
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 1, PP. 33-41

Manuscript received November 24, 2015; revised March, 2016. DOI: 10.1515/eletel-2016-0004

D1

Abstract—The main purpose of the paper is to suggest a new

form of BDD – SMTBDD diagram, methods of obtaining, and its

basic features. The idea of using SMTBDD diagram in the

process of logic synthesis dedicated to FPGA structures is

presented. The creation of SMTBDD diagrams is the result of

cutting BDD diagram which is the effect of multiple

decomposition. The essence of a proposed decomposition method

rests on the way of determining the number of necessary ‘g’

bounded functions on the basis of the content of a root table

connected with an appropriate SMTBDD diagram. The article

presents the methods of searching non-disjoint decomposition

using SMTBDD diagrams. Besides, it analyzes the techniques of

choosing cutting levels as far as effective technology mapping is

concerned. The paper also discusses the results of the

experiments which confirm the efficiency of the analyzed

decomposition methods.

Keywords—logic synthesis, SMTBDD, decomposition,

technology mapping, FPGA, digital circuits

I. INTRODUCTION

ynamic development of Programmable Logic Devices,
especially FPGA structures, requires using effective

synthesis techniques. In the process of synthesis, dedicated to
FPGA or CPLD structures, functional decomposition is
particularly crucial as it is associated with the partition of a
designed circuit into logic blocks which are included into a
programmable structure [7, 8, 18, 19]. In most cases, circuits
contain more than one output. A description of such circuits
requires defining ‘m-element’ output vectors in reply to ‘n-
element’ input vectors. Efficient decomposition of ‘n-variable’
functions should be carried out for ‘m–multioutput functions’
[6, 21]. In order to perform effective decomposition, an
appropriate representation of Boolean function is especially
vital. The representations of Boolean functions, which use
Binary Decision Diagrams, turn out to be particularly useful
[1, 4] as they have relatively small memory requirements
reserved for allocating suitable data structures. The most
popular type of BDD appears in the form of a reduced and
organized diagram and is called ROBDD. It is required, for
the representation of multioutput function, to use one of the
most well-known types of BDD, i.e. SBDD (Shared BDD)
(Fig.1b) [14, 15, 16, 23] or MTBDD (Multi Terminal BDD)
(Fig. 1b) [13, 12, 15, 22].

Effective functional decomposition, dedicated to FPGA

structures, impels to use alternative forms of representation

BDD fragments. It can be observed in the case of multiple

decomposition, for instance [6]. Multiroot diagram’s parts,

which include multivalue terminal nodes, are created as the

result of multiple cutting. Thus, it is necessary to consider new

M. Kubica is with University of Bielsko – Biala (e-mail: mkinz@wp.pl).
D. Kania is with Silesian University of Technology (e-mail:

dkania@polsl.pl).

kinds of BDD diagrams together with defining their properties

and usefulness in the process of decomposition.

b

aa

1 0

f1 = a * b f2 = a + b

b

a

b

10

10

0

1

f1 = a * b

f2 = a + b

SBDD – Shared BDD MTBDD – Multi Terminal BDD

a) b)

Fig. 1. The representation of multioutput function; a) SBDD, b) MTBDD

The main aim of the paper is to present an innovative type of
purposes dedicated to FPGA structures. The proposed type of
the diagram is a generalization of well-known diagram’s kinds
such as ROBDD, MTBDD, and SBDD. SMTBDD diagram
which is created for decomposition

II. THEORETICAL BACKGROUND

The first approach to the problem of decomposition was

presented by Ashenhurst [2]. The issue was later developed by

Curtis [5], Roth, and Karp [20].

Multioutput function f: B
n
 B

m
 can be decomposed, i.e.

f(X2,X1) = F[g1(X1),g2(X1),…gp(X1),X2], where, X1 (bound

set), X2 (free set) and X1 ∩ X2 = Φ if, and only if, the column

multiplicity υ(X2|X1) Karnaugh’s map (partition matrix)

satisfies the condition υ(X2|X1)≤2
p
.

The functions gl…….gp are sometimes called bound functions

[5]. The partition of the circuit resulting from Curtis theorem

is shown in Fig. 2. The ym-1 ……y0 correspond to m-elements

of multioutput function. A bound block is connected with a

free block using ‘p‘ lines which relate to appropriate bound

functions g1(X1),g2(X1),…gp(X1).

1X

2X
0y
1y

1my
1X

2X

0y
1y

1my
)(11 Xg

)(12 Xg

)(1Xgp

B
o

u
n

d

b
lo

c
k

F
re

e

b
lo

c
k

Fig. 2. Simple serial decomposition

SMTBDD: New Form of BDD for Logic

Synthesis
Marcin Kubica and Dariusz Kania

D

34 M. KUBICA, D. KANIA

 In the case of BDD diagrams (ROBDD), a simple serial

decomposition is associated with the cutting of a diagram [11].

BDD diagram is divided into two parts what directly relates to

the partition of function’s variables. One part of the diagram,

occurring above the cutting line, is associated with a bound

block. A lower part of the diagram is, on the other hand,

associated with a free block. Cut nodes are situated below the

cutting line and they are indicated on by edges emerging from

the top part of the diagram. It turns out that the number of

column patterns corresponds to the number of cut nodes. The

following example of a function, which is described using a

diagram in Fig. 3a, is worthy considering. As the result of a

variable partitioning, a and b create a free set and variables c,

d, and e form a bound set. The variable partitioning

corresponds with the cutting of a diagram which was

presented on Fig. 3a. In the diagram shown in Fig. 3a, there

are two cut nodes that associate with ‘b’ variable as the edges

from the top part of the diagram (above the cutting line) are

directed at these nodes. It means that a single bound function

is adequate. The structure shown in Fig. 3b is the result of

decomposition.

1 0

c

d

ee

aa

bb

c

d

e

b

a

F
re

e

b
lo

ck

B
o

u
n

d

b
lo

ck

g

},{},,{ 21 baXedcX 

2)|(12 XX

a) b)

Fig. 3. A simple serial decomposition using BDD; a) description of a

function, b) the result of decomposition

 Apart from a simple serial decomposition, there are many

various models of decomposition that are worthy mentioning

such as non-disjoint decomposition, complex decomposition

[5] (iterative and multiple), and mixed decomposition which is

a combination of all the models above. Serial, non-disjoint

decomposition is a generalization of a simple serial

decomposition in which a single variable can be at the same

time attached to both a free set as well as to a bound set (a

variable replaces a bound function). Complex decompositions

may turn out to be particularly useful if the number of

function’s arguments is considerably high and it is impossible

for a decomposed circuit to be carried out on a single bound

block and a single free block. As far as iterative

decomposition is concerned, its main purpose is to divide a

bound set in a sequential way which can lead to the growth of

logic levels. An excessive number of logic levels makes

dynamic properties of a designed circuit to get worsened.

Multiple decomposition lacks this defect because each time a

division of a free set is made. That is why, this form of

decomposition is extremely vital and its core meaning is

shown in Fig. 4. Multiple decomposition is possible in the

situation when at least two simple serial decompositions exist

and their bound sets are disjoint.

f

X10

X2

X1 q-1

m0

mq-1

G0

Gq-1

Bo
un

d

bl
oc

k

Bo
un

d

bl
oc

k

Fr
ee

 b
lo

ck

0

q-1

Fig. 4. Multiple decomposition

 From the circuit’s realization point of view, multiple

decomposition turns out to be a very profitable model of

function’s decomposition. In the case of a function’s

description using BDD or MTBDD, it is connected with

multiple cutting of a diagram which leads to a necessity of

operating on new forms of diagrams, so called SMTBDD

diagrams.

III. SMTBDD – NEW FORM OF BDD

SMTBDD diagram (Shared Multi Terminal Binary Decision

Diagram) [9] is a binary decision diagram including ‘n’ roots

and ‘p’ m-terminal nodes’ bits (p2
m
). The part of MTBDD

graph placed between horizontal cutting lines (the top line –

placed closer to the root and the bottom line – placed closer to

the terminal nodes) is a good example of SMTBDD diagram.

SBDD diagram is the most basic form of SMTBDD diagram

and has two terminal nodes associated with 0 and 1 values.

 The part of MTBDD (ROBDD) is the diagram separated by

adjacent cutting lines or one cutting line for the part including

the root. The parts of MTBDD (ROBDD) may appear in

various forms of the diagrams such as BDD and SMTBDD in

particular. The number of roots in SMTBDD diagram is equal

to the number of cut nodes belonging to the analyzing part and

indicated by the edges which come from the part above the

cutting line. SMTBDD diagram may be dismantled into ‘n’

MTBDD diagrams that have identical terminal nodes. The

idea of splitting SMTBDD diagram into two MTBDD

diagrams is presented on Fig.5.

x3

x4

x5

x3

SMTBDD

1 1

1

0

0 -

x3

x4

x5

MTBDD

1 1

1

0

0 -

x5

x3

MTBDD

1 1

1

0

0 -
Fig. 5. SMTBDD as a symbolic connection of MTBDD

 MTBDD is a one-root diagram. The process of multiple

cutting of MTBDD diagram makes it possible to obtain

 MTBDD diagram and (at least one) SMTBDD diagram.

Each BDD diagram is associated with a set of variables. The

set of a diagram’s variables (SMTBDD, ROBDD or

SMTBDD: NEW FORM OF BDD FOR LOGIC SYNTHESIS 35

MTBDD), which is marked with ‘E’ symbol, is the set that

corresponds with its nodes.

 In order to illustrate the notions mentioned above, it is

worth to analyze a simple example. Figure 6 clearly presents

ROBDD diagram for which the set of a diagram’s variables

E={x0,x1,x2,x3,x4,x5,x6,x7, x8}. In this case, the diagram is cut

using three cutting lines. As the result of this process, three

parts of the diagram are created. The part ‘0’ includes

ROBDD root and it is separated with the usage of only one

cutting line. The cut part has just one root and three terminal

nodes. In order to distinguish the terminal nodes from each

other, it is necessary to use two bits. Thus, part ‘0’ can be

treated as MTBDD (SMTBDD with a single root) diagram for

which the set of a diagram’s variables E0={x0, x1, x2}. The part

‘1’ creates a part of the diagram between two cutting lines.

This diagram constitutes of three roots (the cut nodes

indicated by the diagram from the part ‘0’) and three terminal

nodes where two bites are needed for them to be differentiated

from each other. The part ‘1’ is SMTBDD diagram that

includes the nodes belonging to the set E1={x3,x4,x5}. The part

‘2’ comprises a part of ROBDD between two consecutive

cutting lines. The diagram, that is associated with this part,

includes three roots and only two terminal nodes. Thus, it can

be called SBDD (SMTBDD that has one-bit terminal nodes)

diagram whose edges correspond with the set of variables

E2={x6,x7,x8}. As the result of a multiple cutting of ROBDD

diagram, shown in Fig. 6, three SMTBDD diagrams are

created. Two of these diagrams especially worth mentioning,

i.e. SMTBDD diagram including only one root (MTBDD) and

SMTBDD diagram that has one-bit terminal nodes.

x0

x1

x2

x3

x4

x5

x6

1 0

x6

x7

x8

x3

x3

x4

x5

x3

x0

x1

x2

MTBDD

(special form of

SMTBDD)

SMTBDD

Part 0

Part 1

Part 2
x6

1 0

x6

x7

x8

SBDD

(special form of

SMTBDD)

Fig. 6. The idea of obtaining SMTBDD from ROBDD diagram

IV. DECOMPOSITION USING SMTBDD

In order to find appropriate decomposition, it is required to

define the number of bound functions for each diagram’s part

(SMTBDD). Thus, it is necessary to introduce the notions of a

root table and the complexity of a root table [10].

 The root table of SMTBDD diagram is a two – dimensional

table which columns are connected with suitable variables’

combinations belonging to the set of ‘E’ variables of

SMTBDD diagram and rows correspond with the roots of

SMTBDD diagram. The cells of the root table are associated

with nodes which are cut by ‘the bottom’ cutting line of the

analyzed part. The vector of the cut node can be defined as the

row of a root table connected with one SMTBDD root or

MTBDD root.

 The column multiplicity of the root table, marked with υ, is

the number of various column’s patterns of the root table

associated with SMTBDD diagram.

 Each SMTBDD diagram may be described using the root

table. The columns of the root table are connected with

SMTBDD paths. While choosing the root and analyzing the

specific path in SMTBDD diagram, an appropriate terminal

node ‘is reached’ and it is related to a suitable cut node. A

similar situation can be observed in the case of the root table.

While choosing an appropriate row (connected with the root)

and a column (corresponding with the path), a proper cell may

be unambiguously defined whose content is associated with

the terminal node of SMTBDD diagram. The contents of

proper columns create the patterns that may repeat. Thus, the

column multiplicity is the number of various patterns of the

columns of the root table. The idea of the column multiplicity

is best illustrated on Fig. 7.

x3

x4

x5

x3

i j k

R0 R1

000 001 011 010 110 111 101100
x3x4x5

roots

3

R0

R1

k k k kij

ii

j i

k kk kk k

A B CB A AA C

Column complexity

Fig. 7. SMTBDD diagram together with the root table - determining the
column multiplicity

 A newly proposed form of SMTBDD diagram is a

‘multiroot’ generalization of ROBDD or MTBDD diagrams.

For the diagrams, which include only one root, the root table

simplifies to one row (a vector of the cut nodes). Therefore,

the column multiplicity of such a table is equal to the number

of various cut nodes included in this vector.

The idea of determining the column multiplicity (the number

of the cut nodes) for ROBDD diagram was presented on Fig.

8.

 In order to define the column multiplicity, the following

algorithm may turn out to be useful.

36 M. KUBICA, D. KANIA

x0

x1

x2

i j k

000 001 011 010 110 111 101 100x0x1x2

3

k i jii jik

A CB CA B

Column complexity

BB

Fig. 8. ROBDD diagram together with a vector of the cut nodes –

determining the column multiplicity

 Algorithm 1 (creating the root table and determining the

column multiplicity):

1. Formation of a vector of the cut nodes for each root by

analyzing the paths

2. Placing a vector of the cut nodes in the root table in the row

connected with a proper root

3. Assigning the number of various column patterns in the root

table

 The number of bound functions precisely depends on the

number of column patterns or the number of various cut nodes

for MTBDD (ROBDD) diagram. The idea of using SMTBDD

diagrams in the process of decomposition is presented in the

form of the following example.

x0

x1

x2

x3

x4

x5

x6

1 0

x6

x7

x8

x3

Part 0

Part 1

Part 2

x4

1

01 -

i j

kl

m

n o p

x7 x7

E0={x0, x1, x2}

E1={x3, x4, x5}

E2={x6, x7, x8}

Fig. 9. MTBDD diagram describing multioutput function together with the

cutting lines

Example 1

MTBDD diagram, which describes the multioutput function,

is shown in Fig. 9. The diagram is divided into three parts.

In the case of the part 0, a single cutting line cut a diagram’s

part that ‘indicates’ three cut nodes. As the result of this

cutting, the part presented on Fig. 10a, is created.

 The part 0 is one – root MTBDD diagram. In order to

define the number of ‘g’ functions, it is necessary to create the

vector of cut nodes and determine the number of various

symbols included in this vector. The vector of the cut nodes is

illustrated on Fig. 10a. It contains three various symbols

associated with the nodes (i, j. k). It is essential to use two bits

needed to distinguish three nodes what leads to decomposition

in which two bound functions are obtained. After assigning

codes to appropriate cut nodes, a reduced form of the part 0 is

created. It contains the nodes corresponding with ‘g’ functions

which are shown in Fig. 10b.

x0

x1

x2

i j k

000 001 011 010 110 111 101 100x0x1x2

kjii j k

AB BAC C

j j

BB

1 1

1

0

0 -

g0

g1

ij k

a) b)

q0

q1

Fig. 10. Part 0; a) cut diagram’s part, b) one – dimensional root table together

with the part obtained after decomposition

 It is necessary to analyze the part 1 after modification of the
part 0. The analysis should start with describing the number of
its roots. In the examined example, there are only two roots
marked with ‘i’ and ‘j’ (Fig. 9) because the ‘k’ node, which is
the cut node of the part 0, does not belong to the E1 set.
For the fact that SMTBDD diagram (the part 1) includes two
roots, it is possible to divide it into two MTBDD diagrams
what is symbolically presented on Fig. 11a. Next, in
accordance with the 1 algorithm, the root table is formed.
Particular rows of the table correspond with the roots of the
part 1. As the result of this process, the root table, illustrated
on Fig. 11b, is created (the table has two rows because
SMTBDD diagram has two roots). Last but not least purpose
of the 1 algorithm is to define the column multiplicity of the
root table. The table shown in Fig. 11b contains five column
patterns (A – E). Thus, it is a must to use three bits in order to
distinguish them. In other words, there is a necessity to
introduce the nodes standing for three bound functions. For
the E1 set of variables also includes three elements, it is not
worth transforming the part 1 introducing the nodes connected
with bound functions.

x3

x4

x5

x3

x4

i j

klm
1 1

1

0

0 -

x3

x4

x5

x4

i

klm

x4

x5

x3

x4

j

klm

000 001 011 010 110 111 101 100

x3x4x5

roots

k

kk k

j

i k

k

k

A B ED A AA C

m

m

l l

l lk kk

a)

b)

Fig. 11. The part 1; a) SMTBDD diagram together with partition into two
MTBDD diagrams, b) the root table

SMTBDD: NEW FORM OF BDD FOR LOGIC SYNTHESIS 37

 The analysis of the second part should begin with defining
the number of its roots. In this part, the cut nodes may be
found and they are indicated by the edges from the part 0
(k node) as well as from the part 1 (m, l, k nodes). The k node
is a common cut node for two parts. Therefore, SMTBDD
diagram has three roots (m, l, k) for the second part.
SMTBDD diagram (the part 2) comprises the composition of
three MTBDD diagrams (Fig. 12).

x6

1 0

x6

x7

x8

1

01 -

kl

m

n o p

x7 x7

1 0

x7

1

01 -

m

n o p

x6

1 0

x7

1

01 -

l

n o p

x7

1 0

x6

x8

1

01 -

k

n o p

x7

Fig. 12. SMTBDD diagram (the part 2) as the composition of three
MTBDD diagrams

 Similarly as in the case of the part 1, it is possible to
decompose SMTBDD diagram into several MTBDD
diagrams. Then, it is necessary to create the root table and
determine the column multiplicity in accordance with the
algorithm defining the column multiplicity. The root table,
connected with the part 2, is presented on Fig. 13.

000 001 011 010 110 111 101 100
x6x7x8

roots

k

m

l

n op

no non on o

non o p npn

pnn nn

A B CC D AA B
Fig. 13. The root table for the part 2

 The root table (Fig. 13) includes four column patterns (A–
D) that can be distinguished using two bits (two bound
functions). The part 2 may be modified by substituting the
nodes, associated with appropriate variables, with the nodes
standing for bound functions. The final form of the diagram
after transformations was shown in Fig. 14.

g2

g3 g3

n o p

g2 g2

g3 g3

km l

g0

g1

i j

x3

x4

x5

1 0

x3

x4

1

01 -
Fig. 14. MTBDD diagram describing multioutput function gained after

multiple decomposition with the usage of the multiple cutting method

The whole procedure of decomposition should be carried out till the

acquired free block is created in the LUT block that has a given

number of inputs. As the result of multiple decomposition of the

analyzed function, carried out using the multiple cutting method, the

structure illustrated on Fig. 15 is obtained.
g0

g1

g2

g3

x3

x4

x5

x0

x1

x2

x6

x8

x7

Fig. 15. First logic level (black colour) and a free block (red colour - for

decomposition)

Carrying out the procedure of multiple cutting causes creating a

successive logic level each time.

V. NON-DISJOINT DECOMPOSITION BASED ON SMTBDD

Non-disjoint decomposition may be one of the ways of

structure optimization in the process of technology mapping

taking area into consideration. The essence of non-disjoint

decomposition, which is generalization of a simple serial

decomposition [22], is replacing some bound functions with

variables x (inputs of a circle) that was shown in Fig. 16.

f

X1

X2

X1

X2

g0

g1

gp-1

F
re

e

B
lo

c
kB

o
u

n
d

B
lo

c
k

fXs

Fig. 16. The idea of non-disjoint decomposition

 Creating a common set Xs may lead to the limitation of the

number of blocks in a bound block. It is worth to mention that

not each variable can fulfills a role of bound function. The

process of searching non-disjoint decomposition should be

started with searching disjoint decomposition for which

separate variables are checked taking their profitability of

attaching them to the set Xs into consideration. The idea of

searching non-disjoint decomposition, for function description

in the form of BDD, is presented in the papers [17, 26].

In the case of SMTBDD diagrams, the way of searching

non-disjoint decomposition is very similar. It is crucial to

define whether the attachment of a given variable to the set Xs

is profitable. Each variable xi may take the value 0 (xi = 0) or

1(xi = 1) that is connected with appropriate edges coming out

from a given node. These edges indicate appropriate sub-

diagrams. The following sub-diagrams xi = 0 and xi = 1 may

be distinguished. Both of them indicate given number of cut

nodes for given roots. There is a possibility to create root

tables for xi = 0 and xi =1 for which column complexity may

be described. The number of various column patterns

determines the number of necessary bits (bound functions) for

their differentiating in the case of the value of variables xi= 0

as well as xi = 1. When the number of bits (bound functions)

necessary to distinguish column patterns of a root table for the

nodes indicated by sub-diagram connected with xi = 0 is lower

than the number of bits (bound functions) for disjoint

38 M. KUBICA, D. KANIA

decomposition and the number of bits (bound functions) for

sub-diagram connected with xi = 1 fulfills the same condition,

then the variable xi may be bound function. Figure 17

illustrates the method of searching non-disjoint decomposition

for multiroot SMTBDD diagram.

m

x0

x1

x2

x3

x4

x5

x6

x2

0 1

x2

x3

x4

x2

a b

m

n

o

p

a

b n o

p

a b

m n o p

a

b

a

b

000 001 010011 100101110 111

00 01 1011

00 01 1011

root

root

root

x2x3x4

x3x4

x3x4

x2=0

x2=1

m

n o

pm

p

mm

p

m

mm

m

n o

m

n o

m m

p p

p

m

p

m

mm

A B CDA B C D

A BA B

CDC D

4)|(12 XX

2)|(0212 xforXX

2)|(1212 xforXX

x0

x1

x2

x3

x4

x5

x6

L
U

T
2

/1
L

U
T

3
/1

L
U

T
5

/1

a)

b)

c)

d)

Fig. 17. Non-disjoint decomposition in SMTBDD diagrams a) ROBDD
diagram together with cutting lines, b) SMTBDD diagram, c) root tables, d)

the structure obtained

 In Fig. 17 the usage of the variable x2 as ‘switch over’

variable is taken into consideration. For root tables associated

with x2 = 0 and x2 = 1, column complexity is 2. Thus, in both

cases a single bit is needed in order to distinguish column

patterns (single bound function). In both cases, x2 = 0 as well

as x2 = 1, the number of bound functions is lower than the

number of bound functions for disjoint decomposition (where

two bound functions are needed). It means that variable x2

may fulfill the role of ‘switch over’ function.

VI. TECHNOLOGY MAPPING BASED ON SMTBDD

Logic blocks, included in modern FPGA circuits, are

characterized by substantial flexibility. It enables to configure

the number of inputs of a configurable logic block in such a

way to obtain the best technology mapping as possible.

Naturally, configurable possibilities of blocks are limited and

the number of inputs of a single logic block is not higher than

7. It is worthy mentioning that the number of inputs of a logic

blocks plays a crucial role in the case of decomposition carried

out using multiple cutting method as it is almost equal to the

 number of variables in the set E. The essence of technology

mapping is choosing the cutting line of SMTBDD diagram

that will best reflect configurable possibilities of a logic block

and guarantee at the same time the highest reduction of the

number of variables in SMTBDD. Figure 18 presents the idea

of choosing the level of a cutting line in the process of

technology mapping.

x0

x1

x2

x3

x4 x4

x5x5

x6

01

x4

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

2*

LUT4

3*

LUT4

2*

LUT4

E0={x0,x1,x2}

E1={x3,x4,x5,x6}

E0={x0,x1,x2,x3}

E1={x4,x5,x6}

i j k

l

LUT4

2)|(02 EX
a) b)

c)

4)|(12 EX

3)|(02 EX

5)|(12 EX

Fig. 18. The idea of choosing the cutting line in SMTBDD

Figure 18a illustrates two alternative methods of cutting

SMTBDD dedicated to technology mapping to the blocks that

has four inputs and one output (LUT4/1). In the first case, the

set E0 has three elements and the set E1 has four elements. It

leads to the necessity of carrying out three bound functions in

a bound block (three blocks LUT4/1 are necessary). In the

second case, the set E0 has four elements while the set E1 has

three elements. It leads to the necessity of carrying out five

bound functions (five blocks LUT4/1 are necessary). Thus, it

can be said that appropriate choosing of a cutting line may

lead to considerably better technology mapping by limitation

of logic blocks. It is crucial to define the way of choosing the

cutting line. It enables to introduce efficiency factor of

technology mapping δ (1):

δ = numb_of_blocks – (card(E) – numb_of_g) (1)

 The value of efficiency factor of mapping δ depends on two

parameters card(E) and numb_of_g. They are the result of a

complex way of the division of arguments (card(E)) and the

analysis of decomposition parameters obtained (numb_of_g).

One more parameter called the numb_of_blocks can be

distinguished and it defines the number of necessary logic

blocks while carrying out. The essence of searching best

possible cutting lines is the analysis of the value of the factor δ

For various cutting levels resulting from configurable abilities

of logic blocks considered. The best technology mapping may

be obtained for the cutting levels in which the value of the

factor δ is the lowest.

SMTBDD: NEW FORM OF BDD FOR LOGIC SYNTHESIS 39

VII. EXPERIMENTAL RESULTS

Choosing the cutting line depends on configurable abilities of

the available logic blocks. Thus, in order to check the

effectiveness of synthesis methods using SMTBDD, it

is necessary to introduce hypothetical LUT blocks that have k

inputs and one output (LUTk/1) and which can, but not

necessarily, use all of the k inputs after the implementation of

decomposed function. The analysis of technology mapping

was conducted for chosen benchmarks [3] for LUT blocks in

which the number of inputs (k) takes the values ranging from

4 to 8 (blocks that have higher number of inputs are not used

taking substantial silicon area into consideration). Assuming

that separate sets of variables E may include not more than k

elements, it can be defined which configurations (what is the

number of inputs) were used the most often for a given

maximum k. the results are presented in Table 1.

Table 1. The results of synthesis for LUTk/1 blocks

Figure 19 presents the diagrams illustrating the usage of

separate configurations for given values max k. While

analyzing the graphs, it may be said that the most often using

configurations are those for which the number of inputs is

equal to max k and it should lead to good dynamic properties

of the structures obtained. It is also worth to mention that

LUT4/1 is the most often used configuration which can be

connected with appearing the function, in the analyzed

benchmarks, that has relatively small number of inputs and

does not require decomposition.

 The obtained results indicate that cutting levels, which are

far from each other at max k variables in SMTBDD, plays a

key role for good technology mapping. Besides, good results

may be also gained by searching decompositions associated

with the cutting lines for which E=4. These observations may

have considerable influence on searching effective mappings

in relatively short time.

Effectiveness of the synthesis method, based on SMTBDD

diagram, may be assessed by comparing the results of

decomposition carried out with the usage of commercial tools

offered by the producers of FPGAs. There is a possibility to

liken the results of synthesis only partly conducted in

Fig. 19. The number of LUT blocks used that have determined number of
inputs; a) for the blocks having max 5 inputs, b) for the blocks having max

6 inputs, c) for the blocks having max 7 inputs, d) for the blocks having max

8 inputs

0

50

100

150

Lut4/1 Lut5/1

Th
e

 n
u

m
b

e
r

o
f

LU
Ts

a)

0

20

40

60

80

100

120

Lut4/1 Lut5/1 Lut6/1

Th
e

 n
u

m
b

e
r

o
f

LU
Ts

b)

0

10

20

30

40

50

60

70

Th
e

 n
u

m
b

e
r

o
f

LU
Ts

c)

0

5

10

15

20

25

30

35

Lu
t4

/1

Lu
t5

/1

Lu
t6

/1

Lu
t7

/1

Lu
t8

/1

Th
e

 n
u

m
b

e
r

o
f

LU
Ts

d)

 max k =

5
max k = 6 max k = 7 max k = 8

B
en

ch
.

in
p

u
t

o
u

tp
u

t

L
u

t
4
/1

L
u

t
5
/1

L
o
t

4
/1

L
u

t
5
/1

L
u

t
6
/1

L
u

t
4
/1

L
u

t
5
/1

L
u

t
6
/1

L
u

t
7
/1

L
u

t
4
/1

L
u

t
5
/1

L
u

t
6
/1

L
u

t
7
/1

L
u

t
8
/1

9sym 9 1 9 0 0 0 4 0 1 0 3 1 0 0 0 2

rd73 7 3 6 1 3 0 4 0 0 0 3 0 0 0 3 0

rd84 8 4 10 1 3 1 4 4 0 0 5 0 0 0 0 4

5xp1 7 10 7 6 7 1 4 3 1 1 4 3 1 1 4 0

z5xp1 7 10 11 3 7 1 4 3 1 1 4 3 1 1 4 0

con1 7 2 1 2 0 1 1 0 1 1 0 0 1 1 0 0

sqr6 6 11 12 6 3 3 4 3 3 4 0 3 3 4 0 0

inc 7 9 5 17 3 1 9 1 1 5 2 1 1 5 2 0

misex1 8 7 7 7 4 0 7 2 0 3 2 2 0 3 2 0

sqn 7 3 1 10 3 0 6 0 0 0 3 0 0 0 3 0

f51m 8 8 6 4 5 1 3 4 1 1 2 3 1 1 1 1

b12 15 9 7 13 5 4 9 4 2 1 6 2 2 1 2 3

z4ml 7 4 6 3 3 1 1 1 1 0 2 1 1 0 2 0

x2 10 7 8 7 6 0 6 4 2 1 3 6 0 1 0 3

clip 9 5 17 7 1 0 13 0 0 2 7 5 0 0 0 8

misex2 25 18 21 20 11 3 21 9 5 2 12 3 5 1 2 11

Sum:

1
3
4

1
0
7

6
4

1
7

1
0
0

3
8

1
9

2
2

5
8

3
3

1
6

1
9

2
5

3
2

40 M. KUBICA, D. KANIA

commercial tools (conducting some stages associated with
decomposition, based on SMTBDD diagram, is done beyond
the tool delivered by the producer) with the results gained for
the synthesis carried out entirely in a commercial tool. In
order to make the cooperation with the commercial tool
possible, a description of a decomposed circuit in Verilog
HDL is created.
The first table best presents the results of the synthesis gained
by using various methods. The previously mentioned synthesis
was conducted in ISE 14.7 tool [25] for Spartan XC3S200
circuits [24] in which the blocks LUT 4/2 or LUT 5/1 are
placed. The number of logic blocks is included in the column
named LB. These blocks have a proper number of single LUT
4/1 blocks (L4 column). It is worth to mention that two LUT
4/1 blocks are treated as one LUT 5/1 block.
 The first three columns of the table 2 include the name of
the benchmark, the number of inputs and the number of
outputs. The column named ‘ISE’ comprises the results of the
synthesis in which all the synthesis stages are conducted using
ISE tool. The following two columns (‘SMTBDD (equation
description) + ISE’ and ‘SMTBDD (table description) + ISE’
include the results of the synthesis in which the initial
synthesis stages were carried out on the basis of SMTBDD
diagrams and the outcome was presented in Verilog HDL. A
difference between the columns ‘SMTBDD (equation
description) + ISE’ and ‘SMTBDD (table description) + ISE’
depends on the form of the circuit description after
decomposition. A decomposed and initially defined circuit on
the Boolean level may take two forms. The first one can
appear as a table description of particular modules that are
connected with k – inputs of LUT blocks. The second one may
take a form of a description using logic equations that include
the number of variables, not higher than k. It seems that a
description of separate modules, using logic equations, gives
more freedom to the commercial tool in the process of
optimization conducted in the ISE system, in addition.

Table 2. The results of synthesis for Spartan 3 circuit carried out using
 ISE tool

The acquired results indicate that using SMTBDD diagrams

on particular synthesis stages leads to the improvement of the

overall outcome. The total number of blocks, which was

obtained as the result of the synthesis of the circuit’s table

description and the description using circuits’ tested equations

(similar results in SMTBDD columns (table description) +

ISE, SMTBDD (equation description) + ISE, SMTBDD), is

lower than the total number of the blocks gained as the result

of the synthesis conducted exclusively in the ISE system.

Apart from that, it is clearly presented that the description of a

decomposed circuit in Verilog HDL, appearing in the form of

equations, gives considerably better results. In the case of

defining the circuits using equations, the ISE system probably

exploits additional optimization possibilities which are

connected with the specificity of the circuits used. There are

slight differences that may result from the way of summing

the blocks’ ‘halves’. Thus, it may have an influence on the

opportunity of an impartial comparison of the efficiency, as

far as the analyzed methods are concerned, with the

commercial tools.

VIII. CONCLUSION

One of the techniques, which enables to limit the number of

logic levels (improvement in the dynamic properties of the

circuit), is multiple decomposition. It may be carried out in the

process of multiple cutting of BDD diagram in which it is not

necessary to change the set of variables. This feature is

considered to be its main advantage. While cutting BDD

diagram, using more than one cutting line, parts are created.

These parts form a new type of diagrams, so called SMTBDD

diagrams. In order to conduct this decomposition, it was

essential to devise the methods that are necessary to define the

number of bound functions. That is why, the notions of the

root table and the column multiplicity of the root table were

introduced. The results of the experiments indicate that using

decomposition based on multiple decomposition (carried out

with the usage of SMTBDD diagrams) often leads to the

reduction of the number of the blocks used (especially in the

description using equations). This conclusion is an incredibly

precious remark, especially in the case of further research

papers in the field of synthesis. One of the crucial aspects is

using decomposition techniques and direct them to the

problems of reducing the power consumption of acquired

structures.

REFERENCES

[1] S. B. Akers, “Binary Decision Diagrams”, IEEE Transactions on

Computers, Vol. C-27, No.6, June 1978, pp.509-516
[2] R. L. Ashenhurst, “The Decomposition od switching functions,

Proceedings of an International Symposium on the Theory of

Switching, 1957, pp.74-116
[3] Benchmarking And Experimental Algorythmics Laboratory, A

Benchmark set, 2008, http://www.cbl.ncsu.edu:16080/ benchmarks/

LGSynth93/testcase/
[4] R. E. Bryant, “Graph Based Algorithms for Boolean Function

Manipulation”, IEEE Transactions on Computers vol.C-35, no. 8,
1986, pp. 677-691

[5] H. A. Curtis, H.A., “A New Approach to the Design of Switching

Circuits”, D. van Nostrand Company Inc, New York, 1962
[6] D. Kania, „Układy Logiki Programowalnej”, Wydawnictwo Naukowe

PWN, Warszawa, 2012

[7] D. Kania and J. Kulisz, “Logic synthesis for PAL-based CPLD-s based
on two-stage decomposition”, The Journal of Systems and Software,

vol. 80, 2007, pp. 1129-1141

ISE

 SMTBDD

(equation

description) +

ISE

SMTBDD

(table

description)

+ ISE

Bench. in out LB L4 LB L4 LB L4

9sym 9 1 8 15 5 9 5 9

t481 16 1 3 5 6 11 6 11

rd73 7 3 9 17 4 8 4 8

rd84 8 4 13 21 7 12 6 12

5xp1 7 10 12 23 10 20 10 20

z5xp1 7 10 13 22 9 17 9 18

con1 7 2 3 5 3 5 3 5

sqr6 6 11 13 24 12 23 12 24

misex1 8 7 9 16 10 18 11 21

sqn 7 3 10 19 10 19 11 21

f51m 8 8 13 26 7 15 7 15

b12 15 9 15 26 17 30 17 33

z4ml 7 4 3 6 5 9 6 12

x2 10 7 8 15 8 15 11 22

clip 9 5 25 46 17 31 17 31

misex2 25 18 21 36 30 48 32 61

SUM: 178 322 160 290 167 323

SMTBDD: NEW FORM OF BDD FOR LOGIC SYNTHESIS 41

[8] D. Kania and A. Milik, “Logic Synthesis based on decomposition for

CPLDs”, Microprocessor and Microsystems, vol. 34, 2010, pp. 25–38

[9] M. Kubica and D. Kania, „Dekompozycja wielokrotna z

wykorzystaniem SMTBDD”, Elektronika; konstrukcje, technologie,

zastosowania, 11, 2013, pp. 83-87

[10] M. Kubica and D. Kania, “SMTBDD: New Concept of Graph for

Function Decomposition”, 13th IFAC and IEEE Conference on

Programmable Devices and Embedded Systems, PDES 2015, The proc.

of PDES 2015, Vol. 48, Issue 4, 13-15 May 2015, Cracow, pp. 49–54

[11] Ch. Legl, B. Wurth, nad K. Eckl, “A Boolean Approach to Performance

– Directed Technology Mapping for LUT – Based FPGA Designs”,

33th Design Automation Conference, 1996, pp. 730-733

[12] P. Mikusek and V. Dvorak, “Heuristic Synthesis of Multi – Terminal

BDDs Based on Local Width/Cost Minimization”, 12th Euromicro

Conference on Digital System Design / Architectures, Methods and

Tools, 2009, pp. 605-608

[13] P. Mikusek, “Multi – Terminal BDD Synthesis and Applications”,

Field Programmable Logic and Applications, 2009, pp. 721-722

[14] S. Minato, N. Ishiura, and S.Yajima, “Shared Binary Decision Diagram

with Attributed Edges for Efficient Boolean Function Manipulation”,

27th ACM/IEEE Design Automation Conference, 1990, pp. 52-57

[15] S. Minato, “Binary Decision Diagrams and Applications for VLSI

CAD”, Kluwer Academic Publishers, 1996

[16] H. Ochi, N. Ishiura, and S.Yajima, “Breadth – First Manipulation of

SBDD of Boolean Functions for Vector Processing”, 28th ACM/IEEE

Design Automation Conference, 1991, pp. 413-416

[17] A. Opara, „Dekompozycyjne metody syntezy układów

kombinacyjnych wykorzystujących binarne diagramy decyzyjne”,

Rozprawa doktorska, Instytut Informatyki, Politechnika Śląska,
Gliwice 2008

[18] A. Opara and D. Kania, “Decomposition-based Logic Synthesis for

PAL-based CPLDs”, International Journal of Applied Mathematics
and Computer Science (AMCS), Vol. 20, No. 2, 2010, pp. 367-384

[19] M. Rawski, L. Jóźwiak, M. Nowicka, and T. Łuba, “Non – Disjoint

Decomposition of Boolean Functions and Its Application in FPGA –
oriented Technology Mapping”, Proceedings od the 23rd

EUROMICRO Conference, 1997, pp. 24 - 30

[20] J. P. Roth and R. M. Karp, “Minimization Over Boolean Graphs”, IBM
Journal of Research and Development, 1962, pp. 227-238

[21] Ch. Scholl, “Functional Decomposition with Application to FPGA

Synthesis”, Kluwer Academic Publisher, Boston, 2001
[22] Ch. Scholl, B. Backer, and A. Brogle,: The Multiple Variable Order

Problem for Binary Decision Diagrams: Theory and Practical

Application,: Design Automation Conference, Proceedings of the ASP-
DAC’01, 2001, pp. 85 - 90

[23] M. A. Thorton, J. P. Williams, R. Drechsler, N. Drechsler, D. M.

Wessels, “SBDD Variable Reordering Based on Probabilistic and
Evolutionary Algorithms”, Communications, Computers and Signal

Processing, 1999, pp. 381-387

[24] Xilinx, Spartan-3 Generation FPGA User Guide (UG331), 2011
[25] Xilinx, ISE Design Suite 14, UG631, 2013

[26] S.Yamashita, H.Sawada, and A.Nagoya, “New Methods to Find

Optimal Non – Disjoint Bi – Decompositions”, Design Automation
Conference, Proceedings of the ASP-DAC '98, 1998, pp. 59 - 68

