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New Aspects of Fault Diagnosis of Nonlinear
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Abstract—The paper is focused on nonlinear analog circuits,
with the special attention paid to circuits comprising bipolar and
MOS transistors manufactured in micrometer and submicrom-
eter technology. The problem of fault diagnosis of this class of
circuits is discussed, including locating faulty elements and evalu-
ating their parameters. The paper deals with multiple parametric
fault diagnosis using the simulation after test approach as well
as detection and location of single catastrophic faults, using the
simulation before test approach. The discussed methods are based
on diagnostic test, leading to a system of nonlinear algebraic type
equations, which are not given in explicit analytical form. An
important and new aspect of the fault diagnosis is finding multiple
solutions of the test equation, i.e. several sets of the parameters
values that meet the test. Another new problems in this area
are global fault diagnosis of technological parameters in CMOS
circuits fabricated in submicrometer technology and testing the
circuits having multiple DC operating points. To solve these prob-
lems several methods have been recently developed, which employ
different concepts and mathematical tools of nonlinear analysis.
In this paper they are sketched and illustrated. All the discussed
methods are based on the homotopy (continuation) idea. It is
shown that various versions of homotopy and combinations of the
homotopy with some other mathematical algorithms lead to very
powerful tools for fault diagnosis of nonlinear analog circuits. To
trace the homotopy path which allows finding multiple solutions,
the simplicial method, the restart method, the theory of linear
complementarity problem and Lemke’s algorithm are employed.
For illustration four numerical examples are given.

Keywords—analog circuits, fault diagnosis, local and global
diagnosis, multiple soft faults, nonlinear circuits, single hard
faults

I. INTRODUCTION

ELECTRONIC circuits diagnosing and testing is an es-

sential area of scientific research. The integrated circuit

manufacturing process in imperfect, and as a result defects

are introduced into some of the fabricated chips. Discovering

whether an integrated circuit operates in accordance with its

specifications and its parameters are within their tolerance

ranges is a key question of integrated circuits design. The

testing of electronic circuits represents up to 70 % of the total

product cost. It is estimated that the testing of the analog

components of the mixed-signal integrated circuits contributes

up to 90 % of the total cost. On the other hand analog testing

lags far behind digital testing. Although the problem has been

of considerable interest during the past decades [1]–[5], [7]–

[8], [10]–[19], [21]–[32], [35]–[38] there is no all-purpose

procedure for fault diagnosis of analog circuits. In 2013 the
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data base SCOPUS registered 99 papers devoted to testing

and diagnosing of analog circuits, including 46 journal articles.

There are several reasons which make fault diagnosis of analog

circuits difficult. In modern fabrication process only a very

limited number of nodes is accessible for measurement and

excitation, the values of fault-free elements are distributed

within their tolerance ranges and some circuit elements form

ambiguity groups.

Much work in fault testing and diagnosing exploits some

heuristic methods, artificial neural networks, different evo-

lutionary techniques, support vector machines, and elements

of fuzzy logic [1]–[4], [10]–[15], [17]–[18]. Some researches

concentrate on self-testing of analog circuitry of mixed-signal

systems using built-in self test blocks [7], [37]–[38]. Most

attention in fault diagnosis has been paid to fault detection

and location of a single fault in linear circuits using a fault

dictionary. Fewer results relate to the multiple fault diagnosis

in nonlinear circuits where several parameters are faulty [8],

[26], [29], [31]–[32], [35]. A fault can be catastrophic (hard)

if it leads to some topological changes or parametric (soft) if a

parameter is drifted from its tolerance range. Parametric faults

may be global or local. Local variations of the parameters are

due to local defect mechanisms or local variations in parame-

ters across a chip. Global variations in parameters are due to

imperfect control in integrated circuits manufacturing. They

arise due to statistical fluctuations in process parameters such

as oxide thickness, doping, line width, and mask misalignment.

Such variations affect all transistors and capacitors on a chip.

If most of circuit simulations take place before any testing

the diagnostic method is classified as the simulation-before-

test (SBT) approach. Otherwise, the method is classified as

the simulation-after-test (SAT) approach.

Some of diagnostic methodologies exploit a system of non-

linear test equations of algebraic type with unknown parame-

ters. If the parameters are slightly drifted from their nominal

values the equations can be linearized which simplifies the

diagnosis. Unfortunately, such approach is not allowed if the

parameters deviate considerably from their nominal values and

the equations are strongly nonlinear. In such a case several

sets of the parameters can meet the test because the system of

nonlinear equations may actually possess multiple solutions.

Most algorithms are generally capable of finding only one

solution (one set of the parameter values), even if the system

of nonlinear equations possesses several solutions. However,

finding just one specific solution, which is not necessarily the

actual one, is rarely of interest. Finding the actual set of the

parameters in such cases is a very difficult task, particularly

in circuits manufactured in submicrometer technology, due to
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very complex models of the devices. E.g., BSIM 4 model of

MOS transistors is described by approximately 300 equations,

mostly nonlinear. In such a case the test equation cannot be

presented in explicit analytical form.

This paper is focused on nonlinear analog circuits, with

the special attention paid to circuits comprising BJ and MOS

transistors manufactured in micrometer and submicrometer

technology. New aspects of fault diagnosis of this class of

circuits are discussed and some recently obtained results in

this area presented. They include: multiple soft fault diagnosis

of nonlinear circuits considering the problem of existing

multiple solutions of the test equations, hard fault diagnosis of

circuits possessing multiple operating points, and global fault

diagnosis of CMOS circuits.

II. DIAGNOSTIC TEST

The diagnostic methods described in this paper are based

on a diagnostic test. For the circuit comprising parameters

considered as possibly faulty the test is arranged as in [29],

[31]–[32]. The circuit under test is driven by the power supply

voltage sources v
(1)
s , . . . , v

(w)
s applied at the nodes accessible

for excitation and the output voltages v1, . . . , vr are read at r
nodes accessible for measurement (see Fig. 1). For m sets of

the input voltages values
{
v
(1)
s , . . . , v

(w)
s

}
i
(i = 1, 2, . . . ,m)

mr values of the output voltages are measured, where mr ≥ n,

where n is the number of parameters considered as possibly

faulty. We take n of the voltages and consider them as elements

of the vector u = [u1 · · ·un]
T, where T means transposition.

Each of the voltages is a certain function of the circuit

parameters x1, . . . , xn, ui = f̂i(x), i = 1, 2, . . . , n, where

x = [x1 · · ·xn]
T. As a result we write the equation

f̂ (x) = u , (1)

where f̂ (x) =
[
f̂1(x) · · · f̂n(x)

]T

. This equation will be

presented in the form

f (x) = 0 , (2)

where f (x) = f̂ (x)−u, and called a test equation. When the

parameters assume the prescribed values
{
xdn
1 , . . . , xdn

n

}
the

measured voltages are labeled
{
udn
1 , . . . , udn

n

}
. In such a case

the equation

f̂
(
xdn

)
= udn (3)

holds, where xdn = [xdn
1 · · ·xdn

n ]T, udn = [udn
1 · · ·udn

n ]T. The

aim of the fault diagnosis of analog circuits is finding the

parameters x1, . . . , xn considered as possibly faulty, that meet

the diagnostic test equation (2). Solving this task the following

restrictions must be taken into account.

– In real nonlinear circuits function f̂ (x) is not given in

explicit analytical form.

– Nonlinear test equation (2) may possess multiple solu-

tions, what means that more than one set of the parame-

ters {x1, . . . , xn} meet the diagnostic test.

Several diagnostic methods considering the above-mentioned

requirements are discussed in this paper. All the methods

exploit the homotopy concept [9], [20]. This is why the next

section gives a background of the homotopy method.
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Fig. 1. Arrangement of a diagnostic test
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Fig. 2. A regular homotopy path

III. CONCEPT OF HOMOTOPY

Homotopy is a powerful tool for studying many problems

of nonlinear analysis [9]. In this paper it is shown that the

homotopy is very useful in fault diagnosis of nonlinear analog

circuits. Below the background and underlying concept of the

homotopy are briefly described.

Let us consider a system of nonlinear algebraic equations

f1(x1, . . . , xn) = 0 ,

... (4)

fn(x1, . . . , xn) = 0 ,

where x1, . . . , xn are unknown variables forming vector x =
[x1 · · ·xn]

T. The set of equations (4) can be written in the

compact form

f (x) = 0 , (5)

where f (x) = [f1(x) · · · fn(x)]
T
. Let x = x∗ be a solution

of this equation. To find the solution we create the homotopy

equation

h (x, α) = 0 , (6)

where α ∈ [0, 1] is called a homotopy parameter. At α = 0
equation h (x, 0) = 0 has known or easy to finding solution

x(0), whereas at α = 1 equation (6) becomes the original

equation (5) possessing the solution x∗, which we seek. The

main idea of the homotopy is increasing parameter α, starting

with α = 0 and every time solving equation (6), taking into

account the solution obtained in previous step. If increment of

α is small, it is justified to expect that the solution will slightly

changed going from one step to the other. To find the new

solution the Newton-Raphson algorithm can be used, starting

with the previous solution. As a result a path is traced that we

can follow from α = 0 to α = 1, thereby solving the original

equation (5) as shown in Fig. 2. The point of intersection of

the homotopy path with the line α = 1 determines the solution

x∗. The most common homotopies are specified below.
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Fig. 3. An exemplary homotopy path

Newton homotopy:

h (x, α) = f (x)− (1− α) f
(
x(0)

)
, (7)

where x(0) is an arbitrary n-dimension vector.

Fixed-point homotopy:

h (x, α) = (1− α)
(
x− x(0)

)
+ α f (x) , (8)

where x(0) is an arbitrary n-dimension vector.

Linear homotopy:

h (x, α) = α f (x) + (1 − α) g (x) , (9)

where g (x) is a function possessing a known solution x(0).

It should be emphasized that the homotopy path is not

necessarily the regular curve as shown in Fig. 2. In some cases

it can be infinite spiral or a bifurcation curve what makes

difficulty to apply the homotopy method. Figure 3 shows

a homotopy path whose tracing requires systematic decreasing

of the increment of parameter α. As a result the number of

the required analyses increases dramatically and the method

is inefficient.

The described above variant of the homotopy method is

called a discrete homotopy. Continuous version of this method

is obtained by differentiating of homotopy equation (6) with

respect to parameter α and solving numerically the initial value

problem

∂h (x, α)

∂x

dx

dα
+

∂h (x, α)

∂α
= 0 , x(0) = x(0) (10)

in interval [0, 1].
In both variants of the standard homotopy method parameter

α is systematically increased from 0 to 1. However, the

method can be extended as follows. Parameter α is considered

similarly as the variables x1, . . . , xn and homotopy path is

traced in more sophisticated manner. In such a case the range

of changing of parameter α is not limited to α = 1, what

allows finding multiple solutions of equation (5). This is

illustrated in Fig. 4, where the homotopy path leads to three

solutions x∗, x∗∗, and x∗∗∗.

IV. FAULT DIAGNOSIS USING THE PARAMETRIC

HOMOTOPY

This section discusses multiple soft fault diagnosis of non-

linear circuits, with the special attention paid to the circuits

comprising bipolar and MOS transistors manufactured in mi-

crometer technology. To solve the test equation a method based

∗∗∗x∗∗x( )0x
∗x

1 

0 x 

α

Fig. 4. Homotopy path leading to three solutions

on the parametric homotopy will be used. The details of this

method are presented in reference [29].

Let us consider equation (2) repeated below

f (x) = f̂ (x)− u = 0 .

Using the Newton homotopy (7) we write the homotopy

equation

h (x, α) = f̂ (x) − u− (1− α)
[
f̂
(
x(0)

)
− u

]
, (11)

where x(0) is a vector consisting of the parameters having

nominal values. Under the denotation x(0) = xdn the equation

f̂
(
x(0)

)
= udn holds (see (3)). Substituting this equation into

(11) yields

h (x, α) = f̂ (x)− udn − α
(
u− udn

)
= 0 . (12)

To find vector udn we perform numerical analysis of the

circuit, with nominal values of the parameters, driven by the

same sources as in the test. For α = 0 homotopy equation (12)

becomes f̂ (x) − udn = 0. It is satisfied by vector x = xdn

whose elements have nominal values. At α = 1 equation (12)

is identical to the test equation.

Denote α = xn+1 and form vector x̂ = [x1 · · ·xn, xn+1]
T.

Then the homotopy equation (12) becomes

ĥ (x̂) = f̂ (x) − udn − xn+1

(
u− udn

)
= 0 . (13)

As xn+1 = α varies starting from xn+1 = 0, the homotopy

path is traced. Let us parametrize the path with respect to the

arc length s [29]. Then

ds =
√
(dx1)2 + · · ·+ (dxn)2 + (dxn+1)2 . (14)

Using the parameterization we form the set of equations

ĥ (x̂) = 0 ,

n+1∑

i=1

(
dxi

ds

)2

= 1 (15)

consisting of n + 1 individual equations. The derivative
dxi

ds
(sj+1) can be expressed in terms of xi (sj+1) and xi (sj)

using the approximate formula

dxi

ds
(sj+1) =

1

h

(
xi (sj+1)− xi (sj)

)
, i = 1, . . . , n+ 1 ,

(16)
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where h = sj+1 − sj . Substituting (16) into (15) yields




ĥ1

(
x̂(sj+1)

)

...

ĥn

(
x̂(sj+1)

)

n+1∑
i=1

[
xi (sj+1)− xi (sj)

]2
− h2




= 0 . (17)

Solution of the algebraic equation (17) is a point of the

homotopy path at s = sj+1.

Denote the left hand side of equation (17) by w
(
x̂ (sj+1)

)
.

Then this equation can be presented in the compact form

w
(
x̂ (sj+1)

)
= 0 . (18)

To find x̂ (sj+1) we apply the Newton-Raphson method.

At each iteration m + 1 (m = 0, 1, . . .) the vector

w
(
x̂(m) (sj+1)

)
and the Jacobian matrix dw

dx̂

(
x̂(m) (sj+1)

)

have to be calculated. For this purpose fk
(
x(m) (sj+1)

)
and

∂fk
∂xl

(
x(m) (sj+1)

)
(k, l = 1, . . . , n) are required. This is

untrivial problem because, the function f̂ (x) is not given

in explicit analytical form. To overcome this drawback we

set the known values of the parameters xi = x
(m)
i (sj+1)

(i = 1, . . . , n) and perform the DC and the sensitivity analyses

of the circuit driven by the input voltages as in the test, finding

fk
(
x(m) (sj+1)

)
and ∂fk

∂xl

(
x(m) (sj+1)

)
, (k, l = 1, . . . , n).

an appropriate procedure was developed in reference [29],

where also the problem of changing the step size h during the

computations was solved. The step size should be decreased

to a very small value, when the solution varies very fast

and should be increased to a larger value when the solution

changes slowly. During the computation process the homotopy

parameters is selected automatically, similarly as the other

variables. Its value can increase or decrease reaching several

times the value equal to one, leading to multiple solutions

of the test equation. Having several solutions (sets of the

parameters) we select these ones which satisfy some physical

constraints and discard the others, e.g. containing negative

resistances. If more than one solution remain, including the

correct solution and virtual ones, then under the applied test

they possess equal rights. To determine the actual solution a

different test should be arranged and the common set selected.

In some cases the method gives just one set of the parameters.

Example 1: Let us consider the bipolar circuit shown in Fig.

5 [29]. Three elements R3, R6, R7 are faulty (more than 50 %)

and values of the others are within their tolerance ranges. The

values of all the circuit elements are as follows: R1 = 278 kΩ,

R2 = 22.6 kΩ, R3 = 20 kΩ, R4 = 6.95 kΩ, R5 = 2.78 kΩ,

R6 = 100Ω, R7 = 100Ω, β1 = 385, β2 = 391. We

consider the set of all resistors R1, . . . , R7 as possibly faulty.

The proposed method gives two sets of the parameters which

satisfy the test, including the actual one. The homotopy path

is closed, its projection on α-R3 plane is shown in Fig. 6. The

points of intersection of the curve with the vertical line α = 1
correspond to two values of the resistance R3.
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Fig. 5. Circuit for Example 1
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Fig. 6. Projection of the homotopy path on α-R3 plane

V. GLOBAL FAULT DIAGNOSIS OF ANALOG CMOS

CIRCUITS MANUFACTURED IN SUBMICROMETER

TECHNOLOGY

Global variations of parameters are due to imperfect control

in IC manufacturing. They arise due to statistical fluctuations

in process parameters such as oxide thickness, doping, line

width, and mask misalignment. Such variations affect all

transistors, resistors, and capacitors on a die. In CMOS circuits

the parameters chosen most frequently are: threshold voltage

@ Vbs = 0 for large L — Vth0
, channel width — W , channel

length — L, mobility — U0, channel doping — Nch, and oxide

thickness — tox for n and p-channel transistors separately.

Most of the works in this area have been devoted to the local

parametric fault diagnosis due to local defect mechanisms or

local variations in parameters across a die. Only a few papers

discuss the global parametric fault diagnosis. To tackle that

problem the nonlinear regression modeling techniques [5], the

artificial neural network [13], and the differential evolution

[14] were used. A new approach to the problem of global

fault diagnosis is proposed in reference [31], based on the

homotopy concept and the simplicial method [9]. This section

brings the idea of this approach.

Let us consider the circuits comprising short-channel MOS

transistors, characterized by the model BSIM3v3. To use

the MOSIS BSIM3 parameters in IsSPICE 4, the nominal

geometric specifications Lnom and Wnom, for each device in

net list are corrected and assume the values Ldrawn and Wdrawn,
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1
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Fig. 7. An exemplary 2-simplex

respectively. The deviations of L and W defined for the

process corners are labelled DXL and DXW , respectively.

Consequently, variations of the channel length and width can

be specified by the equations L = Ldrawn+(1− xL)DXL and

W = Wdrawn+(1− xW )DXW , where xL and xW are auxil-

iary relative parameters. Similarly, variations of the Vth0
can be

specified by the equation Vth0
= (Vth0

)nom +(1− xV )DV T ,

where DV T is the deviation of Vth0
defined for the pro-

cess corners and xV is a relative parameter. Variations of

the other parameters will be described by the equations:

U0 = (U0)nom xU , Nch = (Nch)nom xN , tox = (tox)nom xt,

where xU , xN , and xt are relative parameters. Thus, each

of the above-mentioned parameters is expressed in terms of

the corresponding relative parameter. All the parameters are

considered separately for n and p-channel transistors. The

global parameters relating to L, W , Vth0
, U0, Nch, tox are

defined as follows: ∆L = L − Ldrawn = (1− xL)DXL,

∆W = W − Wdrawn = (1− xW )DXW , ∆Vth0
= Vth0

−
(Vth0

)nom = (1− xV )DV T , U0 = (U0)nom xU , Nch =
(Nch)nom xN , tox = (tox)nom xt. Thus, each of the global

parameters is represented by the attached relative parameter.

If all six above-mentioned global faults are considered the

number of the relative parameters equals twelve, independently

on size of the circuit. The set of relative parameters will be

presented in the vector form x = [x1 · · ·xn]
T
. To solve test

equation (2) the Newton homotopy method (13) will be used,

where xn+1 is the homotopy parameter, udn is defined by (3)

and elements of vector xdn assume drawn values in the case

of L and W or nominal in the case of the other parameters.

To generate the homotopy path the simplicial method [9], [31]

will be used.

The underlying concept of the simplicial method is the

simplex [9]. A j-simplex, written as s =
{
x̂0, x̂1, . . . , x̂j

}
,

is a convex hull of the j + 1 independent points x̂i =[
xi
1 · · ·x

i
n+1

]T
, (i = 0, 1, . . . , j)

{
p: p =

j∑

i=0

λi x̂
i ,

j∑

i=0

λi = 1 , λi ≥ 0

}
. (19)

The convex hull of some but not all vertices x̂i is called a face

of s. In a special case, when the face has j vertices, it is termed

a facet. For example 2-simplex is a triangle (see Fig. 7), having

three vertices x̂0, x̂1, x̂2 and three facets
{
x̂0, x̂1

}
,
{
x̂1, x̂2

}
,{

x̂2, x̂0
}

. Let s =
{
x̂0, x̂1, . . . , x̂n+1

}
be an (n+ 1)-simplex

having n+ 2 vertices. Then any point p ∈ s can be specified

1
x̂

2
x̂

0
x̂

ββββ

µµµµ

Fig. 8. An approximation µβ of homotopy path on the simplex s

by the equation
{
p: p =

n+1∑

i=0

λi x̂
i ,

n+1∑

i=0

λi = 1 , λi ≥ 0

}
. (20)

Consider the homotopy function (13) and approximate it on

the simplex s. For this purpose we evaluate ĥ
(
x̂i
)
, i =

0, 1, . . . , n+ 1 and for given point p described by (20) form

n+1∑

i=0

λi ĥ
(
x̂i
)
. (21)

To create the homotopy path we consider the function (21)

and solve, on the simplex s, the equations

n+1∑

i=0

λi ĥ
(
x̂i
)
= 0 ,

n+1∑

i=0

λi = 1 , λi ≥ 0 . (22)

Since (22) is a set of n + 1 individual equations with n + 2
variables λ0, λ1, . . . , λn+1, the solution will be a straight-line

segment. In the typical case the linear segment will connect

a point of one facet of s to other facet as it is illustrated in

Fig. 8, where the linear segment µβ, connecting point µ of

facet
{
x̂0, x̂1

}
to point β of the facet

{
x̂1, x̂2

}
, approximates

the real homotopy path on the simplex s.

To perform the simplicial algorithm we take an initial sim-

plex s0 and trace the straight-line segment across this simplex.

Then, we form an adjacent simplex s1 and trace across it

other straight-line segment. In this manner a piecewise-linear

homotopy path is created. The process is continued until

a termination criterion is satisfied. Any intersection point of

the homotopy path and the plane xn+1 = α = 1 is a solution.

An exemplary path is shown in Fig. 9.

The key problems of the simplicial algorithm are:

– creating the initial simplex,

– finding the ending point of the segment inside each

simplex,

– creating the adjacent simplex.

To solve these problems appropriate procedures are necessary.

They are described in reference [31].

Example 2: Let us consider the circuit shown in Fig. 10

comprising 18 MOS transistors characterized by BSIM3v3.

We consider the possible global faults of channel length L
and threshold voltage Vth0

different for PMOS and NMOS.

Using the test described in [31], the method gives two

different sets of the parameters, the actual and the virtual

ones. To find the set of actual values of the parameters we

arrange other test and select the common part of the sets. The
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Fig. 10. CMOS circuit for Example 2
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results are illustrated in Fig. 11 and the details are described

in reference [31].

VI. MULTIPLE SOFT FAULT DIAGNOSIS USING RESTART

HOMOTOPY METHOD

This section is devoted to multiple soft fault diagnosis

of nonlinear circuits containing bipolar and MOS transistors.

A method that allows locating faulty elements and evaluating

their parameters using a nonlinear test equation which may

possess several solutions is described. To find the solutions the

homotopy concept is applied and a homotopy differential equa-

tion written. Next the terminal value problem is formulated and

solved using the restart approach [9]. An extended version of

this approach, presented in this section, allows finding different

( ) [ ]nm
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∆

-10 -8 -6 -4 -2 0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

440  360  280  200  120 �40    0

test 2
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Fig. 11. Projections of the homotopy paths corresponding to the tests 1 and
2 on x1-α plane

sets of the parameters which satisfy the diagnostic test, rather

than one specific set.

To find the solutions of the test equation (2) we form the

Newton homotopy equation (7) repeated below

h (x, α) = f (x)− (1 − α) f
(
x(0)

)

and create the homotopy differential equation [32] by differ-

entiating both sides of (7) with respect to α

∂h

∂x

(
x, α

) ∂x

∂α
+

∂h

∂α

(
x, α

)
= 0 . (23)

Taking into account (7) we present equation (23) in the normal
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form
dx

dα
= −

[
df

dx

(
x
)]−1

f
(
x(0)

)
. (24)

The homotopy differential equation (24) can be solved using

the forward Euler algorithm (FEA) as follows

x(k+1) = x(k)−

[
df

dx

(
x(k)

)]−1

f
(
x(0)

)
(αk+1 − αk) (25)

with the initial condition x (0) = x0. To avoid finding the

inverse of the matrix df
dx

(
x(k)

)
we rewrite equation (25) in

the form
[

df

dx

(
x(k)

)](
x(k+1) − x(k)

)
= −f

(
x(0)

)
(αk+1 − αk) .

(26)

To find x(k+1) the linear algebraic equation (26) has to be

solved. For this purpose we can use the Gaussian elimination

method. Thus, the FEA (26) enables us to go very fast from

one step to the other. Unfortunately, the local truncation error

of this algorithm is quite large and its numerical stability

poor. Hence, the step size (αk+1 − αk) must be chosen very

small, which leads to large number of steps and long CPU

time. If the step size is not sufficiently small the FEA gives a

numerical solution which drifts away from the exact solution.

This is why the FEA is seldom used to solve the initial

value problem. Our problem, however, is of a different sort,

namely a terminal value problem [9], i.e. we are interested in

calculating the terminal point x∗ at α = 1. In such a case

there is no need to stay on the precise solution path, but end

up at x∗. For this purpose we adapt the restart method [9] as

follows. We apply the FEA (26) with a reasonable step size

(αk+1 − αk) and at any step check if
∥∥h

(
x(k), αk

)∥∥ < ε,

where ε is a small positive number selected on the basis of

many numerical experiments. If this condition is fulfilled the

procedure is continued, otherwise we do not attempt to get

back on the original path, but form a new homotopy, called

the restart homotopy [9]. Suppose that for some k = l1 the

condition
∥∥h

(
x(l1), αl1

)∥∥ < ε is violated. Then we create the

restart homotopy

hl1 (x, α) = f (x)−
1− α

1− αl1

f
(
x(l1)

)
. (27)

Next we create the homotopy differential equation and apply

the FEA. As a result we obtain the following equation

[
df

dx

(
x(k)

)](
x(k+1) − x(k)

)
=

= −
1

1− αl1

f
(
x(l1)

)
(αk+1 − αk) . (28)

We solve this equation starting with the initial point α =
αl1 , x = x(l1) and every time check whether the condition∥∥hl1

(
x(k), αk

)∥∥ < ε holds. If at some k = l2 this condition

is not fulfilled, which means that the generated point drifts off

the new path, the homotopy is restarted again. The procedure is

continued and if it is necessary a succeeding restart homotopy

is created. When the solution path intersects α = 1 plane

the corresponding point x∗ is a solution. Since we search for

other possible solutions the approach is further performed.

α

1 

x
**x

*
x

(0)
0 x 

original homotopy path

Fig. 12. Illustration of the restart homotopy
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Fig. 13. Circuit for Example 3

We increase α to go far away from the solution point as

long as the Newton-Raphson method, used to solve the circuit

for given parameters, is convergent. Next the solution path is

forced to be reversed and it is checked whether the solution

path intersects the plane α = 1 again at a different point

corresponding to other solution. In such a case a similar

procedure is carried out for α < 1 and so on. The described

approach is terminated when the total number of steps exceeds

a preset number Mmax. Illustrative example of the method is

shown in Fig. 12.

Example 3: Let us consider the differential amplifier shown

in Fig. 13. The MOS transistors are characterized by the

Shichman-Hodges model built up in Level 1 of SPICE, with

the parameters indicated in reference [32].

Let the intrinsic transconductance parameters Kp be con-

sidered as possibly faulty. To diagnose the circuit the test is

performed as described in reference [32]. We consider 5%
increase of Kp in all PMOS transistors and 10% increase of

Kp in all NMOS transistors. The proposed method gives two

sets of the parameters
{
Kp

}
, which meet the test. The first set

contains the parameters very close to the actual ones, whereas

the second set is virtual. Figure 14 shows the projection of the

homotopy path on the plane α-Kp1
.



90 M. TADEUSIEWICZ, S. HAŁGAS, A. KUCZYŃSKI
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Fig. 14. Projection of the homotopy path on the plane α-Kp1

VII. CATASTROPHIC FAULT DIAGNOSIS OF THE CIRCUITS

HAVING MULTIPLE OPERATING POINTS

This section deals, with catastrophic fault diagnosis of non-

linear analog circuits containing bipolar and MOS transistors

having multiple operating points (DC solutions). The faults

are cuts of some connecting paths and short-circuits of some

pairs of points. Simulation-before-test approach is applied for

detection and identification of a single catastrophic fault. In

the discussed circuits having multiple DC solutions the tested

output voltage may assume different values for fixed value

of the input voltage. This fact considerably complicates the

fault diagnosis. The crucial point of the proposed approach

is tracing large number of nonlinear multivalued input-output

characteristics at different values of circuit parameters within

their tolerance ranges.

Consider a circuit consisting of bipolar transistors, diodes,

resistors and voltage sources. The transistors are char-

acterized by the Ebers-Moll model [33], [36] shown in

Fig. 15, where iEF = IES

(
exp(vd1

/vT )− 1
)
, iCF =

ICS

(
exp(vd2

/vT )− 1
)
. We approximate the exponential

characteristics of the diodes included in the model or acting

alone using piecewise-linear functions similarly as in [33],

[36]. The diode specified by N -segment piecewise-linear

characteristic can be modeled by the circuit shown in Fig.

16a including N − 1 ideal diodes having the characteristic

shown in Fig. 16b, where the reversed reference direction of

the voltage across the ideal diode is chosen. Then the diode

is described by relations

i ≥ 0 , v ≥ 0 , iv = 0 . (29)

To trace transfer characteristic v0 = f (y), where v0 is the

output voltage and y is the input voltage, we extract from the

circuit all the ideal diodes, the source y, and the open circuited

branch with the output voltage v0. The last one is replaced by

a zero current source and the ideal diodes by voltage sources.

As a result an m-port is created as shown in Fig. 17. Using

the hybrid representation of the m-port we write

[
î

vn+2

]
= H

[
v̂

in+2

]
+ s , (30)

B

E C 

1dv

iEF iCFRE 

RB 

RC 

2dv

BE Cv1 v2

αF iEF αR iCF 

Fig. 15. Ebers-Moll model of npn transistor
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Fig. 16. Diode model (a) and characteristic of the ideal diode (b)
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where

î =




i1
...

in

in+1




, v̂ =




−v1
...

−vn

vn+1




, s =




s1
...

sn+2


 ,

and H = [hij ](n+2)×(n+2) is the hybrid matrix. Since in+2 =
0 we remove the column n + 2 of this matrix. Moreover,

we remove (n+ 1)-st equation of the hybrid representation,

extract (n+ 2)-nd equation and extract the term containing

(n+ 1)-st column of H. As a result we obtain

i = Mv+




h1,n+1

...

hn,n+1


 y +




s1
...

sn


 , (31)

v0 = vn+2 = −
[
hn+2,1 · · · hn+2,n

]
v+hn+2,n+1 y+sn+2 ,

(32)
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Fig. 18. BJT circuit for an example

where

i =




i1
...

in


 , v =




v1
...

vn


 , M = −




h11 · · · h1n

· · · · · · · · · · · · · · ·
hn1 · · · hnn


 .

Letting z = [z1 · · · zn]
T = i, x = [x1 · · ·xn]

T = v, b =
[h1,n+1 · · ·hn,n+1]

T
, q = [s1 · · · sn]

T
we rewrite equation (31)

in the form

z = q+ by +Mx . (33)

Since for each ideal diode the relations (29) must be fulfilled

we can write

x ≥ 0 , z ≥ 0 , zTx = 0 , (34)

where the inequalities are meant componentwise. To trace the

multi-branched characteristic v0 = f (y) for y ∈ [0, Y ] we

use the algorithm developed in reference [36]. At first we set

y = 0 and write on the basis of (33) and (34)

z = q+ b · 0 +Mx ,

x ≥ 0 , z ≥ 0 , zTx = 0 .
(35)

The problem specified by (35) is called a linear complemen-

tarity problem (LCP) [6], [9], [33], [36]. To solve this problem

we combine the homotopy concept with Lemke’s method as

described in [9], [33]. This approach allows finding several

solutions at y = 0. Similarly we find the solutions at y = Y .

The main step of the algorithm is creating new homotopies

starting with the found solutions with the homotopy parameter

α = y, as described in [36]. To build a fault dictionary the

algorithm is applied to trace a family of the characteristics for

various parameters values from their tolerance ranges. E.g.,

the family of the characteristics in the circuit shown in Fig.

18 is depicted in Fig. 19.

For fault-free circuit and for each circuit with a single

fault we trace a family of the input-output characteristics

v0 = f (y). If the number of the considered faults is M
we obtain M + 1 families of the characteristics. Each of the

families has banded branches like the characteristic depicted

in Fig. 19. We choose an interval [y−, y+] of y, divide it into

N equal subintervals h and consider the points yk = y−+kh,

k = 0, 1, . . . , N . For any of the families of characteristics we

find and store the ranges of v0 variation at all these points. The

Fig. 19. Banded input-output characteristic

Fig. 20. Structure of table F

results are summarized in a table having the structure shown in

Fig. 20, labelled F , where Fi, i = 1, . . . ,M , denotes i-th fault

and F0 means fault-free circuit. In the place specified by i-th
row (i ∈ {0, 1, . . . , N}) and j-th column (j ∈ {0, 1, . . . ,M})
the ranges of v0 variation at yi = y− + ih in the circuit

with fault Fj are stored. On the basis of this table the fault

dictionary is build by selecting the rows for which the number

of overlapping ranges of v0 variation is minimalized. The

details are presented in reference [36].

Example 4: Let us consider the BJT circuit shown in Fig.

21. We want to diagnose fault-free circuit (F0) and M = 9
catastrophic faults: cuts of the branches DJ (F1), BC (F2),

and short circuits of the pairs of points HI (F3), CK (F4),

GL (F5), AL (F6), IL (F7), EL (F8), FM (F9). To build the

fault dictionary, table F of size 51× 10 is created and row 0

corresponding to this table selected. It allows identifying all

the aforementioned catastrophic faults [36], on the basis of the

measured output voltage at the input voltage equal to y−.

VIII. CONCLUSION

This paper is based on the works published recently by

the authors [29], [31]-[32], [34], [36] dealing with some

new aspects of fault diagnosis of nonlinear analog circuits.

It presents a wide variety of diagnostic problems: soft and

hard, local and global, single and multiple fault diagnosis

in circuits comprising BJ and MOS transistors manufactured

in micrometer and submicrometer technology. The soft fault

diagnostic methodologies presented in this paper are based

on DC measurements performed at a limited number of test
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Fig. 21. Circuit for Example 4

points. They lead to a system of nonlinear algebraic test

equations with the diagnosed parameters as the unknown

variables, which are not given in explicit analytical form and

may possess multiple solutions. All the described algorithms

allow finding the multiple solutions, being the sets of the

parameters that meet the test and next selecting the actual

one. For this purpose the homotopy concept is used combined

with: parametric representation [29], simplicial algorithm [31],

and restart procedure [32]. In the case of hard fault diagnosis

a class of circuits having multiple DC solutions (operating

points) was considered for the first time in reference [36].

The results summarized in this paper have general meaning,

because a hard fault changes the circuit topology and the new

circuit may possess multiple DC solutions even if the original

circuit has a unique solution. For fault diagnosis of this class

of circuits a combination of the homotopy and the theory

named linear complementary problem, was used. Numerical

experiments including real electronic circuits show that the

proposed methods allow effectively locating and identifying

multiple soft faults and single hard faults. They are especially

useful at the pre-production stage, where corrections of the

technological process are possible and CPU time is not crucial.
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