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 

Abstract— In this paper, we refer to two definitions of fading 

memory property, which were published in the literature, for 

discrete-time circuits and systems. One of these definitions relates 

to systems working with signals (sequences) defined for both the 

positive and negative integers, expanding from minus infinity to 

plus infinity. On the other hand, the second one refers to systems 

processing sequences defined only for nonnegative integers, that 

is starting at the discrete-time point equal to zero and expanding 

to plus infinity. We show here that the second definition follows 

from the first one. That is they are not independent. Moreover, 

we also show that if an operator describing a system possesses a 

fading memory according to the second definition, then its 

associated operator has this property, too, but in accordance with 

the first definition. 

 
Keywords— discrete-time systems, time-invariant operators, 

fading memory property 

I. INTRODUCTION 

VERY important class of circuit and systems are those 

that behave as objects with decaying memory property - 

called also disappearing or vanishing or fading memory. Such 

a property means that, when the time elapses, an actual 

behavior of a circuit or system depends less and less upon its 

behavior in the remote past. Observing objects in a real world, 

we see that most of them possess such the property. Therefore, 

it seems to  be natural and ubiquitous. Moreover, linear as well 

as nonlinear systems possess the above property. With regard 

to linear ones of a continuous time described by a convolution 

integral, a sufficient condition for possessing a fading memory 

is an impulse response function of time having decaying 

properties. Similarly, in the case of nonlinear systems 

described by a Volterra series, if their so-called nonlinear 

impulse responses [1] have decaying character their behavior 

underlies also the property of vanishing memory. In this 

context, note also that the systems having fading memory can 

be approximated as those which have simply a finite memory - 

and the length of this memory can be evaluated. 

Notion of fading memory plays a fundamental role in 

systems theory a long time, but in fact until the recent 

publications of Boyd and Chua [2], and of Sandberg [3], [4] in 

the eighties and nineties of the last century, there was no 

precise mathematical definition of it. And, as shown in the 

papers mentioned above, there are a few mathematical 

definitions possible, which differ slightly from each other, but 

some of them are perfectly equivalent. However, it is not an 

objective of this paper to discuss all their peculiarities. 

Regarding this stuff, more can be found in a book [5] of this 
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author, having character of a tutorial as well as of a survey of 

the results published previously (mostly) in the research 

periodicals. Here, we are concerned on a problem that has been 

also discussed in [5]. So, to some extent, the material presented 

here is a repetition of that which can be found in [5]. However, 

some parts of the material in this paper constitute an 

refreshment of the above. For example, we use here another 

argument, expressed by (27), to arrive at the final result of 

section IV. This is more satisfactory than the argumentation 

used in [5]. 

First of all, however, the objective of this conference paper is 

to make the audience more familiar with the topics related with 

the ubiquitous fading memory. As said, there exist 

mathematically advanced papers, and even chapters in books 

(as for instance in [5]), which seem to be sufficient for the 

researchers interested in the above concepts. However, the 

author of this paper is not sure that this is the case and sees the 

need for more explanation on such for a as conferences. 

In particular, in this paper, we derive the relations which  

exist between the two definitions of fading memory property, 

presented for discrete-time systems by Boyd and Chua in [2]. 

Here, we deal with the discrete-time signals that is with the 

sequences of elements of which values depend upon the 

discrete-time variable. We treat these sequences (signals) as 

elements of the space of bounded sequences with the norm 

 

  
 

sup
df

x x k  , (1) 

where the values of k belong to the set of integers 

 k   Z  or to the set of nonnegative integers 

 0k Z . The space with the norm given by (1) is called the 

l  space, or more precisely,  l Z  or  l Z  space, when the 

set of arguments of the sequences  x k  is shown explicitly. 

Moreover, in what follows, we will use a delay operator U
 

defined by the following relation 

 

      
 df

U x k x k    , (2) 

where ,k  Z  or ,k  Z . Furthermore, we say that an 

operator N  is time-invariant (TI) if 

      U Nx k NU x k  . (3) 

Additionally, we will choose the value of a delay   in (2) 

and (3) such that the resulting sequences will also belong to 

the space  l Z  when    x k l  Z . 
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II.  TWO DEFINITIONS OF FADING MEMORY FOR DISCRETE-

TIME SYSTEMS 

Boyd and Chua formulated in [2, Section III and Appendix 

A5, respectively] two slightly different definitions of the 

fading memory property for continuous-time systems. 

Moreover, they remarked that these definitions can be also 

used in the case of discrete-time systems, with only re-

defining the domain and image spaces of the corresponding 

operators. In what follows, we recall the above definitions put 

into a form proper for the type the latter systems. So, in more 

detail, the first one deals with the systems working on 

sequences    x k l Z  and the second with those working 

on sequences  x k  belonging to a smaller space  l Z .    

A. Fading Memory Definition No. 1 (FMD1) 

Def. 1: A time-invariant operator    :N l l Z Z  has 

fading memory on the subspace B of  l Z  if there is a 

decreasing sequence w:  0,1 , lim 0
k

w k


 Z , such that 

for each Bx  and 0  there is a 0  such that for all 

B  the following relation: 

 

              


00sup
0

NNxkwkkx
k

   (4) 

holds. 

B. Fading Memory Definition No. 2 (FMD2) 

Def. 2: A time-invariant operator    :N l l 

 Z Z  

possesses fading memory on the subspace 
B  of  l Z  if 

there is a decreasing sequence w: 0,1 Z ,   0lim 


kw
k

, 

such that for each 
Bx  and 0  there is a 0  such 

that for all 
B  the following implication: 

 
 

             





kNkNxkwx
k0

sup  (5) 

 

holds. 

(On this occasion, see a needed correction introduced on the 

left-side of (5) compared with the corresponding expression in 

[2].)  

One can ask whether really two separate definitions of the 

fading memory are needed, as used in [2] - one for the 

   :N l l Z Z  operators and the second for the  

   :N l l 

 Z Z  ones. In this paper, we will try to answer 

this question. There are, maybe, some relations between them? 

However, before starting this, let us observe that there is 

something analogous in the following question whether the 

convolution sum  

      
0i

y k h i x k i




   (6) 

 

for causal sequences (i.e.    x k l  Z ) can be derived from 

a more general formula 

      
i

y k h i x k i




   (7) 

 

for sequences belonging to the space  l Z , where  h i  

stands for an impulse response of a linear time-invariant (LTI) 

system. Obviously, this can be done by restricting ourselves to 

a subspace of  l Z  with the sequences having their elements 

  0x k   for 0k   in (7). 

Finally in this section, we point out that besides [2] the 

FMD2 was also used in [6], [7], and [8]. 

III.  DERIVATION OF FMD2 FROM FMD1 

We shall show here, as was also done in [5], that the second 

definition of fading memory (FMD2), which was thought out 

for systems considered only for nonnegative times ( 0k  ), 

follows from its more general form (FMD1), as it would so 

hold. And, to this end, we take into account the definition of 

FMD2 with the time-invariant operator    :N l l 

 Z Z  

and the sequences x and v belonging to  B l  Z . 

Now, to be able to use the definition FMD1, we must first 

redefine the operator N and the sequences on which it works. 

For this, we introduce sequences 
fx  and 

fv , with the 

discrete-time arguments assuming the values from the whole 

set Z , as 
 

       for 0  and  0  for  0fx k x k k k    (8) 

and 

       for 0  and  0  for  0fv k v k k k   , (9)   
 

respectively. Note that the sequences  
fx  and 

fv  such defined 

can be viewed as the extensions of the sequences taken from 

the space  l Z  to the corresponding ones belonging to the 

space  l Z . 

Further, with the use of the extended sequences 
fx  and 

fv , 

we can define in the following way a time-invariant operator 

fN  

         for 0  and  0  for 0
df

f fN x k Nx k k k    (10) 
 

 

that works on such sequences. The sequence 
fx  in (10) stands 

for all the sequences given by (8), which form a subspace 
fB  

of the space  l Z . 

Assume now that the operator 
fN  given by (10) exhibits the 

fading memory property, therefore, we can apply to it the 

FMD1. However, before, let us consider the time-shifted 

sequences  lxU fk
 and  lU fk

 of which form is illustrated 

in Fig. 1 (for the first of them). 

Applying the definition given by (4) to the operator 
fN  

working on the sequences  lxU fk
 and  lU fk

, we get 
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     

      












00

0

fkffkf

fkfk
l

UNxUN

lwlUlxUsup
 . (11) 
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Fig. 1. (a) Original sequence belonging to the space  l



Z , (b) the 

sequence    
f

x l l


 Z  created from  x k , (c) the time – shifted 

sequence  
k f

U x l


; this figure was taken from [5]. 

Using next the definition (2) of the delay operator in the 

expression on the left-hand side of (11), we can rewrite it as 

          


lwklklx ff
l 0

sup  . (12) 

Using a new variable  kl  in (12), we arrive at 

       





kwx ff
k 0

sup  . (13) 

And, because     0
f f

x      for 0  , see Fig. 1(b), 

(13) assumes the form 

       
0

sup f f
k

x w k


    
 

    (14) 

Finally, taking into account the definitions (8) and (9) in 

(14), we can rewrite it as 

       





kwkkx
k0

sup   . (15) 

Now, let us return to the right-hand side of the implication in 

(11). Note first that the expression on the right-hand side of 

(11) can be rewritten, by virtue of (2), as  

         00 kNkxN ffff
 (16) 

 

or equivalently as 
 

         kNkxN ffff
 . (17) 

Observe now that in our above derivations we assumed that 

the time-shifting parameter (delay) k to be greater or equal to 

zero. Therefore, having this fact in mind and the definition of 

the operator 
fN  given by (10), we can rewrite (17) as 

         0 kkNkNx ,  . (18) 

We are now in a position to summarize the results of our 

derivation. So, taking into account the achieved results (15) 

and (18) for the left- and right-hand sides of implication (11), 

and comparing them with the definition (5), we conclude that 

in fact the definition FMD2 can be derived from the first one, 

FMD1. In other words, the definition FMD2 is only a specific 

variant of the definition FMD1, derived for sequences defined 

only for nonnegative times  0k . 

IV. THE REVERSE PROBLEM 

Let us also ask whether a derivation of a seeming to be more 

general FMD1 from a more specific FMD2 is possible. In this 

section, we shall try to answer such the question.  

However, before starting formulation of the problem, let us 

illustrate it on a simple example. And to this end, consider as 

before two descriptions for LTI discrete-time systems: first “a 

more specific”, given by (6), and second, “a more general”, 

given by (7). Note that to get (7) from (6), we must first 

extend both the domain and image of the operator described 

by (6), for example, by letting the lower summation limit to be 

equal to   and the discrete-time variable k  starting from 

 , too. By doing this, we arrive in an extended operator 

working on the sequences 
fx . In the second step, we postulate 

equality between the values “produced” by that extended 

operator based on (6) with the values received from (7) for the 

same input sequences 
fx  and time-shifted 

fx 
. Obviously, 

we fulfil the above requirements in our example. 

Similarly, we shall first extend the operator N occurring in 

FMD2 for solving the problem formulated in this section. 

Note that the operator 
fN  cannot play such a role because it 

assumes identically zero values for the negative time instants. 

A proper extended operator of    :N l l
 

 
Z Z  will be 

an operator having the same form as N, but allowing to work 

with the sequences from the space  l Z . Let us call it as 
g

N ; 

it should have the following property 

 
 

          for 0 and  for  0.
df

g f g fN x k Nx k k N x k k    (19) 

Moreover,   g fN x k
 should be well defined.  Let us recall 

the FDM2 for the operator N for 0k  . We have then 

 

             
0 0

sup 0 0 0x v w Nx Nv


    
 

      , (20) 

which can be further rewritten as 
 

            0 0 0 0 0x v w Nx Nv       . (21)
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Obviously, the values  0x  and  0v  are equal to  0fx  

and  0fv , respectively. Hence, (21) can be also expressed as 

 

           0 0 0 0 0f f f f f fx v w N x N v      . (22) 

 

Note that because of the properties of the sequences 
fx  and 

fv  given by (8) and (9), respectively, we can write the 

following 

      
0

sup 0f f
k

x k v k w k 


     . (23) 

 

 So, taking both (22) and (23) together, we finally arrive at 

 

           
0

sup 0 0f f f f f f
k

x k v k w k N x N v 


      . (24)

  

Comparison of (24) with (4) shows the latter implication is 

nothing else than the FMD1, however, restricted to the 

sequences 
fx . Hence, this is not fully satisfactory result. In 

what follows, we will try to achieve more. To this end, let us 

consider the operator 
gN  defined in a descriptive way above. 

We shall check whether this operator has a fading memory in 

the sense of the FMD1, when the original operator 

   :N l l 

 Z Z  possesses in the sense of the FMD2. 

And, let us start considering quite formally the FMD2 given 

by (5). We rewrite this definition introducing a new variable 

' k   , what leads to 
 

 
     

       

' 0

sup ' ' '

    

k

x k v k w

Nx k Nv k



   



  

     

  

 . (25) 

 

Further, observe that (25) can be rewritten in the following 

way 

 
     

       

' 0

sup ' ' '

   0 0

k

x k v k w

Nx k Nv k



   



  

     

    

. (26) 

 

 Using in (26) the notation of the extended time-shifted 

sequences introduced before together with the definition of the 

extended operator 
g

N , we arrive at 

 
         

       

' 0

sup ' ' '

   0 0

f k f k
k

g gf k f k

x v w

N x N v



   



 
  

 

   

  

. (27) 

 Take now into account any sequence x belonging to some 

ball B of the space  l Z  such that this sequence is identical 

with a certain sequence 
   f k

x 


 for all k   . Further, 

choose such a k that the following 
 

 
     

             

'

' 0

sup ' ' '

  < sup ' ' ' ' '

k

f k f k
k

x v w

x x v v w





  

    

 

 
  

  

   

 (28) 

 
 

will hold. Thereby, we arrive in such a situation that, from the 

point of view of the left-hand side inequality in (27), the 

sequences x and 
 f k

x


 belonging to some ball B of the space 

 l Z  will be indistinguishable. So, finally, it follows from 

(27) that 
 
   

           
0

sup 0 0g gx v w N x N v


    


       (29) 

 

 

holds for all the sequences of the ball B of the space  l Z . 

Further, this allows us to conclude that when the operator 

   :N l l 

 Z Z  possesses the fading memory in the 

sense of the FMD2, then its extended operator 
gN  possesses 

the fading memory in the sense of the definition FMD1. 

V. REMARK 

Closely related topics to that of fading memory are the 

relations between the original expansions for linear and 

nonlinear operators and their associated ones. However, this is 

a material for another paper. 
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