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Abstract—In this paper, we propose a novel technique for 

Instantaneous Frequency (IF) estimation of multi component 

non stationary signals using Fourier Bessel Series and Time–

Varying Auto Regressive (FB-TVAR) model. In the proposed 

technique, the Fourier-Bessel (FB) expansion decomposes the 

multi-component non stationary signal into a number of mono-

component signals and TVAR model is used to model each 

mono-component signal. In TVAR modeling approach the time 

varying parameters are expanded as a linear combination of 

basis functions. In this paper, the TVAR parameters are 

expanded by a discrete cosine basis functions. The maximum 

likelihood estimation algorithm for model order selection in 

TVAR models is also discussed. The Instantaneous Frequency 

(IF) is extracted from the time-varying parameters by 

calculating the angles of the estimation error filter polynomial 

roots. The estimation of the TVAR parameters of a multi-

component signal requires the inversion of a large covariance 

matrix, while the projected technique (FB-TVAR) requires the 

inversion of a number of comparatively small covariance 

matrices with better numerical stability properties. Simulation 

results are presented for Multi component discrete Amplitude 

and Frequency modulated (AM-FM) signal 

 
Keywords—basis function, Fourier-Bessel expansion, 

Instantaneous Frequency, multi component non stationary 

signal, Time-varying Auto Regressive model 

I. INTRODUCTION 

HE majority of real-life signals are non-stationary and 

often multi-component. Bat signal, sonar signal, seismic 

signals, whale sounds, bird songs, musical recordings are 

some examples of this kind of signals. Moreover, multi-

component non-stationary signals are encountered in various 

man made signals such as radar, sonar, biomedical 

engineering and automotive emission. These signals also exist 

in multiple-signal environments [1]. 

 A multi-component non-stationary signal is often expressed 

as a sum of individual mono-component signals, where each 

component has time-variant amplitude and frequency (or) 

Phase functions. The analysis of such signals involves 

estimation of instantaneous frequency (IF) function of each 

mono-component [1] 

  The spectrogram, the most commonly used TFD, describes 

the IF laws-IF trajectories in the time-frequency plane of the 

individual components of the observed multi-component 
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signal. However, its time-frequency resolution, especially for 

closely spaced components, is often poor. The Wigner-Ville 

Distribution (WVD), another commonly used TFD, presents 

high amplitude cross terms for such signals. The Choi-

Williams Distribution has a tradeoff between cross term 

suppression and time-frequency resolution. In general, a TFD 

used in analysis of multi-component non-stationary signals 

should be cross terms free and should have high resolution in 

the time-frequency domain.[1-5] 

 Spectral analysis of non-stationary signals, with high 

frequency-resolution is obtained by using the Time Varying 

Autoregressive (TVAR) Model [6].In the modeling of non-

stationary signals by TVAR process, estimation of the 

TVAR parameters can be classified into one of the two 

categories as the adaptive technique and the basis function 

approach[7].The most popular approach to estimate time 

varying coefficients is to employ an adaptive algorithm and 

track the parameters. These methods work well with slowly 

varying signals but fail to track rapid variation. If the 

coefficients change fast enough, compared to the algorithm’s 

convergence time, the adaptive algorithm will not be able to 

track the time varying parameters. Another common 

approach to estimate the parameters is to expand each time 

varying coefficient into a set of basis functions. If each 

coefficients time-evolution can be approximated by a 

combination of a small number of basis functions, then the 

estimation task is equivalent to the estimation of the 

weighting constants in this expansion[6 ,7]. 

 In this basis function expansion, two issues need to be 

resolved. First, a general class of basis functions is to be 

chosen, and then, the significant basis functions need to be 

selected. Several classes of functions have been proposed 

including polynomial, wavelet and prolate spheroidal 

functions. However, no uniform rule exists to indicate which 

class should be adopted. Moreover, the approach of choosing 

the significant basis functions is based on trial and error[12]. 

 Non stationary signal is modeled using TVAR process of 

order p. In the process of modeling, the estimation of the 

TVAR parameters require the inversion of a covariance 

matrix of size p(q+1)× p(q+1), where q is the required 

number of basis functions to represent each TVAR 

parameter. For modeling multi-component non stationary 

signal using TVAR process, large number of basis functions 

(q) and high model order (p) are essential to estimate TVAR 

parameter, which requires the inversion of a large covariance 

matrix [12].  
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 It is therefore suggested that in such cases of modeling by 

a TVAR process it would be wiser to perform a component 

separation before doing estimation of the process parameters. 

This enables us to decompose a complex estimation problem 

into a set of sub problems, each much simpler and more 

favorable from a numerical-computation point of view.  

 In this paper, we develop a method of signal analysis 

based on the Fourier-Bessel (FB) expansion and the TVAR 

process. The multi-component Non stationary signal has been 

expanded into the FB series. Each component has non 

overlapping cluster of FB coefficients. The components can 

be reconstructed directly from the real FB coefficients of the 

separated clusters. Then, we model each reconstructed 

component by a lower order TVAR process. In this way it 

requires the inversion of a number of relatively small 

correlation matrices with better numerical stability 

properties. 

 The paper is organized as follows. In section II it explains 

the Fourier-Bessel Expansion. It explains the Time-varying 

Autoregressive modeling in section III. In section IV it 

explains the selection of basis function and TVAR model 

order determination by means of Maximum likelihood 

estimator. In section V it gives the steps for proposed 

algorithm. The investigational results of analysis of AM-FM 

signal is presented in section VI. Concluding remarks are 

given in section VII. 

II. FOURIER-BESSEL EXPANSION 

 Fourier-Bessel expansions decompose the multi 

component signal in to mono component Signal without any 

prior information about the frequency band of the signal. 

 Fourier-Bessel (FB) series is a particular kind of 

generalized Fourier series (is an infinite series expansion on a 

finite interval) based on Bessel functions. Consider discrete –

time signal 𝑥(𝑛) over an interval (0, N) the zero-order FB 

series expansion of this signal is expressed as [9]  
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The FB coefficients 𝐶𝑚 are computed by using the relation 
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Where M is the order of the FB expansion and 𝐽0 (.),   𝐽1 (.)  

are the zero-order of  the Bessel function of  the first kind 

and the first-order of the Bessel function of the first kind, 

respectively  and can be used as basis functions for FB 

series[9]. { ;m  1,2,  ....... ,  M}m  are the ascending 

order positive roots of  0   0J    

 It has been demonstrated in [9,12] that if the center 

frequency and the bandwidth of a test signal are varied then 

the order and range of nonzero coefficients of the FB series 

expansion of the signal are also changed .In particular, it is 

shown that the order increases with higher center frequency 

and range widens with larger bandwidth .An explanation of 

the above properties of the FB series expansion can be 

obtained by analytically deriving the coefficient mC  for the 

signal  

     cosx n n                                                          (3) 

 

         The FB coefficient mC  for the above is given by [10] 
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 From (4) It can be verified that the peak value of 𝐶𝑚 is 

attained for the order m where the root  𝜆𝑚 ≈  𝜔𝑁  and the 

peak value is given by 
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 The magnitude of 𝐶𝑚 decreases quickly away from the 

order where the peak value is taking place and the value 

becomes irrelevant at far-away orders. It should be noted that 

like the Fourier series coefficients are unique for a given 

signal, the FB series coefficients 𝐶𝑚 are also unique for a 

given signal. Nevertheless, unlike the sinusoidal basis 

functions in the Fourier series, the Bessel functions are 

having damped sinusoidal function and will decay over time. 

This characteristic of the Bessel functions makes the FB 

series expansion appropriate for non-stationary signals [9, 

12]. 

A. Spectrum Representation 

 Similar to the Fourier expansion, the FB expansion can 

also be used for spectrum representation. The benefit lies in 

the fact that unlike a Fourier coefficient which represents 

only a single frequency, each FB coefficients represents a 

band of frequencies. Thus only fewer FB coefficients are 

adequate to represent a band-pass signal compared to the 

number of Fourier coefficients. For a given sinusoidal signal 

( ) cos ( n)x n  the FB coefficients will have peak at

.m N  consequently the relation between the order of 

the FB expansion and the frequency is given by the following 

equation [9, 12] 
 

2m fN                                                                       (7)      

 Where N is the length of the signal, and f is the frequency 

in Hz .It is obvious from the above that there is one-to-one 

correspondence between the order (M) of the FB expansion 

where the coefficients attain peak magnitude and frequency 
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content of a signal [9, 10]. The FB expansion represents the 

spectrum of a signal like the Fourier expansion. Since the 

Fourier transform of the Bessel function 
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 of (1) has an approximate 

bandwidth m
B

N


 ≌  in the spectral domain.  

Consequently, the reconstruction of  x n  using the first M 

terms has a maximum bandwidth of
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M

N
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When  x n  is the sum of L  cosine signals )cos(  ni i.e. 
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The FB coefficients of the above signal is 
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 It can be shown that for well-separated frequencies 𝜔𝑖  

every expression on the right-hand side of (10) will represent 

a region of the FB coefficients where the coefficients are 

nonzero corresponding to a sub-signal of the composite 

signal x(n). Since coefficients are real, each cosine 

components can be directly reconstructed from the FB 

coefficient plot [9, 11] 

B. Applications of Fourier-Bessel decomposition 

1)  One can obtain different band-limited signals by selecting 

appropriate FB coefficients in re-synthesizing signals. 

Further by means of each band-limited signal one can 

perform AM-FM   analysis for different speech analysis 

tasks. 

2) For decomposition of a signal into its constituent 

components, the FB series based technique is beneficial 

over the technique based on the filter-bank approach, 

because we do not need any prior information about the 

frequency band of the signal. 

C. Requisite Conditions for Fourier-Bessel Decomposition 

1)  The FB expansion order M must be known a priory. 

Since the interval between successive zero-crossing of 

the Bessel function 𝐽0 (λ) increases slowly with time and 

approaches π in the limit. When order M is not known, 

then for covering full signal bandwidth, that is, the half of 

the Sampling frequency, M must be equal to the length of 

the signal 

2)  Because the FB decomposition basically represents only 

the oscillatory nature of a signal, the DC    component of 

the signal, if any must be removed prior to the 

decomposition. 

 In the present study, we presume that the non stationary 

signals are well separated in the frequency domain, and the 

signals will be associated with various different non-

overlapping clusters of the FB coefficients. Consequently, 

each signal of the multi-component non stationary signal can 

be reconstructed separately by identifying and separating the 

corresponding FB coefficients 

III.TVAR MODELING 

 The non stationary discrete-time stochastic process 𝑥𝑛 is 

represented by pth order TVAR model as [19]

1

,

p
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n k nx a x v
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                                                    (12) 

 Here ,k na  are time-varying coefficients and nv  is a 

stationary white noise process with mean is zero and variance 

is
2

v . According to the time-varying coefficients evolution, 

TVAR model is likely to be categorized in to two group’s i.e. 

adaptive method and basis function approach[16,18].  

 TVAR model based on the basis function technique is able 

to trace a strong non-stationary signal that is why this model 

is focused in the present study[19].In this technique, each of 

its time-varying coefficients are modeled as linear 

combination of a set of basis functions. The purpose of the 

basis is to permit fast and smooth time variation of the 

coefficients. If we denote 𝑢𝑚,𝑛as the basis function and 

consider a set of (q + 1) function for a given model, we can 

state the TVAR coefficients in general as  

0

, ,

q

m

m

k n k m na a u


                                                             (13) 

In the basis function approach not only the model order p, but 

also the basis functions𝑢𝑚,𝑛, and the expansion dimension q 

must be chosen. From (13) we examine that, we have to 

calculate the set of parameters 𝑎𝑘𝑚 for 

0{k 1,2,........,p;  m 0,1,2,............,q; 1}ma   in 

order to compute the TVAR coefficients 𝑎𝑘,𝑛,and the TVAR 

model is absolutely specified by this set. The estimation by 

the basis function approach is to calculate not the time-

varying parameters𝑎𝑘,𝑛, but the unknown constant 

coefficients 𝑎𝑘𝑚.     

 The TVAR coefficients are designed as follows, we 

consider single realization of the process 𝑥𝑛.For a given 

realization of 𝑥𝑛 we can analyze (12) as a time-varying linear 
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prediction error filter and consider 𝑣𝑛 to be the prediction 

error[19]  
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The prediction error can be written as  
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The total squared prediction error, is now specified by 
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 Here, 𝜏  is the interval over which the summation is 

performed .In covariance technique for modeling the non 

stationary stochastic process 𝑥𝑛we formulate no assumptions 

on the information outside [0, N-1] and set 𝜏 = [𝑝, 𝑁 − 1]. 
The time-varying parameters 𝑎𝑘𝑚 are estimated by 

minimizing the mean squared prediction error in (17) can be 

found by means of setting the gradient of  𝜖𝑝  with respect to 

𝑎𝑙𝑔
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And the derivative of 𝑣𝑛
∗ with respect to 𝑎𝑙𝑔

∗  is 

𝑢𝑔,𝑛
∗ 𝑥𝑛−𝑙

∗ .consequently, (18) become, 
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 The above condition is corresponding to the orthogonality 

law encountered in stationary signal modeling. Substituting 

for 𝑣𝑛 in (19) from (16) we have 
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Now we define a function 𝑐𝑚𝑔(𝑙, 𝑘) as shown below, 
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Using the above definition in (20) we have, 
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 The above equation represents a system of p(q+1) linear 

equations. The above linear equations can be articulated 

efficiently in matrix form as follows, we first define a column 

vector 𝑎𝑚  as follows 
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 The above matrix is pxp and all the dissimilar values for m 

and g result in (q+1)x(q+1) such matrices, by means of these 

matrices, we can now describe a block matrix as shown 

below,    
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 Matrix C has (q+1)x(q+1) elements and each element is a 

pxp  matrix follow-on in a C of size p(q+1)x p(q+1).Now we 

describe a column vector 𝑑𝑔 as shown below 
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 Using the definitions in (23)-(26) we can write down the 

linear system of equations (22) in matrix form as 

 

00 0 0 0

0

q

q qq q q

aC d

C C a d

C C a d

     
     
     
     
   

 

 

                           (27) 

      Ca d                                                                      (28) 

 

 Note that as soon as q=0, the above equation reduces to the 

Yule-walker equations (YWE) for a stationary AR model. 

The set of TVAR parameters 𝑎𝑘𝑚 are elements of 𝑎 and can 

be calculated by solving the above matrix equation. The 

predictor coefficients 𝑎𝑘,𝑛that minimize the prediction error 

𝜖𝑝 can now be calculated using (13). 
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IV. PARAMETER SELECTION  

 The TVAR parameter selection is basically depends on 

three degrees of freedom, such as the TVAR order p, the 

basis function order q, and the set of basis functions 𝑢𝑚,𝑛. 

A. Choice of the Basis Functions 

  The basis functions 𝑢𝑚,𝑛 must be independent and non-

zero for n=0,1,…..N-1,and 𝑢𝑚,𝑛=1,if n=0.If a priori 

information about the signal variation is known, the basis 

functions should be chosen such that the trends in parameter 

change is retained. In case, when a priori information is 

unavailable selection of basis is trial and error[16, 19]. 

 According to equation(13),no particular constraint is 

imposed on the basis  𝑢𝑚,𝑛  consequently; one will be able to 

track only variations which are approximable by this set of 

functions. Numerous solutions have been projected, in the 

literature such as time basis functions, Legendre polynomial, 

Chebyshev polynomial, Discrete prolate spheroidal (DPSS) 

sequence, Fourier basis, Discrete cosine basis, Walsh basis, 

Multi wavelet basis, none of these solutions seems to be 

perfect, since the selection of 𝑢𝑚,𝑛 desires some priori 

information upon the time variations present in 𝑥𝑛[16 ,19]. 
Then again, basis such as prolate spheroidal functions are 

extremely tough to generate. For AM-FM Analysis   Discrete 

cosine basis functions is  best suitable basis function [25] 

 Discrete Cosine basis function  
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B. Order Selection 

 In the presence of noise The TVAR model can distinguish 

several time-varying spectral peaks well. However it is 

sensitive to model order change. False spectral peaks may be 

produced by the TVAR modeling approach, when an 

erroneous model order is chosen. Thus, the determination of 

right model order in TVAR modeling is a significant issue. 

There are few techniques in choice of TVAR model order. 

For instance, Bayesian technique [16] and Akaike information 

criterion (AIC) [17] are used for the determination of model 

orders in TVAR models. In this article, we consider the 

choice of the model order as a Maximum-likelihood (ML) 

estimation [18] technique. In this technique, by maximizing 

the likelihood function we can determine the model order  

 

Maximum likelihood estimation (MLE)   

 

 The TVAR Model for the non stationary discrete-time 

stochastic process 𝑥𝑛 is 

 

,

1 0

p q

n km m n

m

n

k

k nx a u x v






    

 The above equation can be represented in compact form as 

 

 T

n nx Z n a v                                                          (31) 

 

Where  Z n is  

     ΦZ n n u n                                                      (32) 

Here,   denote Kronecker multiplication 

 

  1 2Φ ,
T

n n n pn x x x  
                                       (33) 

  0 1,
T

n n qnu n u u u                                             (34) 

1 2,T T T

pa a a a                                                       (35) 

Here 

0 1,T

k k k kqa a a a                                                  (36) 

  

Step-1: compute  

     ΦZ n n u n   

Step-2: calculate  

   
1

[ ] [ ]
n p n p

N N
TC Z n Z n Z n x n

 



   
       

   
                (37) 

Step-3: Estimate  

  
^

0

21 N
T

n

n

x C Z n
N




                                        (38) 

 Step-4: Obtain the cost function 

 
 
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^

0

1 2
, log 2

2

1
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2
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p q N
J p q

Z n Z n

 



    
  

 

 

             (39) 

 

 Step-5: Maximize the above cost function to select the 

expansion dimension optq q and the model order optp p   
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Where  max1,2,3,4 optp p  

            max0,1,2,3,4 optq q                      (40) 

 

V. PROPOSED ALGORITHM 

 

 Our procedure based on the FB expansion and the TVAR 

model for modeling a multi-component non stationary signal 

requires the following steps: 

 

Step 1: Component separation 

 

 Calculate the FB coefficients 𝐶𝑚 for a given signal using 

(2). Every component of the multi-component non stationary 

signal has non-overlapping cluster of FB coefficients. Since 

coefficients are real; each component is directly 

reconstructed by using (1) from coefficient versus order plot. 

For every mono component signal apply TVAR model 

 

Step 2: TVAR Based IF estimation 

 

1) Compute TVAR model order p and q using MLE 

algorithm, choose the basis function  
mnu   

m 1,2 q,    n 1,2,......, N.  

 

2) For covariance technique of signal modeling set

 , 1p N   and compute  ,mgc l k by means of 

equation (21) to find the matrix mgC  in (24), subsequently, 

set up the matrix C in (25), as well, use    ,mgc l k  to 

calculate 𝑑𝑔in (26). 

3) Calculate the TVAR parameters ,k ma  by solving 

Ca  d,  in (27) and form the coefficients ,k na  using 

(13).  

4) Solve the roots of the time-varying autoregressive 

polynomial formed by TVAR linear prediction filter.  

  ,

1

A z;  n 1
p

k

k n

k

a z



  at each instant n to find the 

time-varying poles: , ,  i 1,2....pi nP    

5) The IF of the non stationary signal, for each sample instant 

n can be estimated from the instantaneous angles of the poles 

using  
,

,

arg[ ]

2

i n

i n

P
f


  for  

, 1i nP    

VI. SIMULATION RESULTS 

 We have considered a two-component Amplitude 

modulated and Frequency modulated (AM-FM) signals to 

study the performance of the proposed FB-TVAR method.  

 

 FB Expansion separates multi-component AM-FM signal 

in to mono-component AM-FM signal, then apply TVAR 

model to each mono component signal. The Instantaneous 

frequency (IF) is extracted from the time-varying 

parameters by calculating the angles of the estimation error 

filter polynomial roots 

 

 
                      FB-TVAR Method 

 

1) Multi component AM-FM sinusoidal signal 

 

The sequence 𝑦(𝑛) consisting of M single-tone AM-FM 

sinusoidal signals is represented by [9] 

             
1

1 cos cos in
M

i i ai i i

i

fiy n A v n n v ns  


     (41)            

 

 For simulation, the signal consisting of two (M =2) single 

tone AM-FM signals is sampled at N = 512 points. Two sets 

of parameters in (41) are chosen as  

          

1 1 1 11,  0.8,  2 0.0063, 2 0.1250,aA                 

1 12, 2 0.0094fv                                            (42) 

 

2 2 2 21,  0.6,  2 0.0125, 2 0.2500,aA                          

2 21.5, 2 0.0125fv                                       (43) 

 

 IF law for first component signal is given by     

 1 1 1 1

1

* cos( )

2

f f

n

v v n
f

 




                                (44) 

IF law for second component signal is given by  

 2 2 2 2

2

* cos( )

2

f f

n

v v n
f

 




                            (45) 

  The plots of the two-component AM-FM signal, the first 

component, and second component AM-FM signals are 

shown in Figs.1–3 respectively. The composite signal is 

expanded into FB expansion and the plot of FB coefficients 

for the composite signal is shown in Fig.4.The first 
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component of the multi-component signal is separated and 

reconstructed using 50-190(From Fig.4.) significant non-

overlapping FB coefficients. The reconstructed signal is 

shown in Fig.5. The second component of the multi-

component signal is separated and reconstructed using 210-

315 (From Fig.4.) significant non-overlapping FB 

coefficients. The reconstructed signal is shown in Fig.6.  

 Each of   the two reconstructed AM-FM signals from the 

clusters of non-overlapped FB coefficients is modeled by 

TVAR process. By using step 2 in the proposed algorithm we 

can estimate Instantaneous Frequency (IF) of each 

reconstructed AM-FM signal. 

 For separated first component and second component of two 

component AM-FM signal apply TVAR model with discrete 

cosine basis. Using Maximum likely hood estimation 

algorithm we have computed TVAR Model order p=2 and 

q=22, for first component signal, p=2and q=28for second 

component signal. TVAR coefficients 𝑎1,𝑛 𝑎2,𝑛 for the first 

component and second component signals are shown in 

Fig.7.andFig.10.respectively.Trajectory of time varying poles 

of the first component and second component are shown in 

Fig.8.and Fig.11.respectively.From Fig.8. and Fig.11.we 

observe that poles are complex conjugate to each other and 

also half of the poles are  lie in the upper half of Z-plane and 

remaining half of the poles  are lower  half of the Z-plane. For 

IF estimation consider the poles that lie either upper half (or) 

lower half of the Z-plane.Fig.9.and Fig.12.shows the IF 

estimation of first component of two component AM-FM 

signal and the IF estimation of second component of two 

component AM-FM signal, respectively. From Fig.9.and 

Fig.12.we observe that estimated IF is close to true IF. The 

mean square error (MSE) among the true IF and estimated IF 

for  n=2,3,………,512 is calculated to be  -118.3282dB. and  

 -106.693dB  respectively. 
 

 

 
Fig.1.Multi component AM-FM Sinusoidal signal 

 
Fig.2. First component of Multi-Component AM-FM Sinusoidal Signal 

 
  Fig.3.Second-Component of Multi-Component AM-FM Sinusoidal Signal 

    

 
  Fig.4.FB Coefficients of the Multi components AM-FM Sinusoidal Signal 
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Fig.5.Estimated first component of Multi-Component 

AM-FM sinusoidal signal using FB expansion 
 

 
Fig.6.Estimated second component of Multi-Component 

AM-FM sinusoidal signal using FB expansion 

 

 
    Fig.7.Estimated TVAR Coefficients of first component of 

Multi-Component AM-FM Signal 

 
         Fig.8.Trajectory of Time Varying poles of first component of 

Multi Component AM-FM Signal 
 

 
       Fig.9.IF Estimation of first component of multi component 

AM-FM Signal 

 

 
Fig.10.Estimated TVAR Coefficients of second component of 

Multi-Component AM-FM Signal 
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Fig.11.Trajectory of Time Varying poles of second Component of multi 

component AM-FM Signal 

 

 
Fig.12.IF Estimation of Second component of Multi -Component AM-FM 

Signal 

2) Multi-component AM-FM signal 

 

   
2

3 2

,3 , ,1

1

2exp( )exp 2k k k k

k

x t j t t t    


   
  (46) 

The parameters of the first and the second components are[21]  

 
3 3 3

1 1,1 1,2 1,3,2, 10 5 10 20 10,           

and 
3 3

2 2,1 2,2 2,35, 5 ,10 3 10 , 0          
 

 

The two following IF s are embedded in this AM-FM signal: 

              2

1 60 10 1f t t t kHZ     

               2 6 5f t t kHZ                                         (47) 

 The signal in (46) is sampled at 𝑇𝑠 =50μs intervals, so the 

sampling frequency is  𝑓𝑠 =20 kHz .Since the absolute values  

of the instantaneous frequencies increase over time, a limited 

span of signal is observed to avoid aliasing. The Algorithm is 

run over N=2,000samples.   

 The plots of the two-component AM-FM signal, the first 

component, and second component AM-FM signals are 

shown in Figs.13–15 respectively. The composite signal is 

expanded into FB expansion and the plot of FB coefficients 

for the composite signal is shown in Fig.16.The first 

component of the multi-component signal is separated and 

reconstructed using 150-400(From Fig.16.) significant non-

overlapping FB coefficients. The reconstructed signal is 

shown in Fig.17.The second component of the multi-

component signal is separated and reconstructed using 800-

1100(FromFig.16.) significant non-overlapping FB 

coefficients. The reconstructed signal is shown in Fig.18.  

 Each of   the two reconstructed AM-FM signals from the 

clusters of non-overlapped FB coefficients is modeled by 

TVAR process. By using step 2 in the proposed algorithm 

we can estimate Instantaneous Frequency (IF) of each 

reconstructed AM-FM signal. 

 For separated first component  and second component of 

two component AM-FM signal apply TVAR model with 

discrete cosine basis. Using Maximum likely hood 

estimation algorithm we have computed TVAR Model order 

p=2 and q=8, for first component signal ,p=2and q=12 for 

second component signal. TVAR coefficients 𝑎1,𝑛 𝑎2,𝑛 for 

the first component and second component signals are 

shown in Fig.19.andFig.22.respectively.Trajectory of time 

varying poles of the first component and second component 

are shown in Fig.20.and Fig.23.respectively.Fig.21.and 

Fig.24.shows the IF estimation of first component of two 

component AM-FM signal and the IF estimation of second  

component of two component AM-FM signal, respectively 

.From Fig.21.and Fig.24.we observe that estimated IF is 

close to true IF. The mean square error (MSE) among the 

true IF and estimated IF for  n=2,3,………,2000 is calculated 

to be  -93. 282dB. and   -86. 932dB  respectively. 

 
Fig.13.Multi component AM-FM signal 



374 G. RAVI SHANKAR REDDY, R. RAO 

 

 
Fig.14.First component of Multi component AM-FM signal 

 

 
Fig.15.Second component of Multi component AM-FM signal 

 

 
     Fig.16.FB coefficients of Multi component AM-FM Signal 

 

 
Fig.17.Reconstructed first component of AM-FM signal from FB 

coefficients 
 

 
Fig.18.Reconstructed second component of AM-FM signal from FB 

coefficients 

 

 
Fig.19.Estimated TVAR coefficients of First component of a multi 

component AM-FM signal 
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Fig.20.Trajectory of Time Varying of First component of multi component 

AM-FM signal 

 

 

 
Fig.21.First component IF estimation of Multi component AM-FM signal 

 

 
              Fig.22.Estimated TVAR coefficients of second component of a 

multi component AM-FM signal 

 

 
Fig.23.Trajectory of Time Varying of second component of multi 

component AM-FM signal 

 

 

 
Fig.24.second component IF estimation of Multi component AM-FM signal 

 

VII. CONCLUSIONS 

 

 A new method FB-TVAR, for Instantaneous frequency 

estimation of multi component AM-FM signals is presented 

in this paper. The FB expansion decomposes a multi-

component AM-FM signal into a number of mono 

component signals, and each component signal is modeled 

using TVAR Model. In this way, the estimation of the model 

parameters of a multi-component signal is done accurately. 

The proposed technique does not need any information a 

priori about the frequency-bands of the multi component 

AM-FM signals. It is demonstrated that the performance of 

proposed FB-TVAR method is good for estimation of the 

frequency functions of an AM-FM signal 
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