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Abstract—This paper presents an application of the finite element 

method and boundary element method to determine the 

distribution of the elongation. Computer simulations were 

performed using the computation of numerical algorithms 

according to a mathematical structure of the model and taking 

into account the values of all other elements of the fiber Bragg 

grating (FBG) sensor. Experimental studies were confirmed by 

elongation measurement system using one uniform FBG. 
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I. INTRODUCTION 

LONGATION measurement are very important in many 

practical cases [1]. Many differential speed measurement 

algorithms was introduced, showing how to solve eccentricity 

problems and that a bad processing but not slippage is the 

source of observed false elongation peaks [2]. In some cases 

the elongation sensor using optical elements is used [3-5]. A 

two-dimensional formulation within the scope of the boundary 

element method (BEM) was proposed for the determination of 

influence of shear and elongation on drop deformation [6]. 

Sometimes the Indirect Boundary Element Method (IBEM) is 

applied for the strain calculations eg. to study composites 

models [7] and scattering of elastic waves by cracks [8]. The 

finite element method is also widely used for the elongation 

determination [9],  eg. in modeling and simulation of porcine 

liver tissue indentation [10] elasticity and fracture analysis 

[11] and also in many mechanical systems [12]. An efficient 

hybrid approach to study the deformation in known materials 

have been presented in our method. In this work the relative 

elongation is determined for the formed mechanical system 

using finite element method (FEM) and boundary element 

method. In addition, the results have been verified by 

measurements using FBG sensor. In this paper, the inverse 

problem solution is used to estimate the model parameters of 

elongation sensor in accordance with the method of measuring 

the elongation distribution [13,14].To confirm the results 

obtained from FEM and BEM, measurements using FBG 

sensor have been performed. During measurements of the 
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 elongation distribution using inverse analysis it is 

important to build sensor model [15-17]. Direct measurements 

of described quantity are not possible due to lack of 

appropriate measurement system components (especially 

sensors), therefore the measurements are indirect [18-22]. In 

this case, it is essential to the use of optoelectronic devices, 

which process the available physical signals using specialized 

sensors, converts them into digital form, and then, according 

to the implemented numerical algorithms, converts it to the 

desirable quantity. In this paper we present an application of 

the finite element method and boundary element method to 

determine the distribution of the elongation and we implement 

the inverse analysis to the elongation determination. 

II. CALCULATION METHOD AND MEASUREMENT SYSTEM 

The elongation distribution of the sample material can be 

determined based on the distribution of the linear dimensions 

relative change in the considered area. The study lead to the 

use of information from the measured spectrum and the 

spectrum calculated by use of mathematical model. To 

perform the experiments laboratory testing tool was designed 

and manufactured. It allows for the metal specimens 

stretching. Bragg gratings were glued on the specimens. 

Elongation of the sample, moving into a grating, causing 

changes in the length of the grating period, which also changes 

its spectral characteristics, which possible to determine with 

photo spectrometer. The spectral characteristics of the grating 

allows to obtain the information about the elongation 

distribution even repeatedly differential along the measured 

length. Knowing the cross-section of the sample and the load 

the elongation was calculated at several points. For the 

calculation the finite element method and the boundary 

element method were used. FEM mesh is arranged in such a 

way that its greatest density occurred on the sample 

constriction. However, in the BEM the values of elongation 

were calculated on the external and internal edge of the 

specimen on its constriction.  

Light with wavelengths of 400-1700 nm is directed to an 

optical fiber in which the Bragg grating is written. The grating 

was glued to the sample, which is under tensile force F using 

the laboratory strain generator. After passing through an 

extended grating the modified spectrum is directed to an 

optical spectrum analyzer. At the same time the random 

distribution of the elongation is generated using simulated 

annealing algorithm. This random distribution is then 

introduced into the Bragg grating model. Presented method is 

shown in Figure 1. 
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Figure 1.  Elongation determination system on the base of FBG model 

By means of a model and on the base of random elongation 
distribution the transmission spectrum of the grating is 
calculated. The modeled spectrum and actual spectrum (from 
optical spectrum analyzer - OSA) are then compared. In the 
case of spectral characteristics non-compliance, new values of 
the grating elongation distribution are selected in accordance 
with the simulated annealing algorithm. These are re-used to 
calculate a new transmission spectrum by means of a grating 
model. It is compared with the measured spectrum and the 
process is repeated until a predetermined accuracy is achieved 
or until a specified (suitably small) value of the objective  
 

function is achieved. Distribution of elongation, which will 
lead to the minimization of the objective function will be the 
most fitting for real. The next step is to check the compliance 
of the distribution determined using an algorithm with the 
theoretical one, resulting from tensile force F and the shape of 
the stretched specimen. Knowledge of the force F and the 
shape of the specimen allows for calculation (using the FEM 
and BEM) the theoretical elongation distribution of the 
specimen and the grating. Fig. 2 shows the measurement 
system components.  
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Figure 2.  Measurement system: 1 – light source, 2 – optical spectrum analyser, 3 – Bragg grating, 4 – elongation generator, 5 – specimens,  

6  - PC with measuring card, 7 – optical fiber with FBG 
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The coupled-mode equations were used in the simulation of 

the spectral response of the Bragg grating. The white light is 

the sensor model input. The input can be expressed as 

 2/LR  . The output of the model is the light transmitted 

through the grating (grating’s transmission spectrum), which 

can be expressed as  2/LR  . The model parameters are as 

follows: the grating length L , the “DC” self-coupling 

coefficient  , and the coupling coefficient k .There is no 

input signal that is incident from the right-hand side of the 

grating, i.e.   02/  LS , but there is a known signal value 

that is incident from the left side of the grating, i.e. 

  12/  LR  (Fig. 3). 

R(-L/2) = 1 R(+L/2)

S(-L/2) S(+L/2) = 0

L

transmission

reflection

L grating period
-L/2

+L/2
 

Figure 3.  The initial condition and calculation of the grating response to 

input field 

The grating is represented by the transfer matrix MF . The 

light propagation process can be described by:  
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 2/LS   is the signal reflected from the grating and the 

MF  matrix can be expressed as follows:  
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The individual elements of the MF  matrix can be described 

as follows. The general “DC” self-coupling coefficient σ can be 
represented by:  
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 describes a possible chirp of the grating period, 

and   is the grating phase. The detuning parameter   can be 

represented by:  
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where Ll effD n2  is the  design wavelength  for  Bragg 

 

 

 

reflectance. For very weak gratings where ( 0effn ) we 

obtain:  

 effn
l




2
 , (5) 

where effn is the background refractive index change. The 

coupling coefficient  zk  can be represented by:  

      
l


zgznzk  , (6) 

where  zg  is the function of apodization, and   is the fringe 

visibility. The coupling coefficient  zk  is proportional to the 

modulation depth of the refractive index      zgznzn   . 

In our case the grating was apodized and the apodization 
profile was given by the grating producer. The simulated 
grating apodization function was as follows:  
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where a  is the Gauss function width parameter and in our case 

a = 80. γB can be expressed by the following equations:  

 22   kB  
22 k , (8) 

 22 kiB    
22 k , (9) 

The grating FBG2 can be represented by a single transfer 

matrix describing its entire length because we assume a 

uniform temperature along the entire grating. There is 

therefore no need for the transfer function of light passing 

through FBG2 to depend on the position along the z axis. This 

assumption simplifies the mathematical model.  

III. CALCULATION METHOD AND MEASUREMENT RESULTS 

In Fig. 4 a shape of a used specimen has been presented, 

Fig. 5 presents elongation distribution of the specimen as a 

function of stress calculated on the basis of knowledge of the 

load, the specimen geometry and the type of material using 

MES and simulated (determined from indirect measurements 

on a laboratory). In contrast, in Fig. 6 the distribution of 

elongation for the same specimen as a function of stress using 

the boundary element method has been presented. 
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Figure 4.  Measured system: 1 –optical fiber with FBG, 2 –epoxy glue, 3 – specimen.  

a) real photo, b) system geometry in FEM 

 

Figure 5.  Distributions of elongation in FBG

In Fig. 4 elongation distribution characteristics of the Bragg 

grating have been presented. The profile determined as real 

was calculated using finite element method. The known tensile 

force and geometry of the specimen were used as the input 

quantities. The profile determined as measured was 

determined using Bragg gratings spectra, FBG model and 

simulated annealing algorithm. The algorithm does not know 

the force size and the specimen geometry. The process of 

determining the elongation distribution of Bragg grating began 

with a random initial value of tension, which was assumed 

constant throughout the length of the specimen. 
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Figure 6.  The elongation distribution calculated using BEM

The maximum value of the absolute error of the elongation 
determination was RMSD =  0.0092% for MES and RMSD =  
0.0085% for BEM. It was calculated by accounting for the 
division of the grating into 10 sections using the following 
equation:  
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This error was determined as the root square error and defines 

the difference between the calculated values of the 

elongationC and the values obtained using the conjugate 

gradient algorithm M.  

IV. CONCLUSIONS 

The results of laboratory measurements and numerical 

calculations show that it is possible to apply the inverse 

analysis to determine the distribution of elongation using fiber 

optic sensors with Bragg gratings. It is possible to perform 

calculations using numerical algorithms performing 

calculations in accordance with the mathematical structure of 

the FBG model and taking into account the values of all model 

parameters. The boundary element and finite element method 

used in this paper, allows to obtain comparable results for the 

indirect measurement. 
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