Binary Classification of Heart Failures Using k-NN with Various Distance Metrics
Abstract
Magnetocardiography is a sensitive technique of measuring low magnetic fields generated by heart functioning, which is used for diagnostics of large number of cardiovascular diseases. In this paper, k-nearest neighbor (k-NN) technique is used for binary classification of myocardium current density distribution maps (CDDM) from patients with negative T-peak, male and female patients with microvessels (diffuse) abnormalities and sportsmen, which are compared with normal control subjects. Number of neighbors for k-NN classifier was selected to obtain highest classification characteristics. Specificity, accuracy, precision and sensitivity of classification as functions of number of neighbors in k-NN are obtained for classification with several distance measures: Mahalanobis, Cityblock, Eucleadian and Chebyshev. Increase of the accuracy of classification for all groups up to 10% was obtained using Cityblock distance metric in binary k-NN classifier with 19 - 27 neighbors, comparing to other metrics. Obtained results are acceptable for further patient’s state evaluation.References
Hyun Kyoon Lim et al., “Magnetocardiogram difference detween healthy subjects and ischemic heart disease patients” in IEEE Transactions on Magnetics, Vol. 45, June 2009, pp. 2890-2893.
Tsukada K. et al., “Magnetocardiographic mapping characteristic for diagnosis of ischemic heart disease” in Computers in Cardiology 2000, Cambridge, MA, Sept. 2000, pp. 505-508.
Chaikovsky I. et al., “Magnetocardiography in clinical practice: algorithms and technologies for data analysis” in Medical Science 3-4, June 2011, pp. 21-38.
Jazbinsek V. et al., “Magnetocardiographic localization of accessory conduction pathway in patients suffering from WPW syndrome”, Computers in Cardiology 1995, Vienna, Austria, Sept. 1995, pp. 417-420.
Ogata K. et al., “Projecting cardiac-current images onto a 3-D standard heart model” in Engineering in Medicine and Biology Society, 2003, Vol. 1, Sept. 2003, pp. 517-520.
Kobayashi K et al., “Visualization of the Current-Density Distributionfor MCG With WPW Syndrome Patients Using Independent Component Analysis in IEEE Transactions on Magnetics, Vol. 40, July 2004, pp. 2970-2972.
Brockmeier K. et al., “Magnetocardiography and 32-Lead Potential Mapping: Repolarization in Normal Subjesct During Pharmacologically Induced Stress”, Journal of Cardiovascular Electrophysiology, Vol. 8 No. 6 , June. 1999, pp. 615-626.
Leder U. et al., “Noninvasive Biomagnetic Imaging in Coronary Artery Disease Based on Individual Current Density Maps of the Heart”, International Journal of Cardiology 64 (1998), pp. 417-420.
Fainzilberg L. et al., “Sensitivity and specificity of magnetocardiography, using computerized classification of current density vectors maps, in ischemic patients with normal ECG and echocardiogram”, International Congress Series 1300 (2007), pp. 468-471.
Chaikovsky I. et al., “Detection of coronary artery disease in patients with normal or unspecifically changed ECG on the basis of magnetocardiography”, Proceedings of the 12-th International Conference on Biomagnetism (2000), pp. 565-568.
Udovychenko Y., et al., “Current Density Distribution Maps Threshold Processing” in 2014 IEEE 34th International Scientific Conference on Electronics and Nanotechnology (ELNANO), Apr. 2014, pp. 313 – 315.
Kilian Q. et al., “Distance Metric Learning for Large Margin Nearest Neighbor Classification”, Journal of Machine Learning Research 10 (2009), Sept. 2009, pp. 207-244.
Udovychenko Y., et al., “k-NN Binary Classification of Heart Failures Using Myocardial Current Density Distribution Maps”, Signal Processing Symposium (SPSympo), June 2015, pp. 98 – 102.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.