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D1 

Abstract—The main purpose of the paper is to suggest a new 

form of BDD – SMTBDD diagram, methods of obtaining, and its 

basic features. The idea of using SMTBDD diagram in the 

process of logic synthesis dedicated to FPGA structures is 

presented. The creation of SMTBDD diagrams is the result of 

cutting BDD diagram which is the effect of multiple 

decomposition. The essence of a proposed decomposition method 

rests on the way of determining the number of necessary ‘g’ 

bounded functions on the basis of the content of a root table 

connected with an appropriate SMTBDD diagram. The article 

presents the methods of searching non-disjoint decomposition 

using SMTBDD diagrams. Besides, it analyzes the techniques of 

choosing cutting levels as far as effective technology mapping is 

concerned. The paper also discusses the results of the 

experiments which confirm the efficiency of the analyzed 

decomposition methods. 

 
Keywords—logic synthesis, SMTBDD, decomposition, 

technology mapping, FPGA, digital circuits 

I. INTRODUCTION 

ynamic development of Programmable Logic Devices, 
especially FPGA structures, requires using effective 

synthesis techniques. In the process of synthesis, dedicated to 
FPGA or CPLD structures, functional decomposition is 
particularly crucial as it is associated with the partition of a 
designed circuit into logic blocks which are included into a 
programmable structure [7, 8, 18, 19]. In most cases, circuits 
contain more than one output. A description of such circuits 
requires defining ‘m-element’ output vectors in reply to ‘n-
element’ input vectors. Efficient decomposition of ‘n-variable’ 
functions should be carried out for ‘m–multioutput functions’ 
[6, 21]. In order to perform effective decomposition, an 
appropriate representation of Boolean function is especially 
vital. The representations of Boolean functions, which use 
Binary Decision Diagrams, turn out to be particularly useful 
[1, 4] as they have relatively small memory requirements 
reserved for allocating suitable data structures. The most 
popular type of BDD appears in the form of a reduced and 
organized diagram and is called ROBDD. It is required, for 
the representation of multioutput function, to use one of the 
most well-known types of BDD, i.e. SBDD (Shared BDD) 
(Fig.1b) [14, 15, 16, 23] or MTBDD (Multi Terminal BDD) 
(Fig. 1b) [13, 12, 15, 22]. 

Effective functional decomposition, dedicated to FPGA 

structures, impels to use alternative forms of representation 

BDD fragments. It can be observed in the case of multiple 

decomposition, for instance [6]. Multiroot diagram’s parts, 

which include multivalue terminal nodes, are created as the 

result of multiple cutting. Thus, it is necessary to consider new 
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kinds of BDD diagrams together with defining their properties 

and usefulness in the process of decomposition.  
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Fig. 1. The representation of multioutput function; a) SBDD, b) MTBDD 

The main aim of the paper is to present an innovative type of 
purposes dedicated to FPGA structures. The proposed type of 
the diagram is a generalization of well-known diagram’s kinds 
such as ROBDD, MTBDD, and SBDD.  SMTBDD diagram 
which is created for decomposition  

II. THEORETICAL BACKGROUND  

The first approach to the problem of decomposition was 

presented by Ashenhurst [2]. The issue was later developed by 

Curtis [5], Roth, and Karp [20].  

Multioutput function f: B
n
 B

m
 can be decomposed, i.e. 

f(X2,X1) = F[g1(X1),g2(X1),…gp(X1),X2], where, X1 (bound 

set), X2 (free set) and  X1 ∩ X2 = Φ if, and only if, the column 

multiplicity υ(X2|X1) Karnaugh’s map (partition matrix) 

satisfies the condition  υ(X2|X1)≤2
p
.  

The functions gl…….gp are sometimes called bound functions 

[5]. The partition of the circuit resulting from Curtis theorem 

is shown in Fig. 2. The ym-1 ……y0 correspond to m-elements 

of multioutput function. A bound block is connected with a 

free block using ‘p‘ lines which relate to appropriate bound 

functions g1(X1),g2(X1),…gp(X1).  
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Fig. 2. Simple serial decomposition 
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 In the case of BDD diagrams (ROBDD), a simple serial 

decomposition is associated with the cutting of a diagram [11]. 

BDD diagram is divided into two parts what directly relates to 

the partition of function’s variables. One part of the diagram, 

occurring above the cutting line, is associated with a bound 

block. A lower part of the diagram is, on the other hand, 

associated with a free block. Cut nodes are situated below the 

cutting line and they are indicated on by edges emerging from 

the top part of the diagram. It turns out that the number of 

column patterns corresponds to the number of cut nodes. The 

following example of a function, which is described using a 

diagram in Fig. 3a, is worthy considering. As the result of a 

variable partitioning, a and b create a free set and variables c, 

d, and e form a bound set. The variable partitioning 

corresponds with the cutting of a diagram which was 

presented on Fig. 3a. In the diagram shown in Fig. 3a, there 

are two cut nodes that associate with ‘b’ variable as the edges 

from the top part of the diagram (above the cutting line) are 

directed at these nodes. It means that a single bound function 

is adequate. The structure shown in Fig. 3b is the result of 

decomposition.  
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Fig. 3. A simple serial decomposition using BDD; a) description of a 

function, b) the result of decomposition  

 Apart from a simple serial decomposition, there are many 

various models of decomposition that are worthy mentioning 

such as non-disjoint decomposition, complex decomposition 

[5] (iterative and multiple), and mixed decomposition which is 

a combination of all the models above. Serial, non-disjoint 

decomposition is a generalization of a simple serial 

decomposition in which a single variable can be at the same 

time attached to both a free set as well as to a bound set (a 

variable replaces a bound function). Complex decompositions 

may turn out to be particularly useful if the number of 

function’s arguments is considerably high and it is impossible 

for a decomposed circuit to be carried out on a single bound 

block and a single free block. As far as iterative 

decomposition is concerned, its main purpose is to divide a 

bound set in a sequential way which can lead to the growth of 

logic levels. An excessive number of logic levels makes 

dynamic properties of a designed circuit to get worsened. 

Multiple decomposition lacks this defect because each time a 

division of a free set is made. That is why, this form of 

decomposition is extremely vital and its core meaning is 

shown in Fig. 4. Multiple decomposition is possible in the 

situation when at least two simple serial decompositions exist 

and their bound sets are disjoint.  
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Fig. 4. Multiple decomposition 

 From the circuit’s realization point of view, multiple 

decomposition turns out to be a very profitable model of 

function’s decomposition. In the case of a function’s 

description using BDD or MTBDD, it is connected with 

multiple cutting of a diagram which leads to a necessity of 

operating on new forms of diagrams, so called SMTBDD 

diagrams.  

III. SMTBDD – NEW FORM OF BDD 

SMTBDD diagram (Shared Multi Terminal Binary Decision 

Diagram) [9] is a binary decision diagram including ‘n’ roots 

and ‘p’ m-terminal nodes’ bits (p2
m
). The part of MTBDD 

graph placed between horizontal cutting lines (the top line – 

placed closer to the root and the bottom line – placed closer to 

the terminal nodes) is a good example of SMTBDD diagram. 

SBDD diagram is the most basic form of SMTBDD diagram 

and has two terminal nodes associated with 0 and 1 values.  

 The part of MTBDD (ROBDD) is the diagram separated by 

adjacent cutting lines or one cutting line for the part including 

the root. The parts of MTBDD (ROBDD) may appear in 

various forms of the diagrams such as BDD and SMTBDD in 

particular. The number of roots in SMTBDD diagram is equal 

to the number of cut nodes belonging to the analyzing part and 

indicated by the edges which come from the part above the 

cutting line. SMTBDD diagram may be dismantled into ‘n’ 

MTBDD diagrams that have identical terminal nodes. The 

idea of splitting SMTBDD diagram into two MTBDD 

diagrams is presented on Fig.5. 
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Fig. 5. SMTBDD as a symbolic connection of MTBDD 

 MTBDD is a one-root diagram. The process of multiple 

cutting of MTBDD diagram makes it possible to obtain 

 MTBDD diagram and (at least one) SMTBDD diagram. 

Each BDD diagram is associated with a set of variables. The 

set of a diagram’s variables (SMTBDD, ROBDD or 
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MTBDD), which is marked with ‘E’ symbol, is the set that 

corresponds with its nodes.  

 In order to illustrate the notions mentioned above, it is 

worth to analyze a simple example. Figure 6 clearly presents 

ROBDD diagram for which the set of a diagram’s variables 

E={x0,x1,x2,x3,x4,x5,x6,x7, x8}. In this case, the diagram is cut 

using three cutting lines. As the result of this process, three 

parts of the diagram are created. The part ‘0’ includes 

ROBDD root and it is separated with the usage of only one 

cutting line. The cut part has just one root and three terminal 

nodes. In order to distinguish the terminal nodes from each 

other, it is necessary to use two bits. Thus, part ‘0’ can be 

treated as MTBDD (SMTBDD with a single root) diagram for 

which the set of a diagram’s variables E0={x0, x1, x2}. The part 

‘1’ creates a part of the diagram between two cutting lines. 

This diagram constitutes of three roots (the cut nodes 

indicated by the diagram from the part ‘0’) and three terminal 

nodes where two bites are needed for them to be differentiated 

from each other. The part ‘1’ is SMTBDD diagram that 

includes the nodes belonging to the set E1={x3,x4,x5}. The part 

‘2’ comprises a part of ROBDD between two consecutive 

cutting lines. The diagram, that is associated with this part, 

includes three roots and only two terminal nodes. Thus, it can 

be called SBDD (SMTBDD that has one-bit terminal nodes) 

diagram whose edges correspond with the set of variables 

E2={x6,x7,x8}. As the result of a multiple cutting of ROBDD 

diagram, shown in Fig. 6, three SMTBDD diagrams are 

created. Two of these diagrams especially worth mentioning, 

i.e. SMTBDD diagram including only one root (MTBDD) and 

SMTBDD diagram that has one-bit terminal nodes.  
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Fig. 6. The idea of obtaining SMTBDD from ROBDD diagram 

IV. DECOMPOSITION USING SMTBDD 

In order to find appropriate decomposition, it is required to 

define the number of bound functions for each diagram’s part 

(SMTBDD). Thus, it is necessary to introduce the notions of a 

root table and the complexity of a root table [10].  

 The root table of SMTBDD diagram is a two – dimensional 

table which columns are connected with suitable variables’ 

combinations belonging to the set of ‘E’ variables of 

SMTBDD diagram and rows correspond with the roots of 

SMTBDD diagram. The cells of the root table are associated 

with nodes which are cut by ‘the bottom’ cutting line of the 

analyzed part. The vector of the cut node can be defined as the 

row of a root table connected with one SMTBDD root or 

MTBDD root. 

 The column multiplicity of the root table, marked with υ, is 

the number of various column’s patterns of the root table 

associated with SMTBDD diagram. 

 Each SMTBDD diagram may be described using the root 

table. The columns of the root table are connected with 

SMTBDD paths. While choosing the root and analyzing the 

specific path in SMTBDD diagram, an appropriate terminal 

node ‘is reached’ and it is related to a suitable cut node. A 

similar situation can be observed in the case of the root table. 

While choosing an appropriate row (connected with the root) 

and a column (corresponding with the path), a proper cell may 

be unambiguously defined whose content is associated with 

the terminal node of SMTBDD diagram. The contents of 

proper columns create the patterns that may repeat. Thus, the 

column multiplicity is the number of various patterns of the 

columns of the root table. The idea of the column multiplicity 

is best illustrated on Fig. 7. 
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Fig. 7. SMTBDD diagram together with the root table  - determining the 
column multiplicity 

 A newly proposed form of SMTBDD diagram is a 

‘multiroot’ generalization of ROBDD or MTBDD diagrams. 

For the diagrams, which include only one root, the root table 

simplifies to one row (a vector of the cut nodes). Therefore, 

the column multiplicity of such a table is equal to the number 

of various cut nodes included in this vector.  

The idea of determining the column multiplicity (the number 

of the cut nodes) for ROBDD diagram was presented on Fig. 

8. 

 In order to define the column multiplicity, the following 

algorithm may turn out to be useful. 
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Fig. 8. ROBDD diagram together with a vector of the cut nodes – 

determining the column multiplicity 

 Algorithm 1 (creating the root table and determining the 

column multiplicity): 

1. Formation of a vector of the cut nodes for each root by 

analyzing the paths 

2. Placing a vector of the cut nodes in the root table in the row 

connected with a proper root 

3. Assigning the number of various column patterns in the root 

table 

 The number of bound functions precisely depends on the 

number of column patterns or the number of various cut nodes 

for MTBDD (ROBDD) diagram. The idea of using SMTBDD 

diagrams in the process of decomposition is presented in the 

form of the following example.  
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Fig. 9. MTBDD diagram describing multioutput function together with the 

cutting lines 

Example 1 

MTBDD diagram, which describes the multioutput function, 

is shown in Fig. 9. The diagram is divided into three parts.  

In the case of the part 0, a single cutting line cut a diagram’s 

part that ‘indicates’ three cut nodes. As the result of this 

cutting, the part presented on Fig. 10a, is created. 

 The part 0 is one – root MTBDD diagram. In order to 

define the number of ‘g’ functions, it is necessary to create the 

vector of cut nodes and determine the number of various 

symbols included in this vector. The vector of the cut nodes is 

illustrated on Fig. 10a. It contains three various symbols 

associated with the nodes (i, j. k). It is essential to use two bits 

needed to distinguish three nodes what leads to decomposition 

in which two bound functions are obtained. After assigning 

codes to appropriate cut nodes, a reduced form of the part 0 is 

created. It contains the nodes corresponding with ‘g’ functions 

which are shown in Fig. 10b. 
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Fig. 10. Part 0; a) cut diagram’s part, b) one – dimensional root table together 

with the part obtained after decomposition 
 

 It is necessary to analyze the part 1 after modification of the 
part 0. The analysis should start with describing the number of 
its roots. In the examined example, there are only two roots 
marked with ‘i’ and ‘j’ (Fig. 9) because the ‘k’ node, which is 
the cut node of the part 0, does not belong to the E1 set. 
For the fact that SMTBDD diagram (the part 1) includes two 
roots, it is possible to divide it into two MTBDD diagrams 
what is symbolically presented on Fig. 11a. Next, in 
accordance with the 1 algorithm, the root table is formed. 
Particular rows of the table correspond with the roots of the 
part 1. As the result of this process, the root table, illustrated 
on Fig. 11b, is created (the table has two rows because 
SMTBDD diagram has two roots). Last but not least purpose 
of the 1 algorithm is to define the column multiplicity of the 
root table. The table shown in Fig. 11b contains five column 
patterns (A – E). Thus, it is a must to use three bits in order to 
distinguish them. In other words, there is a necessity to 
introduce the nodes standing for three bound functions. For 
the E1 set of variables also includes three elements, it is not 
worth transforming the part 1 introducing the nodes connected 
with bound functions. 
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Fig. 11. The part 1; a) SMTBDD diagram together with partition into two 
MTBDD diagrams, b) the root table 
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 The analysis of the second part should begin with defining 
the number of its roots. In this part, the cut nodes may be 
found and they are indicated by the edges from the part 0 
(k node) as well as from the part 1 (m, l, k nodes). The k node 
is a common cut node for two parts. Therefore, SMTBDD 
diagram has three roots (m, l, k) for the second part. 
SMTBDD diagram (the part 2) comprises the composition of 
three MTBDD diagrams (Fig. 12). 
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Fig. 12. SMTBDD diagram (the part 2) as the composition of three 
MTBDD diagrams 

 Similarly as in the case of the part 1, it is possible to 
decompose SMTBDD diagram into several MTBDD 
diagrams. Then, it is necessary to create the root table and 
determine the column multiplicity in accordance with the 
algorithm defining the column multiplicity. The root table, 
connected with the part 2, is presented on Fig. 13.  
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 The root table (Fig. 13) includes four column patterns (A–
D) that can be distinguished using two bits (two bound 
functions). The part 2 may be modified by substituting the 
nodes, associated with appropriate variables, with the nodes 
standing for bound functions. The final form of the diagram 
after transformations was shown in Fig. 14. 
 

g2

g3 g3

n o p

g2 g2

g3 g3

km l

g0

g1

i j

x3

x4

x5

1 0

x3

x4

1

01 -  
Fig. 14. MTBDD diagram describing multioutput function gained after 

multiple decomposition with the usage of the multiple cutting method 

The whole procedure of decomposition should be carried out till the 

acquired free block is created in the LUT block that has a given 

number of inputs. As the result of multiple decomposition of the 

analyzed function, carried out using the multiple cutting method, the 

structure illustrated on Fig. 15 is obtained. 
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Fig. 15. First logic level (black colour) and a free block (red colour  - for 

decomposition) 

Carrying out the procedure of multiple cutting causes creating a 

successive logic level each time. 

V. NON-DISJOINT DECOMPOSITION BASED ON SMTBDD 

Non-disjoint decomposition may be one of the ways of 

structure optimization in the process of technology mapping 

taking area into consideration. The essence of non-disjoint 

decomposition, which is generalization of a simple serial 

decomposition [22], is replacing some bound functions with 

variables x (inputs of a circle) that was shown in Fig. 16. 
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Fig. 16. The idea of non-disjoint decomposition 

 Creating a common set Xs may lead to the limitation of the 

number of blocks in a bound block. It is worth to mention that 

not each variable can fulfills a role of bound function. The 

process of searching non-disjoint decomposition should be 

started with searching disjoint decomposition for which 

separate variables are checked taking their profitability of 

attaching them to the set Xs into consideration. The idea of 

searching non-disjoint decomposition, for function description 

in the form of BDD, is presented in the papers [17, 26]. 

In the case of SMTBDD diagrams, the way of searching 

non-disjoint decomposition is very similar. It is crucial to 

define whether the attachment of a given variable to the set Xs 

is profitable. Each variable xi may take the value 0 (xi = 0) or 

1(xi = 1) that is connected with appropriate edges coming out 

from a given node. These edges indicate appropriate sub-

diagrams. The following sub-diagrams xi  = 0 and xi = 1 may 

be distinguished. Both of them indicate given number of cut 

nodes for given roots. There is a possibility to create root 

tables for xi = 0 and xi =1 for which column complexity may 

be described. The number of various column patterns 

determines the number of necessary bits (bound functions) for 

their differentiating in the case of the value of variables xi= 0 

as well as xi = 1. When the number of bits (bound functions) 

necessary to distinguish column patterns of a root table for the 

nodes indicated by sub-diagram connected with xi = 0 is lower 

than the number of bits (bound functions) for disjoint 
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decomposition and the number of bits (bound functions) for 

sub-diagram connected with xi = 1 fulfills the same condition, 

then the variable xi  may be bound function.  Figure 17 

illustrates the method of searching non-disjoint decomposition 

for multiroot SMTBDD diagram.  
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Fig. 17. Non-disjoint decomposition in SMTBDD diagrams a) ROBDD 
diagram together with cutting lines, b) SMTBDD diagram, c) root tables, d) 

the structure obtained 

 In Fig. 17 the usage of the variable x2 as ‘switch over’ 

variable is taken into consideration. For root tables associated 

with x2 = 0 and x2 = 1, column complexity is 2. Thus, in both 

cases a single bit is needed in order to distinguish column 

patterns (single bound function).  In both cases, x2 = 0 as well 

as x2 = 1, the number of bound functions is lower than the 

number of bound functions for disjoint decomposition (where 

two bound functions are needed). It means that variable x2 

may fulfill the role of ‘switch over’ function.  

VI. TECHNOLOGY MAPPING BASED ON SMTBDD 

Logic blocks, included in modern FPGA circuits, are 

characterized by substantial flexibility. It enables to configure 

the number of inputs of a configurable logic block in such a 

way to obtain the best technology mapping as possible. 

Naturally, configurable possibilities of blocks are limited and 

the number of inputs of a single logic block is not higher than 

7. It is worthy mentioning that the number of inputs of a logic 

blocks plays a crucial role in the case of decomposition carried 

out using multiple cutting method as it is almost equal to the 

 

 number of variables in the set E. The essence of technology 

mapping is choosing the cutting line of SMTBDD diagram 

that will best reflect configurable possibilities of a logic block 

and guarantee at the same time the highest reduction of the 

number of variables in SMTBDD. Figure 18 presents the idea 

of choosing the level of a cutting line in the process of 

technology mapping. 
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Fig. 18. The idea of choosing the cutting line in SMTBDD 

Figure 18a illustrates two alternative methods of cutting 

SMTBDD dedicated to technology mapping to the blocks that 

has four inputs and one output (LUT4/1). In the first case, the 

set E0 has three elements and the set E1 has four elements. It 

leads to the necessity of carrying out three bound functions in 

a bound block (three blocks LUT4/1 are necessary). In the 

second case, the set E0 has four elements while the set E1 has 

three elements.  It leads to the necessity of carrying out five 

bound functions (five blocks LUT4/1 are necessary). Thus, it 

can be said that appropriate choosing of a cutting line may 

lead to considerably better technology mapping by limitation 

of logic blocks. It is crucial to define the way of choosing the 

cutting line. It enables to introduce efficiency factor of 

technology mapping δ (1): 

 

δ = numb_of_blocks – (card(E) – numb_of_g)   (1) 

 

 The value of efficiency factor of mapping δ depends on two 

parameters card(E)  and  numb_of_g. They are the result of a 

complex way of the division of arguments (card(E))  and the 

analysis of decomposition parameters obtained (numb_of_g). 

One more parameter called the numb_of_blocks can be 

distinguished and it defines the number of necessary logic 

blocks while carrying out. The essence of searching best 

possible cutting lines is the analysis of the value of the factor δ 

For various cutting levels resulting from configurable abilities 

of logic blocks considered. The best technology mapping may 

be obtained for the cutting levels in which the value of the 

factor δ is the lowest. 
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VII. EXPERIMENTAL RESULTS 

Choosing the cutting line depends on configurable abilities of 

the available logic blocks. Thus, in order to check the 

effectiveness of synthesis methods using SMTBDD, it 

is necessary to introduce hypothetical LUT blocks that have k 

inputs and one output (LUTk/1) and which can, but not 

necessarily, use all of the k inputs after the implementation of 

decomposed function. The analysis of technology mapping  

was conducted for chosen benchmarks [3] for LUT blocks in 

which the number of inputs (k) takes the values ranging from 

4 to 8 (blocks that have higher number of inputs are not used 

taking substantial silicon area into consideration). Assuming 

that separate sets of variables E may include not more than k 

elements, it can be defined which configurations (what is the 

number of inputs) were used the most often for a given 

maximum k. the results are presented in Table 1. 

 
Table  1. The results of synthesis for LUTk/1 blocks 

 

Figure 19 presents the diagrams illustrating the usage of 

separate configurations for given values max k. While 

analyzing the graphs, it may be said that the most often using 

configurations are those for which the number of inputs is 

equal to max k and it should lead to good dynamic properties 

of the structures obtained.  It is also worth to mention that 

LUT4/1 is the most often used configuration which can be 

connected with appearing the function, in the analyzed 

benchmarks, that has relatively small number of inputs and  

does not require decomposition.  

 The obtained results indicate that cutting levels, which are 

far from each other at max k variables in SMTBDD, plays a 

key role for good technology mapping. Besides, good results 

may be also gained by searching decompositions associated 

with the cutting lines for which E=4. These observations may 

have considerable influence on searching effective mappings 

in relatively short time. 

Effectiveness of the synthesis method, based on SMTBDD 

diagram, may be assessed by comparing the results of 

decomposition carried out with the usage of commercial tools 

offered by the producers of  FPGAs. There is a possibility to 

liken the results of synthesis only partly conducted in 

 
 
Fig. 19. The number of LUT blocks used that have determined number of 
inputs; a) for the blocks having max 5 inputs, b) for the blocks having max 

6 inputs, c) for the blocks having max 7 inputs, d) for the blocks having max 

8 inputs 
 

 

0 

50 

100 

150 

Lut4/1 Lut5/1 

Th
e

 n
u

m
b

e
r 

o
f 

LU
Ts

 

a) 

0 

20 

40 

60 

80 

100 

120 

Lut4/1 Lut5/1 Lut6/1 

Th
e

 n
u

m
b

e
r 

o
f 

LU
Ts

 

b) 

0 

10 

20 

30 

40 

50 

60 

70 

Th
e

 n
u

m
b

e
r 

o
f 

LU
Ts

 

c) 

0 

5 

10 

15 

20 

25 

30 

35 

Lu
t4

/1
 

Lu
t5

/1
 

Lu
t6

/1
 

Lu
t7

/1
 

Lu
t8

/1
 

Th
e

 n
u

m
b

e
r 

o
f 

LU
Ts

 

d) 

  

 max k = 

5 
max k = 6 max k = 7 max k = 8 

B
en

ch
. 

in
p

u
t 

o
u

tp
u

t 

L
u

t 
4
/1

 

L
u

t 
5
/1

 

L
o
t 

4
/1

 

L
u

t 
5
/1

 

L
u

t 
6
/1

 

L
u

t 
4
/1

 

L
u

t 
5
/1

 

L
u

t 
6
/1

 

L
u

t 
7
/1

 

L
u

t 
4
/1

 

L
u

t 
5
/1

 

L
u

t 
6
/1

 

L
u

t 
7
/1

 

L
u

t 
8
/1

 

9sym 9 1 9 0 0 0 4 0 1 0 3 1 0 0 0 2 
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rd84 8 4 10 1 3 1 4 4 0 0 5 0 0 0 0 4 

5xp1 7 10 7 6 7 1 4 3 1 1 4 3 1 1 4 0 

z5xp1 7 10 11 3 7 1 4 3 1 1 4 3 1 1 4 0 

con1 7 2 1 2 0 1 1 0 1 1 0 0 1 1 0 0 
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commercial tools (conducting some stages associated with 
decomposition, based on SMTBDD diagram, is done beyond 
the tool delivered by the producer) with the results gained for 
the synthesis carried out entirely in a commercial tool. In 
order to make the cooperation with the commercial tool 
possible, a description of a decomposed circuit in Verilog 
HDL is created. 
The first table best presents the results of the synthesis gained 
by using various methods. The previously mentioned synthesis 
was conducted in ISE 14.7 tool [25] for Spartan XC3S200 
circuits [24] in which the blocks LUT 4/2 or LUT 5/1 are 
placed. The number of logic blocks is included in the column 
named LB. These blocks have a proper number of single LUT 
4/1 blocks (L4 column). It is worth to mention that two LUT 
4/1 blocks are treated as one LUT 5/1 block. 
 The first three columns of  the table 2 include the name of 
the benchmark, the number of inputs and the number of 
outputs. The column named ‘ISE’ comprises the results of the 
synthesis in which all the synthesis stages are conducted using 
ISE tool. The following two columns (‘SMTBDD (equation 
description) + ISE’ and ‘SMTBDD (table description) + ISE’ 
include the results of the synthesis in which the initial  
synthesis stages were carried out on the basis of SMTBDD 
diagrams and the outcome was presented in Verilog HDL. A 
difference between the columns ‘SMTBDD (equation 
description) + ISE’ and ‘SMTBDD (table description) + ISE’ 
depends on the form of the circuit description after 
decomposition. A decomposed and initially defined circuit on 
the Boolean level may take two forms. The first one can 
appear as a table description of particular modules that are 
connected with k – inputs of LUT blocks. The second one may 
take a form of a description using logic equations that include 
the number of variables, not higher than  k. It seems that a 
description of separate modules, using logic equations, gives 
more freedom to the commercial tool in the process of 
optimization conducted in the ISE system, in addition.  

 

Table  2. The results of synthesis for Spartan 3 circuit carried out using 
 ISE tool 

The acquired results indicate that using SMTBDD diagrams 

on particular synthesis stages leads to the improvement of the 

overall outcome. The total number of blocks, which was 

obtained as the result of the synthesis of the circuit’s table 

description and the description using circuits’ tested equations 

(similar results in SMTBDD columns (table description) + 

ISE, SMTBDD (equation description) + ISE, SMTBDD), is 

lower than the total number of the blocks gained as the result 

of the synthesis conducted exclusively in the ISE system. 

Apart from that, it is clearly presented that the description of a 

decomposed circuit in Verilog HDL, appearing in the form of 

equations, gives considerably better results. In the case of 

defining the circuits using equations, the ISE system probably 

exploits additional optimization possibilities which are 

connected with the specificity of the circuits used. There are 

slight differences that may result from the way of summing 

the blocks’ ‘halves’. Thus, it may have an influence on the 

opportunity of an impartial comparison of the efficiency, as 

far as the analyzed methods are concerned, with the 

commercial tools. 

VIII. CONCLUSION 

One of the techniques, which enables to limit the number of 

logic levels (improvement in the dynamic properties of the 

circuit), is multiple decomposition. It may be carried out in the 

process of multiple cutting of BDD diagram in which it is not 

necessary to change the set of variables. This feature is 

considered to be its main advantage. While cutting BDD 

diagram, using more than one cutting line, parts are created. 

These parts form a new type of diagrams, so called SMTBDD 

diagrams. In order to conduct this decomposition, it was 

essential to devise the methods that are necessary to define the 

number of bound functions. That is why, the notions of the 

root table and the column multiplicity of the root table were 

introduced. The results of the experiments indicate that using 

decomposition based on multiple decomposition (carried out 

with the usage of SMTBDD diagrams) often leads to the 

reduction of the number of the blocks used (especially in the 

description using equations). This conclusion is an incredibly 

precious remark, especially in the case of further research 

papers in the field of synthesis. One of the crucial aspects is 

using decomposition techniques and direct them to the 

problems of reducing the power consumption of acquired 

structures.  
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