations. This movement has some
statistic background. It uses a concept of random walks, what
helps to perform non local search in different type solution
spaces. Virtual cuckoo movement is modeled with formula

xt+1
i = xt

i + µ · L(β, γ, δ), (12)

where the symbols are: xt+1
i – next solution in CSA, µ –

length of step in random walk based on normal distribution
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N
(

γ
cuckoos ; 0, 1

)
, L(β,γ,δ) – Lévy flight for a given step

length β, δ – length of minimum step for random walk and γ
– scaling parameter for Lévy flight.

Lévy flights are made isotropic in random directions [23],
according to formula

L(β, γ, δ) =

{ √
γ
2π

exp[− γ
2(β−δ) ]

(β−δ)
3
2

, 0 < β < δ <∞
0, other

.

(13)

Finally we only have to decide if it is ”found” by hosts. This
decision is modeled with equation

H(xt+1
i ) =

{
1− pα drop the egg
pα the egg stays , (14)

where the symbols are: H(xt+1
i ) – decision taken by hosts

about intruder, pα ∈ 〈0, 1〉 – chance for cuckoo egg to stay.

Algorithm 3 Cuckoo Search Algorithm
1: Define all coefficients: pα ∈ 〈0, 1〉, β, γ, δ, bestratio,

number of cuckoos and number of generations,
2: Define fitness condition φ(·),
3: Create at random initial population,
4: t:=0,
5: while t ≤ generations do
6: Move cuckoos according to (12) and (13),
7: Hosts decide if the eggs stay or no – decision according

to (14),
8: Sort points (cuckoos) according to the value of criterion

function,
9: Evaluate population and take bestratio of them to next

generation,
10: Rest of cuckoos take at random,
11: Next generation t+ +,
12: end while
13: Best cuckoos from the last generation are solution.

2) Firefly Algorithm (FA): FA simulates behavior of flying
and blinking insects while searching for a partner. Individuals
are described by several biological traits: specific way of
flashing, specific way of moving and specific perception of
the others. These are mathematically modeled as:

• γ–light absorption coefficient in given circumstances,
• µ–firefly random motion factor,
• βpop–firefly attractiveness factor,
• Ipop–light intensity factor for given species,

which implement behavior of different species of fireflies and
natural conditions of the environment. Just as in nature, a
firefly goes to the most attractive other one by measuring the
intensity of flickers over the distance between them charac-
terized by a suitable metric. In FA an average distance rij
between any two fireflies i and j maps the inverse square
law. Attractiveness of individuals decreases with increasing
distance rij between them. We also map air absorption of light,
which makes fireflies visible to certain distance. In description
of FA we assume:

• All fireflies are unisex, therefore one individual can be
attracted to any other firefly regardless of gender,

• Attractiveness is proportional to brightness. Thus, for
every two fireflies less clear flashing one will move
toward brighter one,

• Attractiveness decreases with increasing distance between
individuals,

• If there is no clearer and more visible firefly within the
range, then each one will move randomly.

Distance between any two fireflies i and j situated at points
xi and xj is defined using metric

rtij = ‖xt
i − xt

j‖ =

√√√√ N∑
k=1

(xti,k − xtj,k)2, (15)

where notations in t iteration are: xt
i , xt

j–points in RN space,
xti,k, xtk,j–k-th components of the spatial coordinates.

Light intensity Itij from firefly i that is received by firefly j
decreases with increasing distance rtij between them. Natural
light is absorbed by media, so attractiveness also vary accord-
ing to absorption and distance between them. In the model,
light intensity varies according to

Itij(r
t
ij) = Ipop · e−γ·(r

t
ij)

2

, (16)

where the symbols are: Itij(r
t
ij)–intensity of light from firefly i

that is received by firefly j in t iteration, rtij–distance between
firefly i and firefly j defined in (15), γ–light absorption
coefficient mapping natural conditions.

Attractiveness of firefly i to firefly j decreases with increas-
ing distance. Attractiveness is proportional to intensity of light
seen by surrounding individuals and defined as

βij(r
t
ij) = βpop · e−γ·(r

t
ij)

2

, (17)

where notations in t iteration are: βij(rtij)–attractiveness of
firefly i to firefly j, rtij–distance between firefly i and firefly
j, γ–light absorption factor mapping natural conditions, βpop–
firefly attractiveness factor.

Movement of individual is based on conditioned distance
to other individuals surrounding it. Firefly will go to most
attractive one, measuring intensity of flicker over the distance
between them. In given model, natural identification of in-
dividuals and their attractiveness defined in (17) depends on
light intensity defined in (16) and distance separating them
defined in (15). In nature fireflies that are closer not only see
themselves better, but also are more attractive to each other.
Using these features in the model, calculations simulate natural
behavior of fireflies. Firefly i motions toward more attractive
and brighter (clearer flashing) individual j using information
about other individuals denotes formula

xt+1
i = xt

i + (xt
j − xt

i ) · βtij(rtij) · Itij(rtij) + µ · ei, (18)

where the symbols are: xt
i , xt

j–points in the picture, βtij(r
t
ij)–

attractiveness of firefly i to firefly j defined in (17), Itij(r
t
ij)–

intensity of light from firefly i that is received by firefly
j defined in (16), rtij–distance between fireflies i and j
defined in (15), γ–light absorption coefficient mapping natural
conditions, µ–coefficient mapping natural random motion of
individuals in population, ei–vector randomly changing posi-
tion of firefly. FA implementation is presented in Algorithm 4.
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Algorithm 4 Firefly Algorithm
1: Define all coefficients and number of fireflies and
generation in the algorithm,

2: Define fitness condition φ(·),
3: Create at random initial population of fireflies,
4: t:=0,
5: while t ≤ generation do
6: Calculate distance between individuals in population P

using (15),
7: Calculate light intensity for individuals in population P

using (16),
8: Calculate attractiveness for individuals in population P

using (17),
9: Evaluate individuals in population,

10: Move individuals towards closest and most attractive
individual using (18),

11: Evaluate individuals in population,
12: Replace worst ratio individuals from population with

at random,
13: Rest of fireflies take at random,
14: Next generation t := t+ 1,
15: end while
16: Best fireflies from the last generation are solution.

IV. EXPERIMENTAL RESULTS

Numerical tests were performed to search for the optimum
of five variables functions using Genetic Algorithm (GA), Hy-
brid Genetic Algorithm (HGA) with and without the Baldwin
Effect, Cuckoo Search Algorithm (CSA) and Firefly Algorithm
(FA). Results were examined in velocity of convergence and
the precision in comparison to the accuracy results. Two
different fitness functions were examined. The first function
was Rastragin

φ1(xi) = 50 +

5∑
i=1

(
xi

2 − 10 cos(2πxi)
)
, (19)

where d = 5 is number of dimensions. The second function
was first De Jong

φ2(xi) = −
5∑
i=1

xi
2. (20)

In our tests, for both evaluated functions research were done
within the hypercube [−5.12, 5.12]d. The analytical solution
i.e. for φ2(x) = (0, 0, 0, 0, 0). Research results are shown in
Tab. I and Tab. II. Sample results are presented in Fig. 6 and
Fig. 7 but of course not in 5 dimension, as it is rather hard
to do it, but in lower space. Analyzing values we can see
that HGA with Baldwin Effect, CSA and FA can be most
precise methods for functions optimization where we do not
have many modules with local optimum. Among them CSA is
most simple to implement and because of dedicated Gaussian
distribution it is self improvable. The experiments, however,
show also that for functions with many modules with local
optimum examined methods may fail to give precise solution.
This means that we still need to work on local search that will

not suppress global search, however it is non trivial problem
to solve even using sophisticated methods.

V. FINAL REMARKS

The paper is to present research on optimization of common
test functions. In the following sections selected methods were
discussed. The numerical calculations presented in section IV
proved advance of evolutionary computation based methods in
common test functions optimization. These methods are easy
to implement with possibility to improve them for various
purposes presented in section I. Future research will lead
to define improvements of discussed algorithms leading to
tailored solutions for optimization purposes.
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Fig. 6. First De Jong function optimization results: on the left original image and on the right a close-up, both for GA (black), GA+Baldwin Effect (green),
HGA(pink), HGA+Baldwin Effect (red), CSA (yellow), FA (blue) calculated for 300 individuals in 100 iterations
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Fig. 8. Rastragin function optimization results: on the left original image and on the right a close-up, both for GA (black), GA+Baldwin Effect (green),
HGA(pink), HGA+Baldwin Effect (red), CSA (yellow), FA (blue) calculated for 300 individuals in 100 iterations

TABLE I
RESEARCH RESULTS FOR RASTRAGIN FUNCTION (19)

Genetic Algorithm
iterations optimum x φ1(x)

100 (-4,65E+00;-4,62E+00;-4,51E+00;4,53E+00;-4,46E+00) 1,96E+02
1000 (4,54E+00;-4,48E+00;-4,50E+00;-4,52E+00;4,51E+00) 2,01E+02
50000 (4,52E+00;-4,52E+00;4,53E+00;4,53E+00;-4,52E+00) 2,02E+02

Hybrid Genetic Algorithm
iterations optimum x φ1(x)

100 (-4,65E+00;-4,62E+00;-4,51E+00;4,53E+00;-4,46E+00) 1,96E+02
1000 (4,54E+00;-4,48E+00;-4,50E+00;-4,52E+00;4,51E+00) 2,01E+02
50000 (4,52E+00;-4,52E+00;4,53E+00;4,53E+00;-4,52E+00) 2,02E+02

Genetic Algorithm with Baldwin Effect
iterations optimum x φ1(x)

100 (-4,46E+00;4,64E+00;4,51E+00;-4,51E+00;-4,43E+00) 1,97E+02
1000 (4,53E+00;-4,51E+00;-4,57E+00;-4,47E+00;4,50E+00) 2,01E+02
50000 (-4,53E+00;4,52E+00;4,53E+00;4,53E+00;-4,52E+00) 2,02E+02

Hybrid Genetic Algorithm with Baldwin Effect
iterations optimum x φ1(x)

100 (-4,46E+00;4,64E+00;4,51E+00;-4,51E+00;-4,43E+00) 1,97E+02
1000 (4,53E+00;-4,51E+00;-4,57E+00;-4,47E+00;4,50E+00) 2,01E+02
50000 (-4,53E+00;4,52E+00;4,53E+00;4,53E+00;-4,52E+00) 2,02E+02

Cuckoo Search Algorithm
iterations optimum x φ1(x)

100 (-4,49E+00;4,56E+00;4,53E+00;-4,52E+00;-4,61E-01) 1,81E+02
1000 (4,45E+00;4,97E+00;-4,55E+00;-4,53E+00;4,39E+00) 1,82E+02
50000 (-4,60E+00;-4,48E+00;4,77E+00;4,59E+00;-4,51E+00) 1,90E+02

Firefly Algorithm
iterations optimum x φ1(x)

100 (-4,67E+00;4,75E+00;4,23E+00;4,32E+00;4,80E+00) 1,58E+02
1000 (-4,44E+00;4,88E+00;5,03E+00 4,79E+00;4,43E+00) 1,60E+02
50000 (4,54E+00;-4,43E+00;4,97E+00;4,49E+00;4,68E+00) 1,80E+02
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TABLE II
RESEARCH RESULTS FOR DE JONG FIRST FUNCTION (20)

Genetic Algorithm
iterations optimum x φ1(x)

100 (-8,32E-02;2,57E-01;-9,30E-02;3,11E-02;-2,26E-02) -8,32E-02
1000 (-3,89E-02;4,29E-02;-1,76E-02;-4,57E-02;5,02E-02) -8,27E-03

50000 (9,67E-05;-2,11E-03;4,94E-04;1,23E-03;1,74E-03) -9,26E-06
Hybrid Genetic Algorithm

iterations optimum x φ1(x)
100 (6,72E-16;-2,08E-15;7,52E-16;-2,51E-16;1,83E-16) -5.4E-30
1000 (-3,07E-13;3,39E-13;-1,39E-13;-3,13E-13;3,97E-13) -5,17E-25

50000 (6,40E-19;-1,40E-17;3,27E-18;8,12E-18;1,15E-17) -4,05E-34
Genetic Algorithm with Baldwin Effect

iterations optimum x φ1(x)
100 (8,61E-02;2,07E-01;-1,76E-01;5,81E-02;-1,49E-01) -1,07E-01
1000 (-8,19E-02;2,24E-03;-7,69E-02;5,18E-02;9,12E-02) -2,36E-02

50000 (-1,88E-03;1,59E-03;9,06E-03;-5,49E-04;-2,51E-03) -9,47E-05
Hybrid Genetic Algorithm with Baldwin Effect

iterations optimum x φ1(x)
100 (-6,46E-14;-1,56E-13;1,32E-13;-4,36E-14;1,12E-13) -6,02E-26
1000 (-5,29E-14;1,45E-15;-4,97E-14;3,35E-14;5,90E-14) -9,88E-27

50000 (1,83E-12;-1,54E-12;-8,82E-12;5,34E-13;2,44E-12) -8,97E-23
Cuckoo Search Algorithm

iterations optimum x φ1(x)
100 (-1,83E-01;-3,97E-01;1,28E-01;-5,39E-01;-2,59E-01) -5,66E-01
1000 (-5,71E-01;-3,49E-01;-8,84E-02;6,01E-01;9,33E-02) -8,26E-01

50000 (-4,29E-01;2,15E-01;1,14E-01;2,36E-02;1,45E-01) -2,65E-01
Firefly Algorithm

iterations optimum x φ1(x)
100 (-8,47E-01;5,79E-01;-3,21E-02;9,97E-02;1,04E-01) 1,07E+00
1000 (-3,50E-01;-6,58E-01;-3,39E-01;1,01E-03;2,43E-02) 6,72E-01

50000 (-4,03E-01;-6,93E-01;-3,98E-01;6,12E-03;8,15E-02) 8,07E-01

Fig. 9. Rastragin function optimization results: on the left original image and on the right a close-up, both for GA (black), GA+Baldwin Effect (green),
HGA(pink), HGA+Baldwin Effect (red), CSA (yellow), FA (blue) calculated for 300 individuals in 5000 iterations


