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Dimensionality Reduction for Probabilistic Neural
Network in Medical Data Classification Problems
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Abstract—This article presents the study regarding the prob-
lem of dimensionality reduction in training data sets used for
classification tasks performed by the probabilistic neural network
(PNN). Two methods for this purpose are proposed. The first
solution is based on the feature selection approach where a single
decision tree and a random forest algorithm are adopted to select
data features. The second solution relies on applying the feature
extraction procedure which utilizes the principal component
analysis algorithm. Depending on the form of the smoothing
parameter, different types of PNN models are explored. The
prediction ability of PNNs trained on original and reduced data
sets is determined with the use of a 10-fold cross validation
procedure.

Keywords—probabilistic neural network, dimensionality reduc-
tion, feature selection, feature extraction, single decision tree,
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I. INTRODUCTION

ATA sets are composed of input vectors where each one

contains the same number of attributes, usually referred
to as features. In classification tasks, the number of features
depends on the considered problem. For example, it is enough
to measure the age, body mass index and blood pressure for a
patient in a simple hypertension diagnosis test. The number of
features in such a case is therefore equal to three. However, in
real medical datasets, the number of features is often larger,
e.g. 22 in [1], 30 in [2] or 33 in [3]. For the DNA microarray
databases, in the raw data this number may even reach 60,000,
since they store the gene expression in a mass [4].

In classification problems, the use of all data features may
contribute to computational complexity and, additionally, to
the decrease of the generalization ability of the machine
learning models utilized for prediction purposes. This results
from a possible use of some irrelevant information. In such a
case, one should conduct a search for the subset of features
which contribute to the decrease of the prediction ability and
remove this subset from all input vectors. In general, this issue
is treated as the problem of dimensionality reduction for the
input vectors. The dimensionality reduction can be solved in
two ways, i.e. by applying feature selection or with the use of
feature extraction.

Feature selection selects a subset of features out of an entire
set of attributes. As a consequence, a lower dimensionality
input space is obtained. Within the process of feature selection,
no data transformation takes place — the original values of
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selected features are retained. The existing feature selection
approaches for supervised classification problems can be di-
vided into two main groups: filter approaches and wrapper
approaches. In filter approaches, the process of feature selec-
tion is separated from the learning algorithm of the classifier.
The important features are chosen by measuring the general
statistics of the training data such as the correlation between
individual features and output class labels. Below, four state-
of-the-art filter based approaches are shortly described:

« FOCUS algorithm [5] — finds the minimum combination
of features which are associated with a single class (the
approach called “min-features bias”). FOCUS starts with
an empty feature set and carries out breadth-first search
until it finds the optimal subset of features with respect
to generalization ability. In [5], FOCUS is compared with
ID3 [6] and FRINGE [7] algorithms where it exhibits a
higher generalization ability using fewer training vectors.

o Fast correlation based filter approach [8] — identifies
relevant features and redundancy among these features
without pairwise correlation analysis. For this purpose,
the concept of predominant correlation between a feature
and the class is introduced. Predominant features are used
as the subset of new data features.

o Relief algorithm [9] — computes the weights of features
which reflect how well their values distinguish between
instances that are near to each other, taking into account
the output class. The justification is the fact that a good
feature should have a different value for vectors of the
opposite class and it should have the same value for
vectors from the same class. Relief is created for two-
class classification problems with discrete and continues
features.

o ReliefF algorithm [10] — is the extension of Relief. In
contrast to Relief, where only two nearest vectors of
different classes are found for a given instance, Reli-
efF searches k-nearest neighbours and is able to deal
with missing data and multi-class classification problems.
Moreover, ReliefF can also be applied in regression
problems (RReliefF [11]).

It is worth to add that the decision tree algorithms have
also been applied to the selection of feature subsets for use by
machine learning models. In [12] and [13], C4.5 and greedy
decision tree algorithm are utilized to determine the features
of the input vectors which are then classified by means of
the k-nearest neighbour classifier and the Bayesian network,
respectively.
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The second method commonly applied in the field of
feature selection is known as the wrapper approach. In the
wrapper approach, a predefined classifier evaluates the quality
of selected features in the way that the search in the space
of possible feature subsets is conducted and the accuracy
of the classifier is estimated on each subset. The classifier
with the highest performance determines which features are
selected as the final set to train a model. Performance assess-
ments are usually determined by cross-validation [14], [15].
In this way, the wrapper approach finds features which are
better suited to a learning algorithm of a predefined classi-
fier. However, for n features data set, there are 2" possible
feature subsets, therefore the approach is computationally
expensive (in comparison to filter methods). The hill-climbing,
best-first, branch-and-bound, simulated annealing or genetic
algorithms are frequently used strategies for feature subset
selection. Among all of these, greedy search strategies are
computationally advantageous and robust against overfitting
[15]. These are solved by forward selection (where the search
starts with the empty set of features) or backward elimination
(where the search starts with the full set of features). In
the former solution, features are progressively added into the
subsets while in the later one, the least promising features are
progressively removed.

It is observed that the filter methods are computationally
efficient in comparison with the wrapper approaches since they
are independent on a predefined classifier. Though, they do
not take into consideration the biases of the classifier. The
wrapper approaches, in turn, use the classifier to assess the
performance of selected features, but the evaluation of this
performance is computationally expensive since it must be
performed many times. There is a solution created to bridge
the gap between filter and wrapper methods. It is called the
embedded approach [6], [16]. It interacts with the classifier and
integrates the feature selection stage into the model training
process [17]. Additionally, it is usually faster than the wrapper
approach.

Feature extraction, in contrast to feature selection, relies on
the construction of new features which are a linear combina-
tion of the original features. The new feature space is created
with a lower dimensionality. Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) are the most
popular techniques used for feature extraction. For example,
in [18], PCA and LDA are applied for feature extraction in
the recognition of over 3,276 color images of the faces of 126
subjects. The recognition is performed by using the nearest-
neighbor algorithm with the Euclidean distance measure. In
[19], a comparative study of PCA and LDA (and additionally
Independent Component Analysis) methods is conducted in
the classification of the FERET data set using the nearest
neighbor classifier. [20] presents the impact of various feature
extraction methods (including PCA) on the performance of
the k-nearest neighbour, Naive Bayes and C4.5 classifiers.
The experiments are conducted on the UCI benchmark data
sets. The authors of [21] utilize PCA for feature extraction of
electroencephalogram signals. The principal components are
used as inputs for radial basis function neural network.
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The use of relevant features in the training data is particu-
larly significant in classification tasks when probabilistic neu-
ral network (PNN) is applied. The complexity of the original
PNN model proposed by Specht [22] is not influenced by the
dimensionality of the data set, however, various modifications
of this network have already been proposed. PNN has a single
training parameter, the smoothing parameter (o), which has to
be optimized in order to make the network achieve the highest
prediction ability. o can take the value of (a) a scalar, (b) a
vector of the length equal to the dimensionality (n) of the
input vector or (¢) a matrix, whose size is equal to n x G,
where G denotes the number of classes among the data. As one
can observe, in the cases (b) and (c), the number of features
influences the complexity of PNN and its training process. The
rejection of irrelevant features can therefore “simplify” the
structure of this classifier, improve its generalization ability
and shorten the computational time needed to complete the
classification task. The problem of feature selection for PNN
has not been profoundly explored up to this date. There is a
study where informative patterns are selected from four data
sets by means of three filter approaches [23]: the chi-square
statistic, the ReliefF method, and the correlation-based feature
selection method. The solution is applied in the molecular
classification of cancer [24].

In this paper, the problem of dimensionality reduction of the
input vectors in medical data classification tasks conducted by
PNN is studied. The problem is solved in two ways. The first
solution relies on performing feature selection which is based
on a single decision tree (SDT) and a random forest (RF)
algorithm. In the case of the SDT approach, a single decision
tree is created and the tree nodes are used as data features.
In the RF approach, the variable importance procedure is
utilized to determine the set of features. The second solution is
achieved by utilizing one of the feature extraction procedures,
i.e. the PCA algorithm. PCA is applied to the input vectors
and the principal components are used as new features. Three
PNN models are explored, for which the smoothing parameter
is determined according to (a), (b), and (c¢) possible forms. The
classifiers are tested in six classification tasks by assessing
their prediction ability on original and reduced training sets.

This paper is composed of the following sections. Section
IT discusses the principle of operation of the probabilistic
neural network. In Section III, SDT, RF and PCA algorithms
are shortly described in the context of feature selection and
extraction. Here, the proposed dimensionality reduction ap-
proaches are also presented. Their use for data classification
problems solved by means of the PNN model is justified.
Section IV provides the profound comparative analysis of the
classification performance of PNN models trained on original
data sets and data sets where the features are determined by
means of SDT, RF and PCA based approaches. In Section V, a
short experimental study concerned with the results of feature
selection and extraction in medical classification problems
performed by various machine learning algorithms is outlined.
The paper is concluded in SectionVIL.
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II. PROBABILISTIC NEURAL NETWORK

Probabilistic neural network is a feedforward model. In the
first layer, PNN is composed of n neurons which represent
features z;; (¢ = 1,...,1, 7 = 1,...,n) of an input vector
x; € R™. The second layer, called the pattern layer, consists
of as many neurons as training vectors. These neurons are
activated by means of radial basis functions computed between
training vectors and a test vector. Pattern neurons feed the
signal to the next summation layer. There are G neurons in the
summation layer, where G represents the number of classes.
Each gth summation neuron (g = 1, ..., G) acquires the inputs
measured over all the vectors of the gth class. Therefore, [,
pattern neurons constitute the input for the gth summation
neuron. Finally, the output layer determines the category for
the vector x in accordance with the Bayes’s theorem on the
basis of the outputs of all the summation layer neurons

G* (x) = arg max {yg (%)}, ¢))

where G* (x) denotes the predicted class for the vector x and
Yg (x) is the summation layer signal defined as follows

1 Lo

> exp _i(mﬁf) _ xj)Q

n 2
I, (27T)n/2 th_g) i=1 2 (h;g))
()

J=1
where h§-g ) is an element of the smoothing parameters’ matrix

Yg (x) =
Jj=1

H= {hgg )}wa The architecture of the probabilistic neural
network is illustrated in Figure 1.

There are different ways of representing the smoothing pa-
rameter in (2) for PNN:

. h;g) = o; the smoothing parameter takes the form of a
scalar which is used for all the neurons in the pattern
layer (the network denoted as PNNI1);

. hjg) = 0;; the smoothing parameter is related to each
jth input feature so that all the pattern neurons of the
network are activated by o = [o1,...,0,] (the network
denoted as PNN2);

. h;g ) = o](fq ): the smoothing parameter is determined for
each jth feature of the input vector and for each gth class.
Hence, the hidden neurons associated with the gth class
are activated by o(9) = [U%g),...,aflg)], g=1,...,G
(the network denoted as PNN3).

For reading convenience, the indices g and j will skipped
when referring to hg-g ), Henceforth, the smoothing parameter
will be abbreviated to h.

We can observe that the h parameter computed for each
feature and class creates the most general form of the PNN
classifier. However, this type of network is the most demanding
computationally since G x n matrix of the smoothing param-
eters must be stored. PNN training procedures, such as the
conjugate gradient [25] or reinforcement learning [26], are
very sensitive to the representation of h, particularly when
PNN2 and PNN3 are considered. Therefore, the reduction of
data dimensionality may contribute to finding the final solution
in a smaller number of steps of a given training algorithm.

G"= arg max{ Y,}
g

Output
layer

Pattern Summation

Input

layer layer layer

Fig. 1. The structure of the probabilistic neural network.

Furthermore, obtaining an optimal subset of features can create
a more general network in terms of prediction ability.

III. APPROACHES USED FOR DIMENSIONALITY
REDUCTION

In this section, the theory of single decision tree, random
forest algorithm and principal component analysis is shortly
described. Thereafter, the approaches for dimensionality re-
duction based on SDT, RF and PCA are introduced. This
section concludes with the motivation for the current work.

A. Single decision tree

SDT, originally introduced by Hunt [27] and then indepen-
dently in [28] and [29], is a hierarchical structure which, by
means of a graph, is used to aid in a decision process. As the
learning algorithm, SDT is treated as a predictive model — it
maps the input data into desired targets. If the desired targets
take the form of classes to which the data belong, SDT is a
classification tree.

In this work, the C4.5 implementation [30], [31] of the
decision tree is utilized for feature selection. It is shortly
highlighted below.

SDT is composed of three types of elements: nodes,
branches and leafs. Each node represents a split, i.e. a data
partitioning based on the values of a selected feature. The splits
are represented in a different way for discrete and continuous
features. For a discrete feature, there is a single branch for each
possible value (or a group of values). In the case of continuous
feature, a threshold Z is computed which creates a binary split
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for this feature. In general, the root, the node at the top level
of the tree, is chosen based on class impurity. The remaining
features are available for selection in lower-level nodes. The
branches represent the values of particular features while the
leafs are the class labels.

The process of tree growing relies on the appropriate
selection of tree nodes. In the C4.5 algorithm, the choice
of the nodes is performed according to the criterion of the
information evaluation. The information is conveyed by a
message and depends on its probability [30]

freq (Cy, S)
I

where freq (C,, S) stands for the number of cases in S that
belong to class C, and |S| is cardinality of S; p(S,Cy) is
therefore a proportion of cases in S that belong to the gth
class. (3) allows the computation of the amount of information
conveyed by the message which is equal to —logs (p (S, Cy))
and can be measured in bits.

In order to build a decision tree using the C4.5 algorithm,
the following stages are initially performed:

p(S,Cq) = 3)

1) Find the expected information on the membership of the
classes in set S by computing the entropy of S

G

== p(8,Cy)loga(p(S.Cy)). &)

g=1

Info(S

2) Calculate the expected information measure to partition
cases in S in accordance with K outcomes of a feature f

Info (S Z ||S| Info(Sy). (5)
3) Compute the amount of information gained by partition-
ing S with respect to the feature f

Gain(f) = Info(S) — Info;(S5). (6)

The formula in (6) determines the gain criterion used to
select a feature for a node of the tree.

The above three stages cover the basis of Quinlan’s ID3
algorithm. However, as reported in [30], the gain criterion in
(6) has a strong bias in favor of features with many outcomes.
This bias can be revised by introducing normalization

|Sk <|Sk>
(N
Z 1S | 5]
which represents information generated by splitting S into
K subsets. Therefore, the gain related to the multiple value
features is adjusted. At the final stage of the C4.5 algorithm, in

order to provide the proportion of useful information generated
by the above splitting, the gain ratio is computed

Gain(f)
Splitinfo(f)
The feature with the highest gain ratio is taken as the node of
the decision tree.

The entire process of tree growing can be shortly summa-
rized as follows. For all the cases in the set S, the feature

SplitInfo( f

GainRatio(f) = (8)
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f is selected with the highest gain ratio. This feature is set
as the node of the tree. On the basis of f, the entire set S
is partitioned into Si,..., Sk subsets. Then again, for each
subset Sy, the feature fy, is selected for node representation on
the basis of the highest value of (8). The partitioning procedure
is performed until some stopping criteria are met, e.g.: all the
cases in S}, are from the same class, a minimum size of a node
to split is reached (there are fewer input vectors in a group
than the specified value), a maximum number of levels in a
tree is achieved.

It can turn out that within the process of tree generation
some features provide a minor gain of information in terms
of prediction ability. In such a case, they are not added to
the tree. Moreover, if the tree is constructed with all features
included as nodes, some nodes might still be removed from
the tree if it is pruned. Then, in either case, the nodes which
remain in the tree constitute the subset of the original set of
features. Therefore, the tree can be treated as the model, which
performs a feature selection process.

B. Random forest

RF algorithm, proposed by Breiman in [32], utilizes the
collection of independent decision trees. Within the training
process, the trees grow in parallel, not interacting until all
of them have been built. Once the training is completed,
predictions of single trees are combined to make the overall
prediction of RF.

The classification process conducted by RF algorithm can
be summarized as follows:

1) Assume T number of trees in RF. It is advised to use
large values of T, however, T" should be based on the
prediction performance of RF.

2) For each t (t = ., T, select with replacement a
random sample of s < [ input vectors from the data set
(the process called bagging). The remaining vectors are
called out of bag (OOB) vectors.

3) Construct T decision trees for all 7' input vectors’
subsets selected in step 2. Do not prune the trees. Within
the tree growing, perform feature bagging, i.e., choose
a random subset of features as candidates for a split. In
this way, if the features are important in context of target
prediction, they will be selected in a majority of 7 trees.
It is recommended to use \/n features as candidates for
each node split [32].

4) Record the predicted value for a new input vector
running it through each tree in RF. Use the predicted
classes for each tree as “votes” for the best class.

5) Use the class with the highest number of votes as the
predicted category for a new input vector.

It is important to note that except for the classification
capabilities, within RF training process, the procedure of
variable importance can be invoked. According to Breiman,
the procedure is the following. After each tree is constructed,
the values of the jth feature in the OOB vectors are randomly
permuted. All the OOB vectors are put down the tree. The
classification result for each permuted OOB vector is saved.
The same scheme is repeated for j = 1,...,n features each
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time recording the classification outcome. The measure for
variable importance utilizes the difference between the number
of votes for the correct class in the OOB vectors where jth
feature is permuted and the number of votes for the correct
class in the original OOB vectors. The average of this number
over all trees in RF is the importance score for feature j.

C. Principal component analysis

PCA, invented in 1901 by Pearson [33] and then indepen-
dently in [34], is a statistical technique which converts a set
of input features into a set of new values by means of linear
transformation. The resulting features are called principal
components and are linearly uncorrelated. The number of
principal components is less than or equal to the number
of original features. The principal components are created
in the way that each succeeding component is orthogonal
to the preceding ones. The first principal component has the
highest variance among the data while the succeeding principal
component has less variance in its direction.

The main advantage of PCA is the ability to identify patterns
of similarities and differences in data. Once these patterns
are determined, the data can be compressed by reducing the
number of dimensions without much loss of information.
PCA is one of the most frequently used feature extraction

procedures.

In order to conduct the PCA analysis for the input vectors
Xi = [T, %), © = 1,...,1, the following steps are
performed:

1) Obtain the mean for each jth feature over all vectors

l
1
i=1

2) Create new data set s with mean subtracted from each
input dimension
Sj:[xlj—fj7...,xlj—@] (10)

for j=1,...,n.
3) Calculate the covariance matrix

Cc = {Cpq}nxnv (11)
where ]
Cpg = l_ilsgsq, (12)

for p,g=1,...,n.
4) Compute the eigenvectors of the covariance matrix solv-
ing the following equation

cey = A\pey,
subject to constraints: (13)
llex]l =1, k=1,...,n,

where ey, is the kth eigenvector, )y is its corresponding
eigenvalue. Each eigenvector found after solving (13) is
called the principal component.

5) Find the number k&, for which )\ takes the highest value.
The k index provides the first principal component ey,
which has the largest variance between the data.

6) Order the eigenvectors by the eigenvalues, highest to
lowest. In this way, the set of principal components is
obtained in order of significance where each ey, is
orthogonal to ey.

7) Choose p principal components (p < n) to store the
most significant information: e = [eq, .. ., e,] for which
A1 > ... > Xp,. The principal components with lesser
information can be ignored since their eigenvalues take
smaller values. Thus, the resulting data has a lower
number of features.

8) Derive the new data set composed of the vectors n; =
Do e @iy —T5) o5 205 epy (25 — Ty)].

As the solution, a new set of transformed input vectors

[ny,...,n] is obtained.

D. Proposed approaches

The dimensionality reduction problem considered in this
work is solved using two feature selection approaches which
are based on SDT and RF classifiers, and the feature extraction
procedure which requires PCA.

The SDT based approach relies on constructing the decision
tree for a considered data set. Once the tree structure is
obtained, the importance of the features can be read from this
model. The root contains the maximum amount of information
about the data, while the remaining nodes, appearing in a
down-to-bottom direction, give the order of importance of the
particular features. In this work all features used for splitting
at all nodes of the constructed tree are selected to the training
set. The parameters for the SDT model are as follows: the
minimum number of rows allowed in a node is set to 5, the
minimum size for a node to split is equal to 10, the maximum
number of tree levels equals 8. The Gini or entropy split
selection algorithms are applied to find the candidates for the
split (the algorithm which yields better results for each dataset
is finally used). All the parameters are adopted experimentally.

The RF based algorithm simply involves the calculation
of the variable importance according to the idea presented
in subsection III-B. The number of trees in the forest is
set to T = 300. As recommended in [32], the number
features used as candidates for each node split is equal to /7,
where n stands for the number of features. As the result, the
variable importance procedure gives a ranking of the overall
importance of features. In this work, the importance score for
the most important feature is scaled to a value of 100. Other
features receive lower scores. The most optimal set of features
in terms of PNN prediction ability is obtained according to the
following procedure. First, a feature with 100 importance score
is only used for input vectors’ representation; the prediction
ability of PNN is evaluated. Then, two features with the
highest scores are selected for all vectors; the prediction ability
of PNN is computed. Next, a third most important feature is
added and the prediction ability of PNN is calculated. The
procedure is repeated for all features preserving the ranking
of importance. The highest PNN prediction ability determines
the optimal subset of features.

The PCA based procedure requires performing PCA for
a given database. Transformed input vectors are utilized as
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the new input data for PNN. Initially, only a single principal
component is involved in the classification task. Therefore, the
data dimensionality for PNN is equal to one. In a further step,
the PCA algorithm is performed again, additional principal
component is added to the input vectors and the classification
task is conducted. This procedure is repeated until all n
possible components are determined. Therefore, the number of
principal components is determined within the set {1,...,n}.
The optimal subset of principal components is selected for
which the highest prediction ability of PNNs is achieved. It is
assumed that all features are continues.

The conjugate gradient procedure is used for the training
process of all PNN models. All simulations are performed in
DTREG software [35].

E. Motivation of the study

The idea of introducing the dimensionality reduction for
input vectors used to train PNN is motivated as follows:

o In real data classification problems, there is rarely sub-
stantial knowledge about relevant features. This results in
the existence of irrelevant or redundant features among
the input vectors.

o The decrease of the prediction ability of the machine
learning models is often observed when they are trained
on original input space. For example, the decision tree
algorithms such as ID3, C4.5 or instance based learning
methods degrade in prediction ability when facing many
unnecessary features [36], [37].

e It is possible to improve predictive performance and
reduce the risk of overfitting by applying feature selection
or extraction procedures.

« Removing unwanted features in large-size data sets con-
tributes to reducing of the classifier’s training time.

o The computational complexity of the PNN model de-
pends on the number of features. If the smoothing param-
eter of this network takes the form of an n-dimensional
vector, there are n parameters to be optimized. In the case
when the network is equipped with a matrix of the h’s,
there are n X G parameters for which the optimal value
needs to be found.

It should also be pointed out that probabilistic neural network
is a frequently exploited model in the field of data mining.
It is applied in medical diagnosis and prediction [38], [39],
[40], image classification and recognition [25], [41], [42],
earthquake magnitude prediction [43] or classification in a
time-varying environment [44].

IV. RESULTS AND DISCUSSION

In the simulations, six UCI machine learning repository
medical data sets are used [45]: Pima Indians diabetes (PID),
dermatology (D), diagnostic breast cancer (DBC), Statlog
heart (SH), Parkinsons disease (PD), and breast tissue (BT).
Table I presents the number of input vectors, features and
classes for each considered database. For comparison pur-
poses, a 10-fold cross validation (CV) error (£) is computed
for the PNN models trained on original data sets and the data
sets with reduced dimensionality.
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TABLE 1
REPOSITORY MEDICAL DATA SETS USED TO TEST PNN MODELS

Data set  Input vectors  Features  Classes
PID 786 8 2
D 358 34 6
DBC 569 30 2
SH 270 13 2
PD 195 19 2
BT 106 9 6

Tables II, III and IV show the lowest CV error results ob-
tained in all data set classification problems by PNN1, PNN2
and PNN3, respectively. Columns labeled “ALL” indicate the
results for PNNs tested on the training vectors with all input
features. The “SDT” denoted columns show the outcomes of
the networks tested on the data sets where the features are the
decision tree nodes. In the columns marked with “PCA”, the
CV errors provided by the PNN models for the input vectors
represented by principal components are set out. Finally, the
columns named “RF” present the error values for the networks
tested on the data set with features determined on the basis
of variable importance procedure. The variables: n, f, p and
v denote the number of features of the input vectors, the
total number of tree nodes generated by SDT, the number of
principal components and the number of important variables
provided by RF, respectively. Both p and v are determined on
the basis of the highest prediction ability of PNN, as explained
in subsection III-D.

As one can observe, the application of the variable impor-
tance procedure to select features from the input vectors con-
tributes to the decrease of the CV error value for PNN1, PNN2
and PNN3 models in all data classification tasks. However, in
comparison to the remaining solutions, the reduction in the
number of features is smallest for the RF based approach in
almost all classification cases. This remark suggests that the
RF based feature selection approach proposed in the current
article may be revised. For example, an interesting idea would
be to try multiple subsets of top ranked features not necessarily
preserving the ranking of their importance. From Tables II-IV
we can also see that the selection of features on the basis of
decision tree nodes is an unsuitable approach: there is no CV
error decrease for PNN2 and PNN3 models.

Since the RF based approach provides the highest prediction
ability results for PNNs, it is worth to pay attention to
the outcome format of variable importance procedure. For
example, in PNN2 classification problem of BT data, the
decrease on F rate is equal to 3.78%. Here, the following
set of important variables is obtained:

o 10 (100.00) — impedivity (2) at zero frequency;

e PA500 (73.09) — phase angle at 500 KHz;

o DA (65.64) — impedance distance between spectral ends;
e P (63.67) — length of the spectral curve;

e Max IP (61.17) — maximum of the spectrum;

o Area (50.29) — area under spectrum.

The importance score is added in brackets, starting from the
most important feature (I0). This result is achieved for v = 6
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TABLE II
THE LOWEST CV ERROR VALUES (E, IN %) COMPUTED FOR PNN1 TRAINED ON THE INPUT VECTORS WITH ALL FEATURES (ALL) AND THE FEATURES
SELECTED USING SDT, PCA AND RF BASED APPROACHES

ALL SDT PCA RF
Data set E n E f E P E v
PID 24.87 8 2435 2 25.39 5 22.66 4
D 4.30 34 251 7 4.75 7 279 16
DBC 3.69 30 3.69 5 5.97 4 3.16 15
SH 18.85 13 14.33 4 17.77 8 14.82 9
PD 8.21 19 6.66 3 462 15 513 17
BT 35.85 9 31.13 4 31.13 3 31.13 4
TABLE III
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THE LOWEST CV ERROR VALUES (E, IN %) COMPUTED FOR PNN2 TRAINED ON THE INPUT VECTORS WITH ALL FEATURES (ALL) AND THE FEATURES
SELECTED USING SDT, PCA AND RF BASED APPROACHES

ALL SDT PCA RF
Data set E n E f E p E v
PID 22.39 8 24.74 2 20.96 6 21.75 5
D 0.84 34 195 7 0.00 19 0.56 30
DBC 2.43 30 3.16 5 298 18 1.58 27
SH 14.33 13 17.04 4 13.33 11 13.70 9
PD 3.07 19 6.15 3 0.51 16 1.03 16
BT 27.36 9 32.07 4 25.47 4 23.58 6
TABLE IV

THE LOWEST CV ERROR VALUES (F, IN %) COMPUTED FOR PNN3 TRAINED ON THE INPUT VECTORS WITH ALL FEATURES (ALL) AND THE FEATURES
SELECTED USING SDT, PCA AND RF BASED APPROACHES

ALL SDT PCA RF
Data set E n E f E p E v
PID 22.53 8 24.48 2 21.22 7 21.48 4
D 0.67 34 1.67 7 028 19 0.00 26
DBC 1.32 30 281 5 141 24 0.53 25
SH 9.26 13 15.56 4 9.63 11 7.78 10
PD 1.03 19 359 3 0.51 16 0.51 18
BT 16.04 9 28.30 4 13.21 8 13.21 6
TABLE V

COMPUTATIONAL TIME IN SECONDS ACHIEVED BY PNN1, PNN2 AND PNN3 TRAINED ON THE INPUT VECTORS WITH ALL FEATURES (ALL) AND THE
FEATURES WHERE THE LOWEST CV ERROR VALUE IS RECORDED AFTER APPLYING SDT, PCA OR RF BASED APPROACH. THE LAST THREE COLUMNS
SHOW THE DIMENSIONALITY REDUCTION COST IN SECONDS.

PNN1 model PNN2 model PNN3 model Reduction cost
Data set ALL SDT RF ALL PCA RF ALL PCA RF SDT PCA RF
PID 6.39 3.83 4.38 29.43 27.44 19.58 51.30 53.10 31.97 0.65 0.12 0.94
D 4.16 1.72 247 42.19 29.61 38.44 37.81 29.07 35.91 0.14 042 0.19
DBC 13.27 3.12 6.17 158.50 28.51 125.16 242.00 107.82 228.21 1.26 0.50 1.31
SH 1.33 0.63 1.17 9.86 7.66 4.24 23.94 16.10 15.55 0.09 0.16 0.19
PD 1.13 0.67 0.91 11.95 8.64 9.74 21.73 9.30 9.51 0.17 024 0.24
BT 0.25 0.19 0.17 1.36 0.53 0.66 3.72 4.06 1.93 0.11 0.16 0.24

out of total n = 9 features. The subset of features outlined
above is an optimal one for PNN2 model in terms of prediction
ability.

Table V presents the computational time needed to complete
the classification tasks by means of PNN1 PNN2 and PNN3,
for which the highest E value reductions are obtained. More-
over, the dimensionality reduction cost of performing feature
selection (“SDT”, “RF”) and feature extraction (“PCA”) is
added. The simulations are conducted in a 64-bit Windows 8.1
Pro operating system with an Intel Core i7 2.4-GHz processor

and 8-GB RAM. As in the case of the CV error value decrease,
also here, the computational savings always occur where RF
based approach is used to select features: in each classification
problem, PNN1, PNN2 and PNN3 require shorter running time
to complete the task. The time required for performing feature
selection or extraction is smaller in comparison to the PNN
classification time and, in majority, depends on the size of the
data set.

Figures 2, 3, 4, 5, 6, and 7 depict the influence of features
selected by means of variable importance procedure on the
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Fig. 2. Plot of the 10-fold cross validation error obtained after applying

variable importance procedure in PID data classification task.
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Fig. 3. Plot of the 10-fold cross validation error obtained after applying
variable importance procedure in D data classification task.

CV error values calculated respectively in PID, D, DBC, SH,
PD, and BT data classification problems for PNN1, PNN2,
and PNN3. It is important to note that the x-axis shows
the number of features preserving a ranking of their overall
importance. It can be seen from the figures that except for
PID classification task performed by PNNI1, the larger the set
of features generated by the procedure of variable importance,
the lower the CV error value.

Figures 8, 9, 10, 11, 12, and 13 illustrate the impact of the
number of principal components on the CV error values which
are computed respectively in PID, D, DBC, SH, PD, and BT
data classification tasks for PNN1, PNN2, and PNN3, where
the input space is expressed in terms of p dimensional data set
[ny,...,n;]. The z-axis represents the number of p principal
components (p = 1,...,n) and for each p, the classification
task is performed. One can observe a similar pattern in the
error changes for the PNN2 and PNN3 models. This error
starts with larger values and then it gets smaller along with the
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Fig. 4. Plot of the 10-fold cross validation error obtained after applying

variable importance procedure in DBC data classification task.
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Fig. 5. Plot of the 10-fold cross validation error obtained after applying

variable importance procedure in SH data classification task.

increase of the p parameter. In the case of the PNNI classifier,
the CV error decreases for a smaller number of the principal
components, but at a higher value of p, it begins to grow again.

The analysis shown in this work is of a particular impor-
tance since the probabilistic neural network is very sensitive
to the number of features especially when PNN2 and PNN3
models are explored. Feature selection or extraction methods
are well known and widely used approaches in the problem of
dimensionality reduction for various classifiers. However, this
topic has not been studied up to now for different types of
PNNs, as the ones considered in this article. Any possible
reduction in the number of features is important for this
network, since PNN will have a simpler intrinsic structure,
less memory will be required to complete the classification
process, and the final solution will be achieved in a smaller
number of training steps. What is most important, as it is

shown in the present study, a higher prediction ability of the
model can be obtained.
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V. RELATED EXPERIMENTAL STUDIES

Feature selection algorithms have been frequently applied in
medical classification tasks solved by various machine learning
algorithms. Table VI, VII and VIII present the CV error
results published in [14] for ID3, C4.5 and Naive Bayes (NB)
algorithms, respectively, obtained in the UCI medical data
classification problems of Wisconsin breast cancer (WBC),
Pima Indians diabetes (PID) and sick-euthyroid (S-E). The
results are shown for the input vectors with: all features (ALL),
features selected using ReliefF (RLF) filter and features se-
lected by means of wrapper approach based on hill-climbing
(HC) and best-first search (BFS) algorithms. In Table IX, the
errors obtained in the classification problems of lung cancer
(L), promoters (P) and arrhythmia (A) data sets received by
C4.5 algorithm are set out [8]. The columns labeled with
FCB and CSS denote respectively: fast correlation based filter
and correlation subset search filter approach. In literature, one
can also find studies in which classification algorithms are
tested on data sets with extracted features. For example, the
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TABLE VI
CLASSIFICATION ERROR RESULTS FOR ID3 ALGORITHM TESTED ON
ORIGINAL DATA SETS AND THE DATA SETS AFTER FEATURE SELECTION
ACCORDING TO [14]

Data set ALL RLF HC BFS

WBC 5.43 6.43 5.29 6.15

PID 31.27 36.09 30.48 32.56

S-E 3.32 3.22 2.94 2.94
TABLE VII

CLASSIFICATION ERROR RESULTS FOR C4.5 ALGORITHM TESTED ON
ORIGINAL DATA SETS AND THE DATA SETS AFTER FEATURE SELECTION
ACCORDING TO [14]

Data set ALL RLF BFS
WBC 4.58 5.58 4.72
PID 28.40 35.82 29.82
S-E 2.27 2.27 2.29

authors of [46] display how the PCA transformation influences
prediction ability of the £ = 3 nearest neighbour (3-NN)
model. The tests are performed on the UCI medical data sets
(PID, DBC and SH). Table X shows error values on the input
vectors with original features, transformed features in form
of principal components (PCA), and principal components
together with original features (PCA + ALL).

The results presented in the Tables VI-X lead to the
following observations:

o Except for the S-E data set (results in Table VI), the
application of the RLF approach to feature selection does
not improve prediction ability of ID3, C4.5 and NB in all
classification cases. For the PID database, the increase
in the CV error reaches a margin of 4.82%, 7.42% and
11.33% for ID3, C4.5 and NB, respectively. Only in the
S-E data classification task performed by all the models,

TABLE VIII
CLASSIFICATION ERROR RESULTS FOR NATVE BAYES ALGORITHM TESTED
ON ORIGINAL DATA SETS AND THE DATA SETS AFTER FEATURE SELECTION
ACCORDING TO [14]

Data set ALL RLF HC BFS

WBC 3.00 4.86 4.43 4.00

PID 24.10 3543 25.66 23.97

S-E 4.36 4.36 2.65 2.65
TABLE IX

CLASSIFICATION ERROR RESULTS FOR C4.5 ALGORITHM TESTED ON
ORIGINAL DATA SETS AND THE DATA SETS AFTER FEATURE SELECTION
ACCORDING TO [46]

Data set ALL RLF FCB CSS
L 19.17 19.17 12,50 15.83
P 13.09 10.36 12.27 12.27
A 32.75 34.10 27.21 31.42
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TABLE X
CLASSIFICATION ERROR RESULTS FOR 3—NN ALGORITHM TESTED ON
ORIGINAL DATA SETS AND THE DATA SETS AFTER FEATURE EXTRACTION
ACCORDING TO [8]

Data set ALL PCA PCA + ALL
PID 26.20 29.40 26.60
DBC 3.20 6.50 3.20
SH 21.90 34.10 21.20

both HC and BFS wrapper approaches decrease the CV
error value.

o The application of FCB and CSS filters for feature
selection (Table IX) increases the prediction ability of
C4.5 in all considered classification problems.

o The transformation of the features to the form of principal
components, increases the error values in all classification
problems performed by 3-NN model. However, the use of
principal components along with the original features pro-
vides much better results, decreasing the error obtained
for the SH data by 0.7%.

A profound experimental study on the different feature
extraction techniques is presented in [20]. Two eigenvector-
based approaches that take into account the class information
are compared with conventional PCA, with random projection
and with plain classification without feature extraction. The
kNN, NNB and C4.5 classifiers are taken for analysis. The ex-
periments are conducted on 20 UCI datasets. The experiments
show that it is difficult to determine which technique is the
most appropriate for a selected classifier and/or for a certain
problem, but class-conditional feature extraction approaches
are often the best ones.

VI. CONCLUSIONS

In this article, the problem of feature selection and extrac-
tion for medical data classification tasks conducted by the
probabilistic neural network was explored. Feature selection
approach was based on (1) utilizing the nodes of a single
decision tree as data features and (2) applying the variable
importance procedure to select the subset of optimal features.
The feature extraction approach was realized by means of
PCA performed on the input data sets and using principal
components as new features. Three types of PNN models were
examined: the network with a single smoothing parameter h
for the whole model, the network with the vector of different i
values for each data feature, and the network with various h’s
for each feature and class. The PNN models trained on original
data sets were compared with the ones trained on data sets with
reduced dimensionality by assessing the models’ prediction
ability. A 10-fold cross validation procedure was used for
this purpose. The results showed that selection of the features
by applying the variable importance procedure allowed the
increase of the prediction ability for PNN1, PNN2 and PNN3
models in each classification task. Furthermore, the decrease
in computational time needed to complete the classification
tasks was observed in each classification case. The remaining
solutions did not provide such satisfactory results.
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