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Abstract—The article presents a tunable fibre optic dispersion 

compensator system, consisting of a specially designed cantilever 

beam and a uniform Bragg grating. It analyses the group delay 

and dispersion characteristics in the case that there is no 

apodization of the grating and also for a grating with apodization 

used for modulation of the refractive index. Various apodization 

parameters were tested, along with their effects on the dispersion 

characteristics of the entire system properties. It is demonstrated 

in the paper that the apodization parameter affects the 

compensator’s group delay characteristic. The finite elements 

method was used to design a compensator of such a shape that 

enabled chirp to be induced in a grating of a specified shape. A 

new design is presented for the system, in which the dispersion 

properties are tuned by the maximum value of the heterogeneous 

deformation of the compensator. The paper also includes results 

showing the effect of the maximum value of heterogeneous stress 

of the grating on the dispersion characteristics of the proposed 

construction. 

 

Keywords—dispersion compensation, group delay, fiber Bragg 

gratings, tunable dispersion compensator 

I. INTRODUCTION 

OMMUNICATION by means of an optic medium has 

many advantages, but the main factor limiting its 

efficiency is dispersion. There are many methods of dispersion 

compensation. The dispersion compensation fibres in use have 

a flaw in the form of the compensator’s large size [1]. Another 

disadvantage is the constant length of compensating fibre 

required for compensation ina fibre optic connection of a 

specified length, which means that these solutions cannot be 

applied in networks with optical switching, where the length of 

the optical connection may vary. Coupled two-cavity all-pass 

filters realised entirely as thin-film structures for dispersion 

slope compensation of optical fibres have been proposed [2]. 

Liquid crystals used in optical sensors [3,4] have also been 

proposed for the polarization mode dispersion compensation in 

the Liquid-Crystal Modulator Arrays [5]. Among systems 

currently used, those based on fibre Bragg gratings are also 
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worth mentioning [6-8]. The basic flaw of such systems is the 

fact that the grating of the compensator only works for one 

wavelength. 

A solution may be to tune the grating in order to adapt its 

compensatory properties to a specific wavelength for other 

requirements, e.g. to obtain a defined scope of group delay  

[9,10]. Chirped [11], non-linear chirped [12], apodized [13] or 

sampled [14,15] Bragg gratings are most commonly used in 

the case of dispersion compensators.The influence of the 

grating parameters on its third-order dispersion value have also 

been studied [16]. In some cases the acoustic effect allows 

control of the dispersion using a uniform FBG [17]. 

The present article presents proposals to use a uniform 

Bragg grating in the construction of a tunable fibre optic 

dispersion compensator. The influence of the apodization 

profile of a homogeneous Bragg grating on the group delay of 

the signal in the area of the grating was measured. A special 

mounting has been proposed for the grating on a specially 

prepared cantilever beam allowing chirping to be induced in 

the grating by force being applied. The analysed response to 

the designed compensator enabled the grating apodization 

parameter to be identified which allows the optimum spectral 

characteristics and dispersal properties to be obtained. The first 

laboratory experiments and simulation tests were conducted 

using coupled mode theory, and the effect of the parameter of 

Gaussian distribution of the grating’s apodization function on 

its dispersion characteristics. The optical qualities of the 

system analysed are given as graphs of the group delay and the 

reflection and transmission spectrum of the gratings in the 

wavelength function. Because grating's strain and temperature 

variations cause a change to Bragg's wavelength, in future 

works the temperature compensations methods should be 

applied [18-20]. 

II. MODEL OF A DISPERSION COMPENSATOR 

In the case of a homogeneous grating, the modulation of 

the refractive index is approximately homogeneous in the 

entire grating located within the fibre core, and there are no 

propagation modes outside the core. With this in mind, plane 

mode scan be disregarded. The distribution of the electric field 

along the fibre core can thus be expressed as follows: 

              yxezzBzizAzyxE t ,expexp,,   , (1) 
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where A(z) and B(z)are the amplitudes of the propagation 

modes in directions +z and –z respectively. The value z 

denotes the axis along which the Bragg grating is written,  is 

the propagation constant. Introducing the 

distribution  zyxE ,,  to the coupled mode equations [21] 

results in the following: 

          zSzizRzidzzdR  / , (2) 

          zRzizSzidzzdS */   , (3) 

where: 

       2/exp   zizAzR , (4) 

       2/exp   zizBzS . (5) 

Here R(z) represents the mode moving in direction +z, and 

S(z) the mode moving in the opposite direction,  

i.e. –z,   is the direct component (DC) of the modulation of 

the refractive index, (z) is the alternate component (AC) of 

the modulation of the refractive index in the grating (also 

known as local grating strength). Equations (2) and (3) were 

used to construct the model of the Bragg dispersion 

compensator in order to obtain the dispersion and group delay 

characteristics in the grating. These parameters are also 

paramount when calculating the parameters of the proposed 

system. 

In the paper, the refractive index of the light in the grating 

is assumed as a value dependent on z, we can thus say that:  

        zzznnnznzyxn   /2cos,, 00 , (6) 

where n0 is the refractive index of the light in the core on the 

section of fibre without the grating,  n0is the depth of 

modulation of the refractive index, n(z) is the amplitude of 

the modulation of refractive index, is the grating period,  is 

the grating chirp (meaning the dependence  

of the phase of the grating on the position along axis z). The 

values from the dependencies described by equation (6) are 

also presented in figure 1. 

 
Figure 1.  Designation of the characteristic parameters of the modulation of 

refractive index in the model dispersion compensator 

The valuen1 represents the minimal value of the grating’s 

refractive index, whilen2 denotes the maximum value of the 

grating’s refractive index and L denotes its length. The paper 

assumes a grating period described as  

a third degree polynomial:  

 )( 43
2

2
3

10 bzbzbzb  . (7) 

Figure 2 presents the distribution of the changes of the period 

along the length of the grating.  

 
Figure 2.  Change in the period length of the grating used in the dispersion 

compensator 

For the purposes of solving the coupled mode equations 

the self-coupling coefficient is assumed  

as equal to:  

 dzdneff /5.0/2   , (8) 

where  is the parameter defining the amount of detuning, 

effn  is the „dc” index change and is averaged over the extent 

of each period of the grating, whiled/dz defines the grating 

chirp, connected with the change induced in its periods, 

according to fig. 2. The detuning parameter was defined based 

on the following relationship:  

  BeffB n  /1/12/  , (9) 

where  denotes the propagation constant, while the Bragg 

wavelength is expressed as the relationship:  

 
 effB n2

, (10) 

where neff is the effective refractive index in the fibre core. The 

calculations also assume that the coupling coefficient (z) can 

be represented by:  

       zgzn/ , (11) 

where g(z) is the function of the apodization, and  is fringe 

visibility. 

The grating was divided into ten sections, each of which was 

represented by means of a separate state-transition matrix. The 

process of propagating light through the entire grating is 

described by equation (12).  
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where r = |r| exp(ir) and t = |t| exp(it) correspond to the 

reflection and transmission coefficients, randt are the phases 

of the FBG’s reflection and transmission coefficients. The 

denotations from equation (12) are presented in figure 3: 

 

Ain Aout

Bout Bin

L
 

Figure 3.  Denotations of signals in the dispersion compensator 

Thus the whole state-transition matrix, taking into 

consideration the matrices of the individual sections, looks like 

this:  
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where index i denotes the number of the grating section, while 

the individual matrices are expressed as follows:  

      iii
zizT  sinh/cosh11  , (14) 

    ii
ziT  sinh/21  , (15) 
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Taking into account the fringe conditions, i.e. Ain=1 and Bin=0, 

from equation (19) the grating’s responses were denoted in the 

form of the transmission spectrum Aout  and reflection spectrum 

Bout:  
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The paper analyses the work of a dispersion compensator with 

a non-apodized uniform grating, and with a grating apodized 

with a Gauss profile, with the entire profile being described by 

the relationship:  

      2
/2/exp LLzazg  , (20) 

where L s the grating length, z  [0,L], a is the Gauss 

parameter.  

III. METHOD OF CHIRP GENERATION IN THE 

DISPERSION COMPENSATOR 

In order to generate a linearly variable period for the Bragg 

grating which causes chirp to occur in the grating, the grating 

was stuck onto a specially designed cantilever beam. This 

cantilever beam was then subjected to tensile stress which 

resulted in deformations appearing in the grating. The shape of 

the cantilever beam and the point where the dispersion 

compensator grating was attached are shown in figure 4. As 

can be seen in figure 5, one end (marked B) was placed 

immobile, while the second(marked A) was subjected to the 

influence of force which caused it to become deformed. The 

nature of the deformations in the fibre optic fibre on which the 

Bragg grating was written is illustrated in figure 5. 

The deformation values were calculated using the finite 

elements method. As can be seen, the character of the 

deformation curve corresponds to the polynomial described by 

equation(7). In the case presented in figure 6, the deformation 

curve is described by the equation:  

 43
2

2
3

1 bzczczc  , (21) 

where the values of the individual constants are  

c1 = 0.002, c2 = 0.0293, c3 = -0.0232, c4 = 1.252.  

 
Figure 4.  Grating of finished elements, applied to the dispersion compensator 

system consisting of a cantilever beam and Bragg grating. End A: subjected to 
tensile stress F, End B: firmly attached, immovable 

 
Figure 5.  Distribution of deformation values along the grating. 0.9 – 

beginning of grating, +0.1 – end of grating 



384 W. WÓJCIK, P. KISAŁA, G. YUSSUPOVA, N.KUSSAMBAYEVA, G. KASHAGANOVA, D. HARASIM 
 

 

IV. RESULTS 

In order to establish the dispersion properties of the proposed 

system, the group delay and dispersion values were calculated. 

The calculations were carried out assuming the real values of 

the parameters of the homogeneous grating used as a 

compensator. A grating with a length of L=5 cm and effective 

refractive index of neff =1.447 was used. The Bragg grating was 

mounted on an element which induced chirp in it with constant 

force. Its Bragg wavelength wasB=1554.25 nm. Figure 6 

shows the grating’s transmission and reflection spectrum, 

while there is a graph of the group delay in figure 7.  

Figure 8 presents the dispersion characteristic where there 

is no apodization or force causing a heterogeneous period to be 

generated on the length of the grating. Analogous graphs of the 

transmission spectrum and of group delay and dispersion in the 

event that the grating is apodized are given in figures 9-11. 
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Figure 6.  Spectral characteristics of transmission and reflection in the case of 

a non-apodized grating, no grating chirp is caused 
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Figure 7.  Group delay where there is no apodization or grating chirp 
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Figure 8.  Dispersion in the area of the wavelength of the compensator’s 

Bragg grating with no apodization or grating chirp 
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Figure 9.  Measured and calculated transmission spectrum with no grating 

chirp when the Gaussian apodization function (a=10) is applied 
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Figure 10.  Characteristics obtained without grating chirp when the Gaussian 

apodization function (a=10) is applied. 

(a) group delay, (b) dispersion 
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Figure 11.  Transmission and reflection spectrum in the case of heterogeneous 

elongation of the compensator’s grating. The maximum value of the grating’s 

deformation =1.9510-5. The grating is apodized according tothe Gaussian 

function (a=5) 
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Figure 12.  Characteristics obtained  in the case of heterogeneous elongation of 

the compensator’s grating. The maximum value of the grating’s deformation 

=1.9510-5. The grating is apodized according to the Gaussian function (a=5), 

(a) group delay, (b) dispersion 
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Figure 13.  Reflection spectrum in the case of heterogeneous elongation of the 

compensator’s grating. The maximum value of the grating’s deformation = 

2.9210-5. The grating is apodized according to the Gaussian function (a=5) 

1554.4 1554.45 1554.5 1554.55 1554.6 1554.65 1554.7 1554.75 1554.8 1554.85
-100

0

100

200

300

400

500

600

700

wavelength, nm

g
ro

u
p
 d

el
ay

, 
p
s

(a)

 

 



386 W. WÓJCIK, P. KISAŁA, G. YUSSUPOVA, N.KUSSAMBAYEVA, G. KASHAGANOVA, D. HARASIM 
 

1554.4 1554.45 1554.5 1554.55 1554.6 1554.65 1554.7 1554.75 1554.8

-60

-40

-20

0

20

40

60

wavelength, nm

d
is

p
er

si
o

n
, 

p
s/

n
m

(b)

 

Figure 14.  Reflection spectrum in the case of heterogeneous elongation of the compensator’s grating. The maximum value of the grating’s deformation = 2.9210-

5. The grating is apodized according to the Gaussian function (a=5), (a) group delay, (b) dispersion 
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Figure 15.  Graphs of group delay in the vicinity of the dispersion compensator’s Bragg wavelength,  

(a) no apodization, (b) Gauss apodization, a=2, (c) Gauss apodization, a=5, (b) Gauss apodization, a=10, 

  

The illustrations above show the relationship between 

group delay and dispersion for various values of the 

maximum value of the heterogeneous deformation to which 

the proposed dispersion compensator system was subjected. 

An analysis was made of the relationship of the dispersion 

characteristics depending on the apodization profile of the 

Bragg grating. The spectral characteristics of the system’s 

transmission and reflection were compiled in order to 

demonstrate the change and shift in the spectrum width, 

which also affected the system’s dispersion properties. As 

can be seen, the increase in amplitude of the deformation 

causes a broadening of the reflective and transmission 
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spectral characteristics of the compensator. On the basis of 

the characteristics displayed in figures 8, 10, 12 and 14  

a clear decrease can be seen in the dispersion values in the 

range of the Bragg wavelengths. The fields in which the 

lowest dispersion values appear coincide with the lengths of 

waves which meet the Bragg condition, which are in turn 

illustrated in figures 6, 9, 11 and 13. 

The results collated in figure 18 demonstrated that it is 

possible to control the gradient of the group delay curve by 

simply regulating parameter a of the given Gauss 

distribution by relationship (20).It can be seen that along 

with the increase in the parameter from 0 to 10, this band is 

reduced and the gradient of the group delay curve decreases, 

causing a weakening of the dispersion compensation effect. 

The dynamics of the change in group delay for the non-

apodized grating measures~500 ps, while in the case of 

Gaussian apodization with the parameter a=10 this 

decreases to ~300 ps. The characteristics from figure 15 also 

show that along with the increase in parameter  a of the 

grating’s apodization function, the group delay 

characteristic is smoothed out.  

V. CONCLUSIONS 

A dispersion compensator was presented which  

is tuned by the heterogeneous stress of a Bragg grating. 

Analysis and simulation tests demonstrated that the level of 

the maximum value of the heterogeneous stress of the 

grating affects the group delay characteristics and 

dispersion. It can also be noted that the use of apodization 

affects the size of the area where the group delay 

characteristic is flat. By using the negative gradient 

properties of the group delay characteristic of the proposed 

system it is possible to apply it in accumulated dispersion 

compensation in fast data transmission systems.  

The additionally presented results prove that along with 

an increase in the maximum value of the heterogeneous 

deformation of the grating there is an increase in the scope 

of the wavelengths for which the value of the group delay is 

a falling curve, there is a simultaneous shift in the 

wavelengths for which a significant limiting of dispersion 

takes place. This change is caused by a shifting of the 

wavelength of the Bragg grating, which is subjected to 

mechanical stretching. In cases where a Bragg grating is 

used as a dispersion compensator, the influence of the 

temperature is highly significant, so developing a method 

for controlling the temperature or eliminating its influence 

would seem to be of major importance.  
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