o
J Manuscript received February 15, 2015; revised March 2015.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 1, PP. 17-23
DOI: 10.1515/eletel-2015-0002

A Software Architecture Assisting Workflow
Executions on Cloud Resources

Grzegorz Borowik, Marcin WozZniak, Andrea Fornaia, Rosario Giunta, Christian Napoli, Giuseppe Pappalardo,
and Emiliano Tramontana

Abstract—An enterprise providing services handled by means
of workflows needs to monitor and control their execution, gather
usage data, determine priorities, and properly use computing
cloud-related resources. This paper proposes a software archi-
tecture that connects unaware services to components handling
workflow monitoring and management concerns. Moreover, the
provided components enhance dependability of services while
letting developers focus only on the business logic.

Keywords—software architecture, dependability, workflows,
cloud computing, monitoring

I. INTRODUCTION

OWADAYS, business enterprises organise their provided

operations by means of a pre-defined workflow, i.e. a
flow of execution relating activities supported by software
services and regulated by an engine [1], [2]. Generally, sev-
eral services connect with others, or provide data to others,
according to a predefined workflow, while sharing common
computing resources, available e.g. as a cloud-computing
facility [3], [4]. By resorting to cloud-computing, transparent
access e.g. to shared services, hardware and data is made
possible, thus enabling a higher level of availability as well
as higher performances [5].

One of the primary needs for enterprises is to handle service
executions in such a way to: (i) monitor human activities, (ii)
have a smooth execution on servers, and (iii) achieve a defined
degree of dependability [6]. For the latter, when a server
handles numerous requests, to counteract slowing responsive-
ness and enhance availability, services can be activated on
other cloud resources [7] or by means of software agents [8].
For an enterprise, monitoring their workflows means gaining
metrics related to business service performances, employee
productivity, etc. Such metrics enable decision making for
optimising how human resources provide their assistance,
handling priorities, such as the allocations of tasks to human
resources or processes to hosts.

Services activated by means of a workflow could include
the additional code that supports both dependability and

This work has been supported by project PRISMA PONO04a2 A/F funded
by the Italian Ministry of University within PON 2007-2013 framework.

G. Borowik is with Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland (e-mail: gborowik @tele.pw.edu.pl).

M. Wozniak is with Institute of Mathematics, Silesian Univer-
sity of Technology, Kaszubska 23, 44-100 Gliwice, Poland (e-mail:
marcin.wozniak @polsl.pl).

A. Fornaia, R. Giunta, C. Napoli, G. Pappalardo, and E. Tramontana are
with Department of Mathematics and Informatics, University of Catania,
Viale A. Doria 6, 95125 Catania, Italy (e-mails: fornaia@dmi.unict.it,
giunta@dmi.unict.it, napoli@dmi.unict.it, pappalardo@dmi.unict.it,
tramontana @ dmi.unict.it).

monitoring issues, however such a solution would bring a
high complexity level for services, lower maintainability and
increase development costs [9]-[11]. Moreover, when using
other traditional solutions for supporting additional concerns,
such as non-functional ones, services have to conform to
an ad-hoc supporting framework or development model [12],
[13]. This limits modularity and forces some components to
be manually adapted. There are also some efficient ways to
improved state encoding for structures with embedded memory
blocks [14]. In order to support modularity, we propose
a software infrastructure that seamlessly activates workflow
execution, provides services with monitoring and enhances
dependability. The technology empowering the said seamless
integration is aspect-orientation (AO), defined in [15], [16].
A software aspect is a module that includes portions of code
(comparable to methods) that are injected into an existing
component according to defined rules. AO systems have been
built to separate QoS-enhancing code from functional code,
design pattern-related code from classes [17]-[19] etc. Unlike
previous approaches (see Section V for a detailed comparison)
our proposal can be applied to services, and workflows,
without relying on any assumptions, is not intrusive for the
underlying support (such as JVM or OS libraries), enhances
modularity, and is not disrupting in terms of execution flow,
development process and freedom for service developers.

The paper is organised as follows. Section II provides
the motivation and an overview of our approach. Section III
describes the proposed software components that automati-
cally provide workflow management, and enhance services
with monitoring and dependability. Section IV introduces our
strategy for the use of cloud resources. Section V discusses
the related work, and Section VI draws our conclusions.

II. PROPOSED APPROACH
A. Analysed Enterprise Scenario

A typical enterprise workflow is generally formalised by
means of a description, which is given to a workflow engine,
e.g. JBOSS jBPM!, that timely starts the several services de-
scribed [1]. The workflow engine is able to send notifications
about the state (e.g. just started, executing, finished) of the
services on a workflow, and therefore alert humans or gather
statistical data about the execution.

Figure 2 shows an example of a simplified workflow,
dubbed city planning, whereby several services are executed
each corresponding to a step that can be performed after

Uhttp://www.jboss.org/jbpm

18 G. BOROWIK, M. WOZNIAK, A. FORNAIA, R. GIUNTA, C. NAPOLI, G. PAPPALARDO, E. TRAMONTANA

request

Controller

» Web Service

select
workflow

CLIENT

CONFIGURATIONS
WORKFLOW 1| |WORKFLOW 2 WORKFLOW N
| SERVICE1 | | | | SERVICE1 | SERVICE 1
[SERVICE2 | | | [SERVICEZ | -
[SERVICE M, | [SERVICE M, | SERVICE M,
Fig. 1. The overall configuration of the developed system
. send receive .
CI_|ent permit possible H recﬁmf }—»O
side request date pe
! I I
T | |
' I I
: I |
| |
v ! l
Server receive analyse schedule plan
side requests city plan meeting evaluation

Fig. 2. An example of workflow city planning on a distributed system

receiving a user request for a permit. A reference model for
the software system assisting such steps will have one or more
client applications enabling the user to submit a request or to
gather replies. Hence, e.g. the step send permit request could
be performed using a web browser or an ad-hoc application
connecting to a service, receive possible date could be a
message received as a status update on a web page or an
email, etc. Services on the server side are processes running,
or started, according to the indication given by the workflow
steps, hence e.g. receive requests is the first step of an ad-hoc
workflow, and is a process listening for incoming requests,
analyse city plan is a process started as a second step of the
workflow once the previous step has been performed, etc.

Services within a workflow are generally of different nature,
e.g. have their own data or processing requirements, hence they
should be handled differently when dealing with dependability.
Let us suppose that analyse city plan is a resource consuming
process whose execution time has to be guaranteed, instead,
another service could simply provide immutable stored docu-
ments. Then, handling requests that trigger service execution
requires the provisioning of ad-hoc computing resources to
ensure dependability.

A

‘ CLOUD FAGADE ‘4—

ALLOCATED VM SERVI‘!:E VM
o (N
ALLOCATED VM
>
ALLOCATED VM

B. Transparently Provided Support

Cloud-based solutions provide a means to limit costs for an
enterprise needing high-performance hardware resources [3].
Therefore, the server-side software components can be par-
tially or wholly supported by cloud-based resources. In such
a scenario, additional concerns can be identified, as workflow
monitoring and dependability enhancements. Our contribution
provides such features by inserting support into existing ser-
vices.

Workflow monitoring. Business related services are auto-
matically provided with monitoring, i.e. how and when such
services are used. Monitoring allows typical usage behaviour
of enterprise employees to be detected, thanks to their interac-
tions with services. This makes it possible to compute metrics
on productivity, workflow execution time, and potential bottle-
necks of workflows. Data gathered while monitoring services
and workflows are sent to components located on cloud-based
resources, such that even though large amount of data are
accumulated, they can be easily processed. Therefore, our
monitoring concern is different from cloud metering services
that observe resource consumption and exhibit the status of
several resource-based metrics. It is also important to use some
efficient methods to accumlate input data. Fast aggregation
methods for large data sets are presented in [20] and [21].

Enhancing dependability. As a means to improve availabil-
ity, we resort to an automatic and transparent support that
detects whether a service to be executed needs to be assisted by
secondary, cloud-based hosts, which execute services and pro-
vide contents. By delegating a portion of the service processing
requested to the secondary host, we enhance overall response
times and limit the workload on hosts. The further benefit
given by the use of secondary hosts is a marked reliability
increase for the whole system, for additional hosts can easily
take over the workload assigned to one that incidentally incurs
into faults. This makes the overall enhanced system capable of
providing uninterrupted service under load peaks and faults.

A SOFTWARE ARCHITECTURE ASSISTING WORKFLOW EXECUTIONS ON CLOUD RESOURCES 19

ITI. SOFTWARE INFRASTRUCTURE

In order to support the features outlined above, we propose
a few software components that enhance services and provide:
(i) monitoring of workflow services, (ii) resource management,
(iii) dependability.

The connection between provided components and work-
flow services is accomplished by means of aspect-oriented
programming. A software aspect is a component defining
pointcuts and advices [15], [16]. The pointcuts trigger exe-
cution of advices when given join points, i.e. some points on
the code of a service, are executed. Aspects allow crosscutting
concerns to be dealt with in a modular way, thus making
components maintainable and prone to be reused [18], [19],
[22].

Figure 3 shows how our components operate, as seen by an
external observer. The chief actors are: the deployed services,
such as Web-Service1 (the middle layer), which clients can
connect to; a set of cloud-servers, such as Cloud-Server1 (the
rightmost layer); a set of regular clients. Services, comprising
their business logic, can be exposed on the web, hence users
can interact with their browser, or reside on a cloud resource.
Our provided aspect Reporter connects services exposed on the
web with other cloud-based services. For this, an ensemble of
several supporting classes are used, i.e. mainly ReqHandler,
Scheduler, NNPredictor, LocalTimingStore.

Client1

1: send permit request

Web-
Servicel

2.1: start host
2.1: analyse city plan

Cloud-
Server1

2.3: schedule
meeting

Cloud-
Service2

Fig. 3. Client requests served by a web server and a cloud-server

2.4: propose
meeting

A. Workflow Descriptor

In the example above (see Figure 2), the steps of a defined
workflow are associated with indications that allow resource
allocations. Table I provides the workflow services with such
additional data.

In our solution, a component, dubbed Controller, takes as
input the above data and accordingly during runtime handles
the current request. Typically in our scenario, a new instance
of a workflow is started by means of a request coming from
a web service (see the following section), then Controller is
alerted, finds the workflow that has to be executed, and starts
operations on cloud resources for the following services.

TABLE I
THE CHARACTERISATION OF SERVICES FOR WORKFLOW City Planning IN
ORDER TO MANAGE OF CLOUD RESOURCES

service name start, end status resource type

receive requests on, on no cloud

analyse city plan off, off dedicated, large VM
schedule meeting standby, standby shared, small VM
plan evaluation off, off shared, medium VM

In the above example, after executing service receive re-
quests on a web server, Controller receives an alert, finds the
related workflow and prepares resources for the execution of
service analyse city plan by starting a dedicated VM. From the
second row in the above table, we can see that the service has
to be started on a dedicated large VM.

For each workflow, additional data have to be provided,
such as e.g. the priority, the allowed deadline, the number
of instances that can be concurrently executed. Moreover, for
each service on the workflow, the number of its instances that
can be concurrently active is also given.

B. Aspect Reporter

Aspect Reporter enhances a service responding on a known
IP address, and transparently provides it with abilities to
effectively handle request bursts. Such an aspect relies on other
components that are located on cloud-based servers. Aspect
Reporter connects with services listening HTTP requests,
monitors the timing of their execution, and triggers execution
of other offloading services when needed. Once Reporter has
gathered workflow-related metrics, data are sent to the local
class LocalTimingStore. In turn, such data will be periodically
sent to service TimingStore located on a cloud server. The latter
appropriately merges data coming from different users and
services, or different instances of the same service. Figure 4
shows an UML sequence diagram for the said measuring oper-
ations, since when Reporter pointcut trapRequest() intervenes
into the execution of a service.

We have defined pointcuts for capturing a variety of possible
implementations, because an HTTP request can be handled
by a servlet, or as a EJB. Servlet implementations, which
handle HTTP requests, are subclasses of HitpServlet class
(available into Java package javax.servlet.http) and have to
have methods doPost() or doGet(). Whereas when having
services implemented as EJBs, annotation @WebService is
used, or to expose only a method as a part of a web service,
annotation @WebMethod is used (such annotations are defined
into package javax.jws). The corresponding pointcuts trapRe-
quest() and trapRequestWebServ() are shown in the listing
of Figure 5. The first pointcut captures all the points of the
program that invoke methods doPost() or doGet() implemented
in a subclass of HttpServiet; whereas the second pointcut
captures all the invocations to any method of a class that has
been marked with annotation @WebService.

The timing of operations exposed as a web service gives
a great amount of details on the workflow activities that are
performed. This aspect encapsulates a concern that is cross-
cutting both for the components of a service, and for several
services available within workflows defined by the enterprise.

20 G. BOROWIK, M. WOZNIAK, A. FORNAIA, R. GIUNTA, C. NAPOLI, G. PAPPALARDO, E. TRAMONTANA

:Client :aService <Eisgoifé?> %g :Controller
- doPost() l I I
—— | trapRequest() start() l

-

wihandling() |
g() | >D
<--------- < -~ ---- |‘ ““““““““ |
s v | |

Fig. 4. Sequence diagram showing aspect Reporter that monitors invocations to a service performed by a client class Client and connect the proper workflow

related service

public aspect Reporter {
private final LocalTimingStore lts =
LocalTimingStore. getlnstance ();

// capture method invocations on a servlet
pointcut trapRequest () :
call (void HttpServlet +.doPost (..)) ||
call (void HttpServlet +.doGet (..));

void around() : trapRequest() {
HttpServlet t = (HttpServlet) thisJoinPoint . getTarget ();
Object[] arg = thisJoinPoint . getArgs ();
HttpServletRequest r = (HttpServletRequest) arg [0];
Its . start (t, r, System.nanoTime());
if (! Controller . getlnstance (). wthandling(t))
proceed ();
Its .end(t, r, System.nanoTime());

}

// capture method invocations on annotated classes
pointcut trapRequestWebServ() :
call (@WebService # =.x(..));

void around() : trapRequestWebServ() {
Object t = thisJoinPoint . getTarget ();
Its . start (t, System.nanoTime());
if (! Controller . getlnstance (). wthandling(t))
proceed ();
Its .end(t, System.nanoTime());

Fig. 5. Aspect Reporter that intercepts invocations on operations of classes
implementing a service exposed as HTTP and records the starting and
finishing time

Nevertheless, the code of such an aspect is independent of any
observed services. Compared with alerts that can be set up on
the workflow engine to be notified of service execution, aspect
Reporter additionally gives a means to control operations
within a service, hence supports fine-grained monitoring and
adaptivity. Thanks to this aspect, workflows and services can
be given resources according to different policies.

C. Dependability and Flow of Operations

For the proposed solution to be effectively used, aspect
Reporter needs to be deployed enterprise-wide. L.e. aspect Re-
porter has to be deployed on every service to be enhanced with
the monitoring and dependability support. Aspect Reporter
temporarily stops an incoming HTTP request and Controller
determines whether the request should be handled by the local
host, or by another service on a cloud resource. How to handle
a request depends on the current load, request type, requesting
user, and the applicable workflow. For each service, Controller
holds the configuration needed, including: priority, number of
allowed concurrent instances, flavour and status of the VM,
etc. (see Section III-A). From such data and the actual status
Controller determines whether to let the request forward, start
another VM, etc.

Controller is the main component assisting Reporter. Fig-
ure 6 shows the relevant interactions, i.e. when a request
arrives on a handling web service, Reporter aspect intervenes
to let the request be served according to our model. Hence,
pointcut trapRequest() is activated by rules defined as in
Figure 4 and the listing in Figure 5. Such an aspect then
extracts data to identify the request. The activated advice
checks with Controller the priority and whether the current
request is allowed and can continue execution on the local
host (see call to Controller.wfhandling()). The check is handled
by first calling getResources() (Figure 6), and this finds which
service and host are needed to serve the response.

When the host on the local web server can not handle
the request, then the list of needed resources is passed to
CloudFacade class, calling its startVM() method or a proper
method (such as e.g. enqueRequest(), etc.), which allow the
requested service to be later executed on the cloud resource.
Class CloudFacade handles the details for the operation to be
started on a cloud facility.

Whenever a new request arrives, an hybrid neural network
engine [23] is updated for the benefit of future forecasts [2],
using the updSeries() call. Moreover, NNPredictor subsystem
periodically computes the load estimate as an amount of re-
ceived requests to services of the enterprise and will boot up or
shut down cloud-hosted servers. NNPredictor can estimate up

A SOFTWARE ARCHITECTURE ASSISTING WORKFLOW EXECUTIONS ON CLOUD RESOURCES 21

to six hours ahead with a relative error of 0.6 per thousands [2].
When a subsequent service on the same workflow instance has
to be executed, the needed cloud resorces have been started and
made ready to serve by NNPredictor. Thus, Controller collects
the addresses of which host will be assisting the current session
in order to let the following service execute.

«Controller :CloudFacade | | :NNPredictor
. I I |
V@M)_»—‘— getResources() | l
. | |
startVM() updSeries() |
A |
| |
|

Fig. 6. Sequence diagram showing interactions with a cloud and the resource
usage predictor

Each client is identified by a set of characteristics, such as
IP address, user id, priority, etc. and may pertain to different
categories, such as response time, connections per second,
etc. Accordingly, Controller determines whether to accept the
current request, and in case it is allowed compute a priority for
all the services of the related workflow. The priority is based
on the identity of the requester and the workflow whereby
the current request belongs, and in turn according to such a
priority cloud resources (e.g. VM flavours) are selected.

As far as the load balancing part is concerned two important
benefits are achieved: (i) the load of a request in a workflow
instance is distributed according to the several hosts involved
in the execution, and their state, (ii) initial requests can be
accepted, put on hold or rejected, by our Controller.

The following section describes our strategy to allocate
resources on a cloud when multiple requests have to be
handled, and in order to minimise the number of allocated
resources, thus effectively using in-house facilities, without
resorting to additional costs.

IV. POLICY FOR ALLOCATING RESOURCES

Quantum electrodynamics inspired us an ad-hoc description
for a computational cloud which we have used as the basis to
model an evolutionary algorithm [24]-[26] in order to follow
the dynamical state of the system during time. If we define a
computational cost for a task (such a cost could refer to mem-
ory, cpu time, complexity or other software measurements),
then it is possible to use the defined cost for an appropriate
fitness function. Since we are interested in finding the optimum
solution for the allocation of resources on a cloud, it would
be equivalent to compute the local minima of such a fitness
function, once taken into account all the constraints of the case.
Such a problem is similar to a typical partitioning problem for

a fermion particle gas, therefore solvable with a few basic tools
from quantum electrodynamics.

In our description, then, the said computational cost will
have the same meaning of the energy of a fermion. Therefore,
the resources provided by a VM can be seen as the local
minima of a potential cost field. Similarly to fermions that
naturally tend to the minimum energy state, then our cloud
must evolve in order to reach the minimum cost state.

In particle physics the fermions exhibit antisymmetric wave
functions, beside the mathematical formulation and the phys-
ical meaning, front this fact depends what is generally known
as the Pauli exclusion principle. Such a principle states that in
a quantum system two fermions can not share the same pure
state, in facts the Pauli exclusion principle is a selection rule
for forbidden states. While in quantum mechanics such a rule
is taken into account as a brute fact, this natural feature of
our universe can as well give us the solution to the considered
problem.

Within the parallelism among cloud computing and quantum
electrodynamics, we will describe the available resources of
a cloud as points of local minima for a fitness function. We
decided then to use as a fitness function the total energy of
a quantum system defined by a partition function for fermion
particles, therefore describing the system by a Fermi-Dirac
statistical distribution.

We ordered the resources according to their related potential
cost, so that the resource R; covers a less or equal potential
cost with respect to R, 1. Then we have imagined the resource
requests as free particles, while we described an assigned
resource as a bound unoccupied state. Therefore, inspired by
the statistical thermodynamics of a fermions gas, we defined
an occupation function.

Let us suppose to have N, resources R; € R waiting to
be occupied in order to fulfil N, requests q; € Q. The sets
R and @ are continuously populated each time new resources
are freed (or added) to the cloud and each time new resource
requests are made. Suppose also that while time goes pairs
(r;, q;) are formed. In this case, if we define €(r;) the potential
cost of a resource 7;, and e(qj) the effective cost® of a request,
then the occupation function will be algorithmically populated
by using the following rule:

Zn = (ri,q5) 1 €(ri) > e(qj) ¥V Z, € RxQ (1)

where Z,, is the n-esime occupation. For each Z,, then we can
obtain an energy difference defined as § : R x () — R so that

Z,) =6(riyq;) = €lgj) —€(ri) VZ,€e@Q@xR (2)

We then define a fitness function f(7) : R x @ — R where
7 identifies a discrete time step, so that

(f(Zn)], = [f(ri,qy)], = [6(ri, q5) — wi] | 3)

with [w;], = 0 V r; € Rif 7 = 0 is the first time step.
By means of this fitness function, it is possible to identify a
subset of perfectly matching pairs Q = {Z,, : [f(Zn)], = 0}.
Moreover, we can define the set of non matching pairs as the

2We intend as affective cost the real cost that will be paid when chosing
resource ;.

22 G. BOROWIK, M. WOZNIAK, A. FORNAIA, R. GIUNTA, C. NAPOLI, G. PAPPALARDO, E. TRAMONTANA

complementary set © = {Z,, : Z,, ¢ Q}. While Q) identified
the pairs of resources and requests that naturally permit us
to waste virtually no resources, it is still needed to find the
minimum configuration for the pairs in ©.

Therefore, at each time step a gradient descent algorithm
[27]-[29] is applied in order to modify the coefficients [w;]
so that:

[wi]'rJrl = |:’U)l - nf(Zn)a] VZ,€0 4

ow
where 7 is a fixed step size.

Coming back to the imagined fermion gas, this gradient
descent algorithm is equivalent to the natural motion caused
by the difference of energy with respect to the bound state
which is therefore unstable. By imposing as constraint (as it
is in nature) that all the free particle states have higher energy
with respect to the bound states, then the system naturally
evolves to the lowest energy overall state. The same concept
is applicable then to the potential cost corrected with the terms
[wil,-

It comes trivially that the system also evolves naturally
to the optimum, moreover adding or removing resources and
requests to the system does not modify the dynamic evolution
of the system, but, in this latter case, before to apply the
evolutionary algorithm expressed by (4), it could be necessary
to recompute the population of (2 and ©.

Algorithm 1 Minimization Gradient Descent Algorithm
1: Start,
Define fitness condition f(-),
Define step size n and time horizon 7',
Crossmatch the resources and the requests,
Compute the perfectly matching pairs set €2,
Compute the complementary set ©,
t=1,
while ¢t < T do
Compute [w;], using (4),
t++
: end while
: Return QU O,
: Stop.

R e A A T o e

_ = e
w N = o

The adopted gradient descent algorithm is a local opti-
mization technique generally based on algorithmic attempts.
Such techniques permits to obtain the optimum configuration
with a very simple procedure, therefore computationally ad-
vantageous with respect to more computationally expensive
analytical calculations.

The presented numerical algorithm searches for a solution in
the defined space by means of recurrent adjustments dependent
by the gradient of the fitness function. In Algorithm 1 the de-
veloped gradient descent algorithm is presented. The algorithm
starts with the population of the perfectly matching pairs set €2
and by computing its complementary set O. In the successive
steps it computes the gradient Vf and then the results of
equation (4). It has to be noticed that it is the gradient sign
that determines the direction of the function descent. At the
end of each time step the new configuration of {2 is computed,

and the algorithm is iterated until a time horizon 7' is reached,
or it comply with a predefined stop condition.

V. RELATED WORKS

A thorough survey of existing literature on dependability,
QoS and performance for internet applications is reported
in [30].

The work in [31] proposes the instrumentation of the under-
lying system socket library, as a means to intercept inbound
and outbound traffic, so as to monitor service and performance
parameters. Served content is adaptively degraded to comply
with SLAs. The approach mixes communication and QoS
concerns.

An other way to improve QoS is to use more efficient com-
puting units, that can provide optimal energy characteristic of
a processor allocator and a Network-on-Chip [32] or tailored
finite state machines with programmable structures [33].

The development cycle described in [13] starts from a set of
(suitably modelled) QoS constraints and, after several model-
transformations, produces the final system, consisting of sep-
arate aspects implementing exclusively the QoS concern. A
similar approach is reported in [34]. It is also based on a non-
standard, design-level modeling language and produces a final
application enjoying an advanced modularity degree. While
such approaches are useful to produce a modular system,
they lack the capability of enhancing existing components, as
instead our approach allows, thus ruling out their utilisation
in business contexts where re-development costs have to be
kept at minimum and reuse is the norm. Therefore to have
an optimal QoS we often use tailored positioning based on
methematical modlling. A detailed mathematical modelling for
positioning queueing systems possible to widely apply in cloud
computing is given in [35], [36] and [37].

VI. CONCLUSIONS

In this paper we proposed an architecture that tackles the
need of starting workflow services, while monitoring their
execution and controlling the used resources. Services that are
part of a workflow can be controlled by our proposed aspect-
oriented solution and make these able to automatically resort
to cloud resources, without any reengineering effort. Aspects
can collect timing related data about the usage of any service
involved in the workflow, thus allowing the computation of
several metrics about the usage of the services. The automatic
scaling on cloud resources, whose number is estimated by a
neural network predictor, is performed by distributing requests
according to a fitness function that minimises costs. Thus
enhancing the availability of services (appropriately replicated
on cloud hosts) without having to bear the cost due to in-house
hosting.

REFERENCES

[1] T. Erl, SOA design patterns. Pearson Education, 2008.

[2] C. Napoli, G. Pappalardo, and E. Tramontana, “A hybrid neuro-wavelet
predictor for qos control and stability,” in Proceedings of AIxIA, ser.
LNCS, vol. 8249. Springer, December 2013, pp. 527-538.

A SOFTWARE ARCHITECTURE ASSISTING WORKFLOW EXECUTIONS ON CLOUD RESOURCES 23

(3]

[4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50-58, Apr. 2010.

R. Tolosana-Calasanz, J. A. BaiiAres, C. Pham, and O. F. Rana,
“Enforcing qos in scientific workflow systems enacted over cloud
infrastructures,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1300-1315, 2012.

C. Napoli, G. Pappalardo, E. Tramontana, and G. Zappala, “A cloud-
distributed gpu architecture for pattern identification in segmented
detectors big-data surveys,” The Computer Journal, p. bxul47, 2014.
A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.
F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli, G. Pappalardo, and
E. Tramontana, “A novel cloud-distributed toolbox for optimal energy
dispatch management from renewables in igss by using wrnn predictors
and gpu parallel solutions,” in Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM), 2014 International Symposium
on. IEEE, 2014, pp. 1077-1084.

C. Napoli, G. Pappalardo, and E. Tramontana, “An agent-driven
semantical identifier using radial basis neural networks and
reinforcement learning,” in Proceedings of the XV Workshop Dagli
Oggetti agli Agenti, vol. 1260. CEUR-WS, 2014. [Online]. Available:
http://ceur-ws.org/Vol-1260/

G. Pappalardo and E. Tramontana, “Suggesting extract class refactoring
opportunities by measuring strength of method interactions,” in Proceed-
ings of Asia Pacific Software Engineering Conference (APSEC). 1EEE,
December 2013, pp. 105-110.

E. Tramontana, “Automatically characterising components with concerns
and reducing tangling,” in Proceedings of QUORS workshop at Comp-
sac. 1EEE, 2013, pp. 499-504.

C. Napoli, G. Pappalardo, and E. Tramontana, “Using modularity metrics
to assist move method refactoring of large systems,” in Complex,
Intelligent, and Software Intensive Systems (CISIS), 2013 Seventh In-
ternational Conference on. 1EEE, 2013, pp. 529-534.

J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas, and
K. R. Anderson, “Qos aspect languages and their runtime integration,”
in Lecture Notes in Computer Science — LCR Workshop, vol. 1511.
Springer, 1998, pp. 303-318.

G. Ortiz and B. Bordbar, “Aspect-oriented quality of service for web
services: A model-driven approach,” in Proceedings of ICWS. IEEE,
2009, pp. 559-566.

G. Borowik, “Improved state encoding for FSM implementation in
FPGA structures with embedded memory blocks,” International Journal
of Electronics and Telecommunications, vol. 54, no. 2, pp. 9-28, 2008.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in Lecture Notes
in Computer Science — ECOOP, ser. LNCS, vol. 1241. Springer, 1997,
pp. 220-242.

R. Laddad, AspectJ in Action. Grennwich, Conn.: Manning Publications
Co., 2003.

F. Banno, D. Marletta, G. Pappalardo, and E. Tramontana, “Tackling
consistency issues for runtime updating distributed systems,” in Proceed-
ings of International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW). 1EEE, 2010, pp. 1-8.

R. Giunta, G. Pappalardo, and E. Tramontana, “Handling replica man-
agement concerns by means of aspects,” in Proceedings of WETICE.
IEEE, 2007, pp. 284-289.

R. Giunta, G. Pappalardo, and E. Tramontana, “Superimposing roles
for design patterns into application classes by means of aspects,” in
Proceedings of the ACM Symposium on Applied Computing, SAC.
ACM, March 2012. DOI: 10.1145/2245276.2232082, pp. 1866—1868.
M. Wozniak, Z. Marszatek, M. Gabryel, and R. K. Nowicki, “Modified
merge sort algorithm for large scale data sets,” Lecture Notes in Artificial
Intelligence — ICAISC 2013, vol. 7895, PART 11, pp. 612-622, 2013.
M. Wozniak, Z. Marszatlek, M. Gabryel, and R. K. Nowicki, “On
quick sort algorithm performance for large data sets,” in Looking
into the Future of Creativity and Decision Support Systems, A. M. J.
Skulimowski, Ed. 7-9 November, Cracow, Poland: Progress & Business
Publishers, 2013, pp. 647-656.

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

R. Giunta, G. Pappalardo, and E. Tramontana, “AODP: refactoring code
to provide advanced aspect-oriented modularization of design patterns,”
in Proceedings of SAC. ACM, March 2012, pp. 1243-1250.

G. Capizzi, C. Napoli, and L. Paternd, “An innovative hybrid neuro-
wavelet method for reconstruction of missing data in astronomical
photometric surveys,” in Artificial Intelligence and Soft Computing.
Springer Berlin Heidelberg, 2012, pp. 21-29.

C. Napoli, G. Pappalardo, E. Tramontana, Z. Marszalek, D. Polap,
and M. Wozniak, “Simplified firefly algorithm for 2d image key-points
search,” in Computational Intelligence for Human-like Intelligence
(CIHLI), 2014 IEEE Symposium on. 1EEE, 2014, pp. 118-125.

M. Wozniak, M. Gabryel, R. K. Nowicki, and B. Nowak, “A novel
approach to position traffic in nosql database systems by the use of
firefly algorithm,” in Proceedings of the 9th International Conference
on Knowledge, Information and Creativity Support Systems, G. A.
Papadopoulos, Ed. 6-8 November, Limassol, Cyprus: University of
Cyprus Press, 2014, pp. 208-218.

M. Wozniak, “On positioning traffic in nosql database systems by the use
of particle swarm algorithm,” in Proceedings of XV Workshop DAGLI
OGGETTI AGLI AGENTI — WOA’2014. 25-26 September, Catania,
Italy: CEUR Workshop Proceedings (CEUR-WS.org), RWTH Aachen
University, 2014, paper 5.

F. Bonanno, G. Capizzi, and C. Napoli, “Some remarks on the appli-
cation of rnn and prnn for the charge-discharge simulation of advanced
lithium-ions battery energy storage,” in Power Electronics, Electrical
Drives, Automation and Motion (SPEEDAM), 2012 International Sym-
posium on. 1EEE, 2012, pp. 941-945.

G. Capizzi, F. Bonanno, and C. Napoli, “Recurrent neural network-
based control strategy for battery energy storage in generation systems
with intermittent renewable energy sources,” in Clean Electrical Power
(ICCEP), 2011 International Conference on. 1EEE, 2011, pp. 336-340.
F. Bonanno, G. Capizzi, S. Coco, C. Napoli, A. Laudani, and G. L.
Sciuto, “Optimal thicknesses determination in a multilayer structure
to improve the spp efficiency for photovoltaic devices by an hybrid
femcascade neural network based approach,” in Power Electronics, Elec-
trical Drives, Automation and Motion (SPEEDAM), 2014 International
Symposium on. 1EEE, 2014, pp. 355-362.

J. Guitart, J. Torres, and E. Ayguadé, “A survey on performance man-
agement for internet applications,” Concurrency and Comp.: Practice
and Experience, vol. 22, no. 1, pp. 68-106, 2009.

T. Abdelzaher and N. Bhatti, “Web server QoS management by adaptive
content delivery,” in Proceedings of IWQoS. 1EEE, 1999, pp. 216-225.
D. Zydek, H. Selvaraj, G. Borowik, and T. Luba, “Energy characteristic
of a processor allocator and a Network-on-Chip,” International Journal
of Applied Mathematics and Computer Science, vol. 21, no. 2, pp. 385—
399, 2011.

T. Luba, G. Borowik, and A. Krasniewski, “Synthesis of finite state
machines for implementation with programmable structures,” Interna-
tional Journal of Electronics and Telecommunications, vol. 55, no. 2,
pp. 183-200, 2009.

S. Tambe, A. Dabholkar, and A. S. Gokhale, “CQML: Aspect-oriented
modeling for modularizing and weaving QoS concerns in component-
based systems,” in Proceedings of ECBS. IEEE, April 2009, pp. 11-20.
M. Wozniak, W. M. Kempa, M. Gabryel, and R. K. Nowicki, “A
finite-buffer queue with single vacation policy — analytical study with
evolutionary positioning,” International Journal of Applied Mathematics
and Computer Science, vol. 24, no. 4, pp. 887-900, 2014.

M. Wozniak, W. M. Kempa, M. Gabryel, R. K. Nowicki, and Z. Shao,
“On applying evolutionary computation methods to optimization of
vacation cycle costs in finite-buffer queue,” Lecture Notes in Artificial
Intelligence — ICAISC’2014, vol. 8467, PART I, pp. 480-491, 2014.
M. Wozniak, “On applying cuckoo search algorithm to positioning
GI/M/1/N finite-buffer queue with a single vacation policy,” in Pro-
ceedings of the 12th Mexican International Conference on Artificial
Intelligence - MICAI’2013. 24-30 November, Mexico City, Mexico:
IEEE, 2013, pp. 59-64.

