
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 4, PP. 345–350
Manuscript received October 15, 2015; revised November, 2015. DOI: 10.1515/eletel-2015-0045

Application for Displaying Synthetic Aperture
Radar Imagery in Real-time
Implementation and Results

Krzysztof Borowiec

Abstract—The paper presents implementation and results of
the application for displaying SAR (Synthetic Aperture Radar)
imagery operating in real-time. The application performs SAR
imagery formation and displays results in real-time after receiv-
ing of preprocessed data via an SAR processing application. The
application was used in SARape (Synthetic Aperture Radar for
all weather penetrating UAV application) project founded by the
European Defence Agency. The real-time operation is achieved
thanks to implementation based on multithreading.

Keywords—synthetic aperture radar, real-time imaging

I. INTRODUCTION

THIS paper presents a real-time SAR (Synthetic Aperture
Radar) displaying application developed at the Warsaw

University of Technology. Originally the application develop-
ment was started in the framework of the SARape (Synthetic
Aperture Radar for all weather penetrating UAV applica-
tion) [2] [3] project, sponsored by the European Defence
Agency. After the SARape project was concluded the devel-
opment of the application continued, which has resulted in
numerous new features and functionalities.

The original operating scenario was defined in the SARape
project. The aim of the project was to develop a high resolution
SAR demonstrator for UAVs (Unmanned Aerial Vehicles). The
radar operates in FMCW (Frequency- Modulated Continuous-
Wave) mode, the analog front-end module sends and receives
the radar signal, and the signal from two output channels
are sampled, down-converted, filtered and decimated in the
preprocessing module. After this, the signal is sent in the form
of UDP (User Datagram Protocol) packets to the telemetry
module with a data stream of up to 80 Mbit/s. On the
ground, the received data are then sent using UDP packets
to the real-time SAR processor, which uses sophisticated

This paper is an extended version of the paper presented in Signal
Processing Symposium, Debe, Poland, June 10 - 12, 2015 [1].

The SARape-project (Synthetic Aperture Radar for all weather penetrating
UAV application) was funded by the European Defence Agency (EDA) in
the “Defence R&T Joint Investment Programme on Innovative Concepts and
Emerging Technologies (ICET)” under the title “Data Capture & Exploita-
tion”.

This work was supported by the SARAPE project A- 1089-RT-GC which
is coordinated by the European Defence Agency (EDA) and funded by 11
contributing members (Cyprus, France, Germany, Greece, Hungary, Italy,
Norway, Poland, Slovakia, Slovenia and Spain) in the framework of the Joint
Investment Programme on Innovative Concepts and Emerging Technologies
(JIP-ICET).

K. Borowiec is with the Institute of Electronic Systems, Warsaw Uni-
versity of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:
k.borowiec@elka.pw.edu.pl).

signal processing algorithms for image formation and motion
compensation. The core part of the processing is realized
on a graphics card using CUDA (Compute Unified Device
Architecture) technology [4]. The resulting SAR image is sent
to the displaying application in the form of UDP packets.

According to the assumptions made in the SARape project,
the SAR processor should receive the data from two chan-
nels.Therefore, the application should visualize data from both
of them. The data received from the processing application
are in the form of a two dimensional image, the dimensions
corresponding to the range and cross-range dimensions. In
one of the displaying modes, the so called simple mode, the
image is displayed directly in range/cross-range coordinates.
In this mode, however, the orientation and geographic position
of the platform are not taken into account. In the second
displaying mode, the so called world coordinate mode, the
data are transformed so that they can be overlaid on a map.

The main characteristics of the application can be summa-
rized as follows:

• Provides clear and reliable graphical user interface.
• Provides two modes of SAR image display simple mode

(range/cross-range display) and world coordinate mode
(geographically oriented display).

• Displays vector map with a legend (rivers, lakes, roads,
airports, cities, coasts, primary and internal boundaries).

• Displays current date and time.
• Displays parameters of the platform (geographic posi-

tions, yaw, pitch, roll, velocity) and its history of the
flight trajectory.

• Displays parameters of the radar (carrier frequency,
bandwidth, pulse repetition frequency, etc.).

• Displays the border of the scanned region.
• Permits zooming using mouse buttons and a mouse

wheel.
• Supplies different kinds of color palettes and shows the

color bar.
• Overlays SAR images on vector maps or satellite im-

agery.

The displaying application should be realized in a way
which allows it to be used in field conditions. A small and
light laptop, equipped with an Intel Core i7 and 16 GB RAM
of memory was chosen. The received data should be calculated
to the SAR image and visualized in real-time without freezing
the graphics interface.

346 K. BOROWIEC

II. DISPLAYING APPLICATION

A. Development Environment

In the development of the SAR imagery displaying ap-
plication a cross-platform application framework Qt ver-
sion 4.7 was used [5]. Qt uses standard C++, which is its
main advantage. Applications written in the C++ language are
characterized by the speed of their execution. This framework
provides a complete abstraction of the GUI and uses the native
style APIs (Application Programming Interfaces) of different
platforms. Therefore, GUI programs created with Qt have a
native-looking interface. Qt supports a Meta-Object Compiler
(moc) which reads C++ source files, interprets certain macros
and uses them to generate added C++ code with meta infor-
mation about the classes used in the program. This system
provides programming features not available natively in C++,
such as a dynamic property system and a signal and slots
mechanism. The last feature is particularly helpful in commu-
nication between objects. An alternative solution, the callbacks
technique, can be unintuitive and may suffer from problems in
ensuring the type-correctness of callback arguments. Signals
and slots are resistant to these disadvantages. A signal is
emitted when a particular event occurs in order to notify a
different object what happened, and a slot is a function that
is called in another object in response to a particular signal.
Moreover, the Qt framework has modules essential for solid
thread management, communication by network and extensive
internationalization support1.

Additionally, Qt comes with its own set of tools to ease
cross-platform development. The first tool is the Qt Creator -
a cross-platform integrated development environment for C++
language. This tool is equipped with its own debugger. Another
tool is the Qt Designer GUI design functionality.

Outside the raw Qt framework, the QCustomPlot library [6]
is also used. The QCP is a Qt C++ widget for plotting and
data visualization, focused on offering a high standard of
performance for real-time visualization applications.

B. Map Integration

One of the requirements of the SAR imagery displaying
application was the capability of showing two types of maps
- off- and on-line. The first one was realized using a vector
map at level 0 which is an updated and improved version of
the National Imagery and Mapping Agency’s Digital Chart of
the World [7]. The database provides worldwide coverage of
vector-based geospatial data which can be viewed at a scale of
1:1.000.000 (i.e. 1cm=10km). The second map was realized
using a web mapping service application and technology -
Google Maps - provided by Google [8]. Of the many possi-
bilities offered by Google Maps API, street maps and satellite
imagery were used. Both services are provided using C++
language combined with JavaScript. In Fig. 1 Google Maps
overlaying a vector map is shown.

1Qt Linguistic: http://qt-project.org/doc/qt-4.7/linguistmanual. html

Fig. 1. Google Maps overlaying a vector map

C. Application Functionality

The input data are in the form of UDP packets with
consecutive lines of image received from an SAR processer.
Because of the two modes of SAR imagery implemented in the
application, the GUI was divided into two windows the main
window and the map window. Because the SAR processor
received the data from two channels, the main window has
two symmetrical parts on the left- and right-side corresponding
to two channels (see Fig. 2). The main window realizes
the simple mode and shows the SAR imagery line by line
(in range/cross-range coordinates). In the central part of the
window the parameters of the platform and parameters of the
radar according to the requirements are displayed.

The map window takes data from one of two channels
and shows the SAR imagery, taking into account the current
position and flight parameters of the platform. Additionally, in
this window it is possible to overlay the SAR image on the
vector map or the satellite imagery (see Fig. 3). Moreover, the
entire history of the flight trajectory of the platform and the
border of the scanned region can be shown after zooming out
(see Fig. 4).

The SAR imagery in both modes can be displayed using
different kinds of color palettes and transparency levels. Ad-
ditionally, zooming in and out is available.

Fig. 2. Main window of the SAR imagery displaying application

APPLICATION FOR DISPLAYING SYNTHETIC APERTURE RADAR IMAGERY IN REAL-TIME IMPLEMENTATION AND RESULTS 347

Fig. 3. Map window of the SAR imagery displaying application.

Fig. 4. The history of the flight trajectory and the border of the scanned
region

D. Application Architecture

The block diagram of the application is shown in Fig. 5.
Threads are working in parallel and communicate with each
other using the signals and slots technique. The two incoming
streams of data in the form of UDP packets are received
in two UdpReceiver threads. The data are stored to circular
buffers, and then passed to the SimpleModeDrawer threads,
which construct SAR imagery in simple mode. The results
are finally forwarded to the main window for display. The
UdpReceiver1 has a double role. Firstly, it passes flight and
radar parameters to the central part of the main window.
Secondly, it commissions the StripScanImage thread to create
the SAR imagery, including the flight parameters of the radar
platform. In the first step of the algorithm the border of the
radar strip scan is calculated. Then the image is filled out
using resampling and graphic transformations. The complete
image is overlaid on Google Maps using a Mercator projection.
Events from user action are served in the main event loop.
The rest of the complex and time consuming calculations
are carried out in the thread’s local event loop. Thereby the
application allows the construction of the SAR imagery to be
performed in real time.

Fig. 5. The block diagram of the application

E. Geographically Oriented SAR Imagery

As the radar operates in FMCW mode, the processing
performed to obtain image in the considered case can bo
summarized as follows:
• FMCW range compression,
• IMU (Inertial Measurement Unit)-based compensation,
• Signal-based compensation,
• SAR image formation.

All of this steps are out of scope of this paper and are
widely described in [4]. As we perform this algorithm on
data we obtain 2 dimensional data, where the first dimension
(horizontal) are samples from single sounding of FM signal
and the second dimension (vertical) are consecutive soundings.
Horizontal means the perpendicular plane to the flight path of
the radar platform and vertical means parallel plate to the radar
platform flight trajectory (Fig. 6).

Signal after SAR processing is expressed in complex num-
bers, so calculated absolute value represents specific picture
element brightness. Every single pixel corresponds to a single
resolution cell.

Orientation of the radar platform can be described by three
angles: yaw, pitch and roll (Fig. 6). Additionally information
about geographic position such as latitude, longitude and
altitude allows to find exact position of SAR imagery pixels
to their real position on the Earth or proper position on the
map.

To calculate size of SAR imagery it is necessary to deter-
mine the bounding box of all lines form the single block of
data. It can be achieved from placement of the first and last
pixel of each line (see Fig. 7). In the following part of this
paper major steps leading towards SAR imagery construction
are described.

1) Geometric Transformation: Using geometric transfor-
mation is necessary to place consecutive lines of SAR imagery
at the proper place on the screen. Figure 8 shows the cross
section at plane perpendicular to the flight path. The radar
operates in 3-dimensional space and the polar coordinates. The
scanned swath is placed at some angle to vertical. For this
reason, it is necessary to project the every single range cell

348 K. BOROWIEC

Flight p
ath

R
ange cells

Fig. 6. Platform parameters orientation angles and the idea of SAR imagery

Fig. 7. The first and last range cell’s placemensts and the resultant bounding
box of SAR imagery lines

from 3-dimensional space to 2-dimensional space. The |ab|
line segment placement (4) can be calculated using following
equations:

|da| =
√
|ca|2 − |h|2 (1)

|cb| = |ca|+ nr range cells× cell size (2)

|db| =
√
|cb|2 − |h|2 (3)

|ab| = |db| − |da| (4)

Fig. 8. The SAR imagery geometry

Length of |ab| line segment tells about the scanned region
width on the Earth. It also implies directly the single line SAR
imagery width in simple mode display. To fill rest of SAR
image line, every k range cells position has to be calculated
according to the equation:

|dk| = |da|+ k × cell size. (5)

After projection, complete line of SAR imagery is placed on
the screen using basic geometric operations. At the Cartesian
coordinate system rotation of the point A with coordinates
(xA, yA) to point A′ can be calculated using the following
simultaneous equations:{

xA′ = cos(α) · xA + sin(α) · yA
yA′ = − sin(α) · xA + cos(α) · yA

. (6)

Translation point A′ by vector T to point A′′ expresses
simultaneous equations (7).{

xA′′ = xA′ + Tx
yA′′ = yA′ + Ty

, (7)

where Tx and Ty are displacement at X and Y coordinates.
Another vital geometric operation is scaling performed

according system of equations (8).{
xA′′′ = Sx · xA
yA′′′ = Sy · yA

, (8)

where Sx and Sy is an scaling factor at X and Y coordinates.

APPLICATION FOR DISPLAYING SYNTHETIC APERTURE RADAR IMAGERY IN REAL-TIME IMPLEMENTATION AND RESULTS 349

Fig. 9. An α-angle rotation and T-vector translation

2) SAR Imagery Resolution: As mentioned above, Syn-
thetic Aperture Radar allows to obtain very high resolution
images. Assuming that SAR imagery has 1250 range cells
and pulse repetition frequency is equal to 2kHz and the radar
platform flies with velocity equal to 40m

s number of lines
needed to keep aspect ratio defined by equation (9) gives
approximately 30.000 lines.

velocity

PRF
· number of lines =

1

2
· 1250[m], (9)

This amount of lines ensures that 1m distance at vertical plane
corresponds to 1m distance at horizontal plane. Factor equal
to 1

2 is a consequence of two channels data plotting on the
screen at the same time.

Figure 10 shows down-sampling method based on averag-
ing. This method uses two auxiliary matrices. First matrix
accumulates values of pixels from original image which will
represent single pixel at down-sampled image. In the second
matrix counters of how many pixels of the original image will
correspond to one pixel in the down-sampled image. In ideal
case counter matrix will have the same values at every cell.
More complicated case will occur when the radar platform
manoeuvres and the flight trajectory is different than straight
line.

III. RESULTS

All the figures used in this paper are from the results
of a measurement campaign carried out for the purpose of
verifying the operation of the system realized in the SARape
project. The radar pod was assembled under the left wing of
an ultralight aircraft (see Fig. 11).

The data were transmitted by the telemetry unit to the
ground unit from distances reaching up to 5km. After real-
time SAR processing, the high-resolution SAR imagery was
shown on the screen. A resolution of up to 15x15cm was

original image

accumulation

 matrix
counter matrix

down-sampled image

Fig. 10. Downsampling method

Fig. 11. Ultralight aircraft (left) and radar pod (right)

obtained. An example of the high resolution SAR imagery is
shown in Fig. 12. In the image the lattice towers and power
lines are visible.

Another example presented in Fig. 13 shows a character-
istic radome of a tracking and imaging radar system with a
parabolic dish. The radar is located in Wachtberg, Germany,
where the Fraunhofer FHR Institute is located.

The formation of the images in both modes is a compu-
tationally extensive task. The application has to process a
data stream in the order of several million pixels per second
(typically 2.5 million pixels are received for both channels). In

350 K. BOROWIEC

Fig. 12. The radar shadows of the towers and the power lines visible on the
SAR imagery

Fig. 13. The Frauhofer FHR in Wachtberg - the SAR imagery overlaying
satellite imagery (upper image - 100% level of transparency; lower image -
zero level of transparency)

addition, the world coordinate mode requires the performance
of complicated geometric transformations in order to properly
display the image. Despite these requirements, the application
can operate in real time on a laptop. The construction part
of the SAR imagery in world coordinate mode takes about
150ms.

IV. CONCLUSION

In this paper a real-time SAR imagery displaying applica-
tion is presented. The requirements for the application involved
the real-time reconstruction of SAR imagery in two modes,
different kinds of color palettes and overlaying on two types
of maps. The application performed very well, allowing real-
time SAR imagery creation and visualization. The application
works efficiently and manages to handle 80 Mbit/s data flow.
Results presented in many figures present implementation of
assumptions mentioned in the beginning part of this paper.
The architecture and the functionality of the application was
described too.

The application can be used for the Earth real-time obser-
vation for all weather and at any time of the day and night.

REFERENCES

[1] K. Borowiec, “Real-time synthetic aperture radar imagery displaying
application: Implementation and results,” in Signal Processing Symposium
(SPSympo), 2015, June 2015, pp. 1–4.

[2] M. Caris, S. Stanko, H. Essen, A. Leuther, A. Tessmann, R. Weber,
M. Malanowski, P. Samczynski, K. Kulpa, G. Meszoly, C. Topping, G. E.
Georgiou, A. C. Papanastasiou, R. Guraly, and Z. Bilacz, “Synthetic
aperture radar for all weather penetrating uav application (sarape) - project
presentation,” in Synthetic Aperture Radar, 2012. EUSAR. 9th European
Conference on, April 2012, pp. 290–293.

[3] http://www.project-sarape.eu.
[4] M. Malanowski, G. Krawczyk, P. Samczynski, K. Kulpa, K. Borowiec,

and D. Gromek, “Real-time high-resolution sar processor using cuda
technology,” in Radar Symposium (IRS), 2013 14th International, vol. 2,
June 2013, pp. 673–678.

[5] http://qt-project.org/doc/qt-4.7/.
[6] http://qcustomplot.com/.
[7] http://www.mapability.com/index1.html.
[8] https://developers.google.com/maps/.

