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Songs Recognition Using Audio Information Fusion
Paweł Biernacki

Abstract—The article presents information fusion approach
for song classification with use of acoustic signal. Many acoustic
features can contribute to correct identification of a song. Taking
into consideration only one set of features may result in omission
of relevant information. It is possible to improve the accuracy of
identification process by means of the information fusion tech-
nique, in which various aspects of acoustic fingerprint are taken
into consideration. Two sets of signal features were distinguished:
one were based on frequency analysis (harmonic elements) and
the other were based on multidimensional correlation ratios. An
identification of a commercial was made with use of SVM and
k-NN classifiers. The music audio signal database was used for
assessing the effectiveness of the proposed solution. Results show
an improved effectiveness of identification in relation to applying
only one set of song features.

Keywords—acoustic identification, signal parametrization, in-
formation fusion, Schur coefficients, Bayes rule

I. INTRODUCTION

IQUERIES pertaining to music, especially the MP3 format,

are asked more and more frequently by the average Internet

user[1]. Google is forming a new manner for searching data.

For example, if one would like to learn the name of the author

of a given image, he can enter a piece of the image into the

search engine in a digital form (Google+Photos), or in case

one would like to know the author and the title of a song, he

only has to play a fragment of the song to the microphone

built in his computer or phone (Google Ears).

Basing on the said fragment, the Google system is then

able to find the song title and other crucial data. The song

recognition process of audio fingerprinting is a developing

field and certainly will find multiple application. A great

interest in this field is exhibited by record companies that care

for legal use of the songs they publish. The solution discussed

herein would enable such companies a certain control over

songs, for instance, by means of constant media monitoring.

The use of monitoring makes it possible to determine how

often and on which broadcasting stations a given musical piece

is played. Moreover, in this way one can determine even the

total broadcast time of the song.

At present, there are several websites that offer song recog-

nition with use of the above described method, though most

of those I have encountered are still a work-in-progress. The

existing systems either require improvement due to unsat-

isfactory effectiveness, or could be substantially perfected,

which is often announced by their very authors. Acoustic

sensors (microphones) can be used to collect signals in order

to determine the type and the title of a given song. Application

of such sensors is attractive owing to fast installation and the

lowest cost [2].
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Selecting the relevant classification algorithm plays a critical

role in song identification [1,7]. In order to classify a given

musical piece effectively, characteristic features of the song or

a combination of such characteristics need to be determined.

The said features ought to assign the recorded music to one

class explicitly and exhibit resistance to external interference

(e.g. wind, noise). A small demand for data stream must be

enabled in real time and a relative assignment must be ensured.

Common classification features include: moment measure-

ment [7], eigenvectors [8], linear prediction coefficients [12],

cepstral coefficients [6], levels of various harmonics [1, 4],

means, variances, zero cross rates [5], etc. As can be seen,

there are many types of features and choosing one of them

does not guarantee successful identification.

Therefore, employing more than one group of features

combined in order to improve classification seems to be the

right solution. The method for combining the information

(information fusion) [9] should allow for a more complete

depiction of the acoustic signal model. Song recognition based

on, e.g., two classifiers gives a smaller chance of misidentify-

ing the song or not identifying any.

In the study depicted in the article I have decided on

employing two types of features of an acoustic signal from

a musical piece: harmonic content (spectrum analysis) and

signal moments (correlation analysis).

The former feature is related to the recorded sound. The

latter is based on a description of the signal with Volterra

series [10], in which the signal is parametrized with use

of correlation coefficients. Basing on the obtained signal

parameters, a separate song recognition process is conducted;

subsequently, a final decision on identification of the song is

made (the song is assigned to one of the classes specified in

the database) with use of the Bayesian decision rule (based on

the conditional probability theorem).

II. HASHING FUNCTION IN ESTIMATING HARMONIC

PARAMETERS

Hashing functions are used universally in the world of

cryptographies for verifying and converting large amounts of

data. Nevertheless, it is impossible to make a direct use of

the version applied in cryptography in song identification,

since this function is too sensitive to any alternations made

to the musical work, resulting in files of thoroughly different

parameters. The function described in the article is intended

to imitate human hearing (Human Auditory System, Has). It

aims to provide similar results for songs altered or modified

to some extent (e.g., due to quantization or compression).

A schematic diagram for the algorithm is presented in Fig. 1.

As can be seen, the input signal is first divided into overlapping

windows, then, each of them is windowed with a Hanning

window. Thus formed fragments of the signal are subjected to
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the Fourier transformation. Further calculations include only

the real part of the spectrum. The spectrum is divided into

subbands of varying width. The widths of subsequent subbands

are not equal, as their values increase in a non-linear way with

the rise in frequency. In [9] a division into 32 subbands in the

range of 300-3000 Hz is assumed, with the increase in the

width by a coefficient of 2(1/12) = 1.06 to every subband,

which correspond to subsequent musical whole tones.

Fig. 1. Hashing function scheme.[9]

Studies confirm, that human hearing operates on a similar

principle. Most often, the window length of 400 ms is adopted,

with the overlap ratio of adjacent windows of 31/32. If the

number of the subband is marked as m, the number of the

temporary frame is marked as n and the energy of the m
subband and of the n frame are marked as EB(n,m), then

the pixel value that corresponds to the m subband and the n
frame can be determined basing on the following equation:

H(n,m) = {
1 when EB(n,m)− EB(n,m+ 1)−
0 when EB(n,m)− EB(n,m+ 1)−

+(EB(n− 1,m)− EB(n− 1,m+ 1)) > 0
+(EB(n− 1,m)− EB(n− 1,m+ 1)) <= 0

(1)

The result of this function is a sequence of binary values

forming patterns dependent on the song being parametrized.

The outcome of the feature extraction (1) can be seen in the

picture below.

Fig. 2. Signal parametrization using hashing function.

III. REPRESENTATIVES OF THE SIGNAL WITH VOLTERRA

SERIES

In order to determine the vector of parameters (features) that

describe a given musical work, a multidimensional orthogonal

signal representation was employed [10,11].

Estymate x0 of the X signal can be written in the form of

the multidimensional Fourier serie:

x̂0 =

N
∑

i1=0

xρi1xi1
0 +

N
∑

i1=0

N
∑

i2=i1

xρi1,i2xi1,i2
0 + . . .

. . . +
N
∑

i1=0

N
∑

i2=i1

. . .
N
∑

iM=iM−1

xρi1,...,iMxi1,...,iM
0 (2)

where N is the estimation order, M its nonlinearity degree

and
xρi1,...,iM = (x0, r

i1,...,iM
0 ) (3)

are the generalized (multi-dimensional) Fourier [7] (i.e.Schur-

type) coefficients. These may be interpreted as multidimen-

sional coefficients of correlation between linear and non-linear

observation of the X signal.

A. Multidimensional Audio Signal Parametrization

Given a vector |x >T of samples {x0, . . . , xT } of a time-

series (a sound signal), observed on a finite time interval

{0, . . . , T }, the signal parametrization problem can be stated

as follows (see Figure 3). The estimate of the desired signal

|xε
{M}
N >T

|x >T

|x̂
{M}
N >T

ST =1 ST ∔2 ST ∔ . . .∔M ST

Fig. 3. The estimate |x̂ >T of the desired signal

|x̂
{M}
N >T, P(ST )|x >T (4)

is the orthogonal projection of the element |x >T on the space

ST spanned by the following set of the linear and nonlinear

observations

|X >T= [|1X >T |2X >T . . . |MX >T ] (5)

where

|mX >T= [|xi1 . . . xim >T ; i1 = 0, . . . , N,

i2 = i1, . . . , N, . . . , im = im−1, . . . , N ] (6)

for m = 1, . . . ,M . The orthogonal projection operator on

|X >T is defined as

P(ST ) , |X >T< X |X >−1
T < X |T (7)

If an ON (generalized; i.e., multidimensional) basis of the

space ST is known, the projection operator on ST can be

decomposed as

P(ST ) =

N
∑

j1=0

P(|rj10 >T ) + . . .+

+
N
∑

j1=0

. . .
N
∑

jM=jM−1

P(|rj1,...,jM0 >T ) (8)
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where P(|rj1,...,jm0 >T ) stands for the orthogonal projection

operator on the one-dimensional subspace spanned by the

element rj1,...,jm0 ,m = 1, . . . ,M of an ON basis of the space

ST . Since

P(|rj1,...,jw0 >T ) = |rj1,...,jw0 >T< rj1,...,jw0 |T (9)

the orthogonal expansion of the estimate of the desired signal

can be written as

|x̂
{M}
N >T= P(ST )|x >T=

N
∑

j1=0

|rj10 >T< rj10 |x >T +

+ . . .+
N
∑

j1=0

. . .
N
∑

jM=jM−1

|rj1,...,jM0 >T< rj1,...,jM0 |x >T (10)

The estimation error associated with the element |x̂
{M}
N >T

is then

|xε
{M}
N >T, P(S⊥

T )|x >T= |x >T −|x̂
{M}
N >T ⊥ ST

(11)

The estimate (4) will be called optimal (in the least-squares

sense) if the norm

‖ |xε
{M}
N >T ‖ =<x ε

{M}
N |xε

{M}
N >

1

2

T (12)

of the estimation error vector (11) is minimized for each T =
0, 1, 2, . . ..

The multidimensional signal parametrization problem can

be solved by the derivation of a (generalized) ON basis of

the estimation space ST (i.e. calculation of the orthogonal

representation (the generalized Fourier coefficients) of the

vector |x >T in the orthogonal expansion (10)).

In order to derive the desired ON basis of the estimation

space ST , we employ (consult [7][11]) the following

Theorem 1: The partial orthogonalization step results from

the recurrence relations

|ej1,...,jwi1,...,iq
>T= [|ej1,...,jw−1

i1,...,iq
>T +

+|rj1,...,jwi1,...,iq+1 >T ρj1,...,jwi1,...,iq ;T
](1− (ρj1,...,jwi1,...,iq ;T

)2)−
1

2 (13)

|rj1,...,jwi1,...,iq
>T= [|ej1,...,jw−1

i1,...,iq
>T ρj1,...,jwi1,...,iq ;T

+

+|rj1,...,jwi1+1,...,iq+1 >T ](1− (ρj1,...,jwi1,...,iq ;T
)2)−

1

2 (14)

where

ρj1,...,jwi1,...,iq ;T
= − < ej1,...,jw−1

i1,...,iq
|rj1,...,jwi1,...,iq+1 >T (15)

Proof.

Let see that |yi1 . . . yiq >T∈ Sj1,...,jw
T ;i1,...,iq

, so (13) can be

rewritten as

|εj1,...,jwi1,...,iq
>T= |yi1 . . . yiq >T −P(Sj1,...,jw

T ;i1,...,iq+1)|yi1 . . . yiq >T

(16)

Because |rj1,...,jwi1,...,iq+1 >T⊥ Sj1,...,jw−1

T ;i1,...,iq+1
and

|rj1,...,jwi1,...,iq+1 >T∈ Sj1,...,jw
T ;i1,...,iq+1

then

P(Sj1,...,jw
T ;i1,...,iq+1) = P(Sj1,...,jw−1

T ;i1,...,iq+1)⊕P(|rj1,...,jwi1,...,iq+1 >T )
(17)

So the equation (16) can be rewritten as

|εj1,...,jwi1,...,iq
>T= |εj1,...,jw−1

i1,...,iq
>T −

+|rj1,...,jwi1,...,iq+1 >T< rj1,...,jwi1,...,iq+1|yi1 . . . yiq >T (18)

Because |εj1,...,jw−1

i1,...,iq
>T= |yi1 . . . yiq >T − ̂|yi1 . . . yiq >T

and ̂|yi1 . . . yiq >T ∈ Sj1,...,jw−1

i1,...,iq+1 and

|rj1,...,jwi1,...,iq+1 >T⊥ Sj1,...,jw−1

T ;i1,...,iq+1
then

< rj1,...,jwi1,...,iq+1|yi1 . . . yiq >T=< yi1 . . . yiq |r
j1,...,jw
i1,...,iq+1 >T=

=< yi1 . . . yiq |r
j1,...,jw
i1,...,iq+1 >T − < ̂yi1 . . . yiq |r

j1,...,jw
i1,...,iq+1 >T=

=< εj1,...,jw−1

i1,...,iq
|rj1,...,jwi1,...,iq+1 >T=

= − < εj1,...,jw−1

i1,...,iq
|εj1,...,jw−1

i1,...,iq
>

1

2

T ρj1,...,jwi1,...,iq ;T

(19)

Hence the conclusion that

|ej1,...,jwi1,...,iq
>T= [|ej1,...,jw−1

i1,...,iq
>T +|rj1,...,jwi1,...,iq+1 >T ρj1,...,jwi1,...,iq ;T

]

< εj1,...,jw−1

i1,...,iq
|εj1,...,jw−1

i1,...,iq
>

1

2

T

· < εj1,...,jwi1,...,iq
|εj1,...,jwi1,...,iq

>
− 1

2

T (20)

Exploiting the identity < ej1,...,jwi1,...,iq
|ej1,...,jwi1,...,iq

>T= 1 we receive

< εj1,...,jw−1

i1,...,iq
|εj1,...,jw−1

i1,...,iq
>

1

2

T< εj1,...,jwi1,...,iq
|εj1,...,jwi1,...,iq

>
− 1

2

T =

(1− ρj1,...,jwi1,...,iq ;T
)−

1

2 (21)

Finally

|ej1,...,jwi1,...,iq
>T= [|ej1,...,jw−1

i1,...,iq
>T +|rj1,...,jwi1,...,iq+1 >T ρj1,...,jwi1,...,iq ;T

]

·(1 − (ρj1,...,jwi1,...,iq ;T
)2)−

1

2 (22)

Similarly, the second relation in (14) can be found [7]. The

relations above make it possible to construct an orthogonal

parametrization (de-correlation) filter, operating directly on

the signal samples. The above recurrence relations (14) solve

the problem of the real-time derivation of the (generalized)

ON basis of the estimation space. The diagram of the signal

parametrization filter is presented in Figure 4.

Fig. 4. Nonlinear orthogonal signal parametrization filter

The Schur coefficients (3) can be used for audio signal

parametrization. Entire song audio signal parametrization pro-

cedure can be done in the tree steps:
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TABLE I
SIGNAL IDENTIFICATION EFFECTIVENESS FOR SINGLE

FEATURES

Harmonic Correlation

features features

K-NN (k=3) 73.91 75.72

K-NN (k=5) 72.45 77.39

MGC 73.28 75.35

SVM linear kernel 74.61 76.08

SVM Gauss kernel 74.06 75.55

1) dividing audio signal into the one second long pieces

yTk
= {yT (n);n = k ∗ fP , k ∗Fp +1, ..., k ∗ 2 ∗ fp − 1}

(23)

where k means k-th signal section and k = 0, 2, ...,K−
1.

2) computing Schur coefficients (3) vector for each piece

3) construct ID matrix for the audio signal (using Schur

coefficients vectors as its rows)

YM =







ρ00;T0
... ρj1,...,jw0;T1

...
...

...
...

...

ρ0;TK−1
... ρj1,...,jw0;TK

...






(24)

Matrix (21) can be used for creating the base of the songs

and for classification.

IV. SONGS CLASSIFICATION

The calculated sets of features (4), (21) constitute a signal

database for classifying a given musical work to one of

the formerly specified classes of songs (standard classes

are in the database created with use of former recordings).

The study used information fusion on the decision-making

level. Conclusive ranking of the object (song) is based on

connecting identification decisions for individual features

of the given object. It aims to improve effectiveness of

the diagnosis and to limit possible miscategorization. In

order to obtain good classification results on the level of

individual features, different classifiers were examined: k-NN

(the k-nearest neighbors algorithm), MGC (multivariate

Gaussian classifier), and SVM (support vector machines). The

classifiers were examined in order to determine the one with

the highest song identification effectiveness for individual

groups of features.

Table I shows the obtained identification results for single

groups of features and examined sorters. Finally, SVM

classifier was selected for harmonic features and k-NN

classifier was chosen for correlation features.

In order to produce the final result of the song data classi-

fication, the Bayes rule was applied.

P (Y |X1, X2) = P (Y )

2
∑

i=1

P (Xi|Y ) (25)
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Fig. 5. Hash ’fingerprint’ for song 1
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Fig. 6. Hash ’fingerprint’ for song 2

where X1 is a set of harmonic features, X2 is a set of

correlation features, Y is an outcome of the ranking. The

elements X1 and X2 were proven to be independent.

V. SIMULATIONS

The formerly created database of musical pieces was used

for simulation (100 musical works in the database). The songs

selected for the parameterization were of the best possible

quality: sampling rate: 44100Hz, quantization: 16 bit, file

format: wav in the mono version. Every song forms an

object class in the database (i.e., one song stands for several

realizations of this piece, characterized by a different volume,

disruptions, recording from the radio, the TV, etc.)

One-second long pieces of acoustic signal recordings were

used for the identification process. The signal was divided

into fragments with 2048 samples (fp = 16 kHz, 16-bit word),

windowed (Hamming window) and processed according to the

above schemes. In pictures 4 and 5 one can see examples of

hash fingerprints for two different songs.
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Fig. 7. Matrix of Schur coefficients - song1.

Fig. 8. Matrix of Schur coefficients - song2.

TABLE II
EFFECTIVENESS OF THE RANKING OF THE SONGS

DEPENDING ON THE APPLIED HARVEST OF FEATURES

Effectiveness

Harmonic features 74.61

Correlation features 77.39

Information fusion 84.02

In pictures 6 and 7 the matrices of Schur coefficients (6)

describing correlation ratios of acoustic signals can be seen.

It was observed, that within one class these matrices are

not different as much as in the case of signal spectra. Here,

the impact of varying conditions of the recording is smaller,

which should naturally improve the effectiveness of the final

song identification. Table II shows results of the ranking of

musical works depending on the applied harvest of features.

The following conclusions can be drawn basing on the data

provided in Table 2:

• due to the large variance of harmonic features within a

single class of songs, the effectiveness of identification

based on these parameters only is the lowest. It would be

possible to improve the result by distinguishing certain

signal subbands with greater inter-class differences .

• Identifying signals with use of multidimensional cor-

relation features is more effective than with harmonic

features. This is mainly due to the smaller variance

of correlation parameters within one class. It could be

possible to improve the result by selecting proper Schur

coefficients that would best describe a given class of

signals. It is possible to apply the mutual information

technique [3] in order to select the most characteristic

parameters of a given class of signals

• The use of combined information from the diagnoses of

both features resulted in the expected improvement in the

effectiveness of song classifications. An almost 6% rise

is a very good result. Should the findings specified above

be applied, the results ought to surpass those diagnosed

above. Of course, one should take into consideration

the extra computing power needed for vital calculations,

particularly when the suggested solution is supposed to

take place in real time.

VI. CONCLUSION

In the article an application of an approach based on the

information fusion theory in classifying musical works was

proposed. Two types of parameters describing the acoustic

signal were chosen: harmonic features (with hashing function)

and multidimensional correlation features. On this basis a

fragmentary identification of a given class of songs was made.

Next, the final identification of the object was performed,

using the Bayes rule for classification. The findings proved a

significant improvement in the effectiveness of identification

with information fusion in relation to the inference based only

on a single feature of a musical piece.
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