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Abstract—In this paper there is presented and discussed a 

general analysis method for noise characterization of noisy multi-

element multiport differential networks. It is based on mixed 

mode, differential and common mode, noise waves representation 

of noise, generalized mixed-mode scattering parameters and 

generalized mixed-mode noise wave correlation parameters for 

the network. There are derived analytical relation between the 

noise figure for a given output port and the noise matrix and the 

scattering parameters of the network, as well as the correlations 

between the input port noise waves. The signal to noise ratio 

degradation factor is derived and discussed, too. Presented results 

can be implemented directly in a CAD software for noise analysis 

of differential microwave multi-element multiport networks with 

differential as well as with conventional single ended ports. 

 

Keywords—differential networks, differential noise figure, noise 

waves, noise correlation matrix 

I. INTRODUCTION 

ANY present day RF and microwave networks are 

implemented as differential networks. In comparison to 

standard single ended networks, differential are more resistible 

against external disturbances and noise, particularly supply and 

ground noise. Differential networks require special tools for 

characterization, analysis and design. D. Bockelman and W.R. 

Eisenstadt [1] have introduced so-called mixed-mode waves 

(wave variables) and mixed mode scattering parameters to 

extend the classical single-ended wave approach to the 

differential case. In 2006, A. Ferrero and M. Pirolla [2] 

introduced generalized mixed-mode scattering matrix which 

can be used for hybrid networks having some ports differential 

and some ports single-ended. Such theory may be used for 

characterization and signal analysis and design of differential 

networks containing differential amplifiers, baluns, 

transformers etc. 

 The noise wave formalism has been applied for years to 

study noise properties of single ended two-port devices and 

networks [3-6] and multi-port networks [8-9].  J. Randa [9] has 

proposed a way to apply single–ended noise waves and 

standard single-ended scattering parameters to derive noise 

parameters of differential multiport networks. In [12-15] mixed 

mode noise wave formalism and mixed mode S parameters are 

applied to derive the differential noise figure of four port 

differential networks. 
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 In this paper there is presented a general noise analysis 

method which is based on mixed mode, differential- and 

common-mode, noise wave formalism [7] derived from 

pseudowave definition presented in [3] by R. Marks and D. 

Williams, the generalized mixed-mode scattering matrix [2] 

and the mixed mode noise wave correlation matrix [7]. 

Presented approach may be used for noise analysis of 

differential networks with mixed mode ports as well as with 

single-ended ports. It is applicable to networks considered as a 

connection of many noisy multiport elements with mixed-

mode,  differential- and common-mode ports as well as with 

single-ended ports, described separately by their generalized 

mixed mode scattering matrices and the generalized mixed-

mode noise wave correlation matrices. 

The method is applied to evaluate the differential noise 

figure and the differential signal to noise ratio degradation 

factor of mixed mode multi-element multiport networks. 

Derived and presented in this paper analytical expressions for 

noise parameters of differential networks can be implemented 

in a CAD software. 

Presented here noise analysis theory corresponds to another 

general purpose noise analysis method applicable to 

microwave networks which are modeled as single multiports 

with mixed-mode,  differential- and common-mode ports as 

well as with single-ended ports closed by appropriate signal 

sources and loads [16]. 

II. NOISE ANALYSIS OF MIXED-MODE MULTI-ELEMENT 

MULTIPORT NETWORKS 

Figure 1 presents a general noisy multi-element multiport 

network with noiseless elements and equivalent noise 

pseudowave sources at each port. Each element of the network 

is represented by its noiseless equivalent having the same 

generalized mixed-mode scattering matrix as the original 

element [2], while noise generated in each element is 

represented by correlated equivalent noise pseudowave 

sources, one source at each port. Some ports of the network 

elements are coupled, forming differential/common, mixed-

mode ports, while the other ports are standard, single-ended 

ports [7]. The mixed-mode ports of some elements are 

connected with the mixed-mode ports of other elements of the 

network and similarly, the single-ended ports of some elements 

are connected with the single-ended ports of other elements. 
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Fig. 1.  Noisy multi-element multiport network 

 

In matrix notation, a set of linear equations that relates 

complex amplitudes of noise pseudowaves at ports of a 

network element has a form [4,8] 
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where 

)(o k

S  is the generalized mixed-mode scattering matrix of 

the kth element [2], 

)(o k

a and 

)(o k

b  are vectors of the ingoing 

and outgoing noise pseudowaves at its ports [1,3,7], and

)(ko

c  is 

a vector of the correlated noise pseudowave sources 

representing noise generated in the kth element of the network: 

 


















)(

e

)(
c

)(
d)(o

k

k

k
k

a

a

a

a   


















)(

e

)(
c

)(
d)(o

k

k

k
k

b

b

b

b   


















)(

e

)(
c

)(
d)(o

k

k

k
k

c

c

c

c   (2) 

 

and 


















)(

ee
)(

ec
)(

ed

)(
ce

)(
cc

)(
cd

)(
de

)(
dc

)(
dd)(o

kkk

kkk

kkk
k

SSS

SSS

SSS

S       (3) 

 

 In (2), the sub-vectors with lower indexes “d” correspond to 

the differential-mode noise pseudowaves and the equivalent 

noise pseudowave sources, the sub-vectors with lower indexes 

“c” correspond to the common-mode noise pseudowaves and 

the equivalent noise pseudowave sources, and the sub-vectors 

with lower indexes “e” correspond to the single-ended noise 

pseudowaves and the equivalent noise pseudowave sources at 

ports of the network element. 

 Considering the whole network composed of m elements 

(multiports), we can write a set of linear equations in matrix 

form 
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where 
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is the block diagonal matrix in which 

)(o k

S  is the generalized 

mixed-mode scattering matrix of the kth element, 

)(o k

a  and 
)(o k

b  are vectors of the incident and reflected noise 

pseudowaves at ports of the kth element, and 

)(o k

c  is the vector 

of the equivalent noise pseudowave sources representing noise 

generated in kth network element. 

 Taking into account the connections between the m elements 

of the network, it is necessary to introduce constraints on 

vectors 
o

a  and 
o

b  in the form of matrix equation 
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aKb            (7) 

where 
o

K  is the connection matrix of the network. Because 

ports i and j are connected together, incident and reflected 

noise pseudowaves at these ports must satisfy following 

relation [8] 
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where Zi and Zj are the reference impedances of the connected 

ports. The above relation defines elements of the connection 

matrix 
o

K corresponding to a pair of connected ports. 

In practical configurations reference impedances in pairs of 

connected ports are real and the same. In such cases the 

connection matrix 
o

K is a permutation matrix. It is a binary 

matrix that has exactly one entry 1 in each row and each 

)1(o

S  
)2(o

S  

)(o i

S  

)3(o

S  

)(o j

S

 

)(o m

S  



NOISE CHARACTERIZATION OF DIFFERENTIAL MULTI-ELEMENT MULTIPORT NETWORKS - THE WAVE APPROACH  

 
397 

column and 0s elsewhere. In matrix 
o

K entries 1 occupy 

locations with coordinates equal to pairs of port numbers of 

connected ports of the network.  

 Substituting (7) into (4), we obtain 

 
ooo

caW             (9) 

 

where the coefficient matrix 

 
ooo
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is the generalized mixed-mode connection scattering matrix of 

the network. The right-hand side vector 
o

c  is the vector of the 

equivalent noise wave sources located in each port of the 

network. The solution of the matrix equation (9)  is the vector 

of ingoing noise pseudowaves at all ports of the analyzed 

network 
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Using (11), we are able now to compute the correlation 

matrix of the incident noise pseudowaves at all network ports 
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where “+” indicates the conjugate transpose. 

 In (12) 




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is the correlation matrix of the equivalent noise wave sources 

representing noise generated in all elements of the network 

with the mixed-mode ports as well as with the single-ended 

ports. 

 As the equivalent noise wave sources 

)(o k

c  of the kth element 

are uncorrelated with those of any other network element, the 

correlation matrix 
o

C  is a block diagonal matrix of the form 

[7,8] 
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in which 
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CCC  are the generalized correlation 

matrices of the equivalent noise pseudowave sources of 

individual network elements, while the 0s represent null 

matrices. Each matrix 

)(

S

o k

C  has the form 
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where the “d”, “c” and “e” subscripts of sub-vectors and sub-

matrices in (15) correspond, respectively, to the differential-, 

common- and single-ended mode equivalent noise pseudowave 

sources. 

 The generalized noise wave correlation matrix 
o

C , given by 

(14), supplemented by the generalized connection scattering 

matrix 
o

W , given by (10), contain full information on the noise 

and signal parameters of the network. 

 A diagonal element of the noise correlation matrix 
o

N , given 

by (12), represents the power spectral density of the noise 

pseudowave entering a port of the network 

 

2

 

o
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while the off-diagonal elements of the matrix 
o

N  

 

*
o

jiij aaN           (17) 

 

are the correlations between the input noise represented by the 

noise pseudowaves entering different ports of the network. 

 

III. DIFFERENTIAL NOISE FIGURE OF MIXED-MODE MULTI-

ELEMENT MULTIPORT NETWORKS 

 If l is the number of the differential load in the analyzed 

network, then the power spectral density of differential noise 

entering the load port is  

 

llN NP
o

         (18) 

where 
o

llN  is the l-  th diagonal element of the noise matrix 

o

N . 

 The evaluation of 
o

llN  can be derived easily from (12). In 

fact, if only the l-th diagonal element of the noise correlation 

matrix 
o

N  is to be determined, by letting δl to be a vector 

whose elements are all zeros except a 1 in position l, that is 
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we have 
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Relation (20) may be also written as 
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where a vector 
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is the solution vector of a set of linear equations 
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 In (23), the coefficient matrix is the complex transpose of 

the generalized connection scattering matrix 
o

W  of the 

network. 

According to the IEEE standards the definition of a 

noise figure for a two-port at a given frequency is [10] 
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where Pin = kT0 and Pni is the intrinsic noise output power and 

G is the power gain of the two-port. In words it is a ratio of the 

total output noise power per unit bandwidth to that portion of 

the output noise power which originates from input noise 

whose power equals kT0, where T0 = 290 K.  

Following this definition, in terms of notation presented 

above, the noise figure for a multiport, can be written as 
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is the block diagonal noise correlation matrix corresponding to 

the equivalent noise pseudowave sources representing noise 

generated in the network elements. This is the intrinsic noise 

correlation matrix. Zero elements on the main diagonal 

represent no noise power generated in signal sources and loads. 

In (26) l is the port number of the load. 

In (25), the noise correlation matrix called A

o

C applies to the 

network case when the network noise originates only from 

noise sources located in all signal source ports. In general case, 

the noise from the signal source ports may be correlated to 

some degree and also each signal source port may have a 

different noise temperature. This complication may be 

contained in the signal source ports noise correlation matrix 

A

o

C . 

However, following the definition of the noise figure (24) 

and assuming that the uncorrelated noise in the network 

originates only from the equivalent thermal noise sources 

located in all signal source ports, the matrix A

o

C appearing in 

the denominator of (25) is the diagonal matrix in the form 
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The nonzero elements of this matrix correspond to the 

thermal noise generated only in signal source ports. All other 

submatrices and elements in the matrix A

o

C  are equal zero. By 

putting 0 on the main diagonal of both matrices INT

o

C and 

A

o

C in location ll, we adopt the convention that the output noise 

does not contain contribution from the output load. In (27) the 
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upper index s indicates the successive signal source, s = 1, 

2,…, S, where S is the number of signal sources in the network, 

and l is the port number of the single load. 

In (25) and (27) we assume the same reference noise 

temperature T0 = 290 K for internal impedances of all signal 

sources in the network. 

The nonzero diagonal elements of A

o

C are 1 x 1 singe-ended 

or 2 x 2 mixed-mode noise wave correlation matrixes 

corresponding to differential signal sources. In the latter case 

they are given by [7,11] 
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where 

)(o s

S is the 2 x 2 mixed-mode scattering matrix of the sth 

differential signal source shown in Fig. 2. 

   
Fig. 2. Differential signal source with noise waves at its ports 

Elements of 

)(o s

C  are given by 

  


















*
2212

*
2111

2

22

2

21

2

12

2

112

d

)(

S

o

Re2

2

2 SSSS

SSSSkT
cC

s

kk  

 (29) 

 

  


















*
2212

*
2111

2

22

2

21

2

12

2

112

c

)(

S

o

Re2

2

2 SSSS

SSSSkT
cC

s

ll  (30) 

 

  


















*
2212

*
2111

2

22

2

21

2

12

2

11*
cd

)(

S

o

Im22 SSSSj

SSSSkT
ccC

s

kl   (31) 

 

where, k is the Boltzmann’s constant, T is the physical 

temperature of the network and Sij i,j =1, 2 are standard, 

single–ended scattering parameters of the two-port 

representing the differential signal source. 

 In the case of the single-ended signal sources (28) reduces 

to 
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where 11

o

S  is the reflection coefficient at the single ended 

signal source port. Equations (28) and (32) are applicable for 

the real reference impedance case only. 

 Equation (25) determines the noise figure of a multi-element 

multiport network with many inputs. According to (25) and 

(27), the noise figure of a multiport network depends on the 

reflection coefficients of all signal sources exciting the 

network. 

 For a two-port amplifier there are four real noise parameters: 

Fmin, complex Γopt and  a parameter describing the rate of 

variation of the noise figure F as the value of the signal source 

reflection coefficient deviates from its optimal value. 

Alternatively, equivalent parameters are the independent 

elements of the intrinsic noise matrix INT
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21cc . For a three-port amplifier we have nine real 

noise parameters: Fmin, optimum reflection coefficients of two 

signal sources Γopt1 and Γopt2 , and four rate of F variation 

parameters. Equivalently, the noise parameters of three port 

amplifier are: 
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 This set of nine noise parameters of a three-port amplifier 

could be expressed also as functions of the scattering matrix 

elements and the correlation matrix elements of the equivalent 

noise wave sources of the three-port network [8]. 

 The noise figure of a multiport network with many inputs 

may be expressed also as 
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is the block-diagonal noise wave correlation matrix 

corresponding to noise pseudowave sources generated in all 

network elements except the load, with the port number l, 

terminating the output port. In (34) l is the port number of the 

load. The matrix A

o

C  in (33) is the same as in (25), and is 

c1 
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cd 

cc 

S 
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l 
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given by (27). Relations (25) and (33) for the noise figure F 

are equivalent. 

 It is interesting to realize here that the presented approach 

for the noise analysis of the multiport networks may be also 

applied to cases when the noise originating from different 

signal sources is correlated and also when each signal source 

port may have different noise temperature. 

 

IV. DIFFERENTIAL SIGNAL-TO-NOISE RATIO DEGRADATION 

FACTOR OF MIXED-MODE MULTI-ELEMENT MULTIPORT 

NETWORKS 

 

 For a two-port network with the temperature of the signal 

source internal impedance equal to the standard noise reference 

temperature T0 = 290 K, the noise figure directly defines 

degradation of the signal to noise ratio. For a network with the 

number of input ports bigger than one, the ratio 

outin nsns )/()/( is not equal to the noise figure F given by 

(25) or (33) [9]. The value of the signal to noise degradation 

can be determined easily using presented approach to the noise 

analysis of microwave networks. 

 If we assume that i is the number of the signal source port 

connected to the input port of the signal channel and l is the 

port number of the load port, then the output signal power 

density entering the load of output port is given by 
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 In (35) 
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δl is a vector with all elements equal 0, except one element 

equal 1, located in row l, and ins  is the input signal power 

density. 

 Because the input noise power density equals 

 

iin δCδ A

o

in
         (37) 

 

and the output noise power density in the load with the port 

number l is 

 

lln δWCWδ


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1o

TOT
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out     (38) 

 

where the correlation matrix TOT

o

C , given by (34), represents 

total noise in the network, and δl in (38) is a vector with all 

elements equal 0, except one element equal 1, located in row l, 

the degradation of the signal to noise ratio is 
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 The difference between F given by (33) and the signal to 

noise ratio degradation factor given by (39) lies in the 

denominators of both formulas. In (33), the matrix 
o

AC  

corresponds to incident noise at all input ports, whereas in 

(39), the matrix AS corresponds to the incident noise in the 

signal channel port only. 

 

V. CONCLUSION 

 

The noise analysis concept presented in this paper is 

applicable to multi-element multiport networks with mixed 

mode, differential- and common-mode ports as well as with 

single-ended ports. Therefore it is applicable to most networks 

occurring in microwave practice, in particular to differential 

amplifiers. The set of parameters which can be calculated by 

the method includes the differential noise figure, signal to noise 

degradation factor and the correlation matrix of the  noise 

pseudowaves at the output ports of the analyzed overall 

network. 

Presented in this paper material is a theoretical foundation 

that allows to write and develop the general purpose program 

for noise characterization of differential and single-ended 

based multi-element multiport networks using the generalized 

mixed-mode scattering parameters and the generalized 

correlation matrices of the noise pseudowave sources 

representing noise generated in network elements. 
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