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Sampling Rate Impact on the Tuning of PID
Controller Parameters

Michal Laskawski, Miroslaw Wcislik

Abstract—The paper deals with an analysis of automatic
control system with continuous and discrete PID controllers. A
method of tuning the parameters of the continuous controller is
presented, which is optimal according to the ITAE criterion. The
behavior of control systems with discrete controllers whose pa-
rameters were tuned using the mentioned method are described.
The impact of changes in the sampling period of controlled signal
on the control quality is shown. Changes of the values of optimal
parameters of discrete PID controllers in relation to changes of
the sampling rate of controlled signal are characterized.
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I. INTRODUCTION

THE general rules of the sampling period selection in
control systems use the parameters of the identified

controlled system model. The parameters are often: Tmax - the
dominant time constant, L - the transport delay time constant,
T - inertia time constant [1], [2]. There are also known rules
determining sampling period with respect to the control quality
indicators such as: ts - settling time and tr - rise time, [2],
[3]. These rules allow one to estimate the signal sampling
period with respect to the identified controller parameters (Ti
- integration time, Td - differentiation time constant) and are
presented in: [2], [4]. All of these rules do not specify precisely
what value of sampling period ∆t ought to be used. They allow
one to only roughly estimate the acceptable value of interval
∆t.

For modeling and analysis of discrete control system, it is
assumed that the continuous control system is the reference
system. It makes it easier to analyze the impact of sampling
period of control signal on the control quality of the discrete
system and the to choose of the optimal settings of discrete
controllers. In the continuous system, the controller constantly
monitors the controlled signal (process value) and the refer-
ence signal (setpoint value). On the basis of these signals it
generates a control signal.

The settings of PI and PID controller are often selected
using methods that are designed for continuous controllers
[5], [6], [7]. Badly selected continuous controller parameters
can cause poor quality of control. The quality of control can
deteriorate even more if the selected settings are used with a
controller which responds to the input signals periodically, just
like discrete controller. To avoid this, the controller parameters
are selected using an optimization method taking into account
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the sampling period. Such a method was proposed in [8] and
it is briefly described in the next section.

II. OPTIMAL SETTINGS OF CONTINUOUS PI AND PID
CONTROLERS

A closed-loop control system with continuous PID con-
troller analyzed in [8] is shown in Fig. 1. It was assumed
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Fig. 1. The diagram of a basic control system with continuous PID controller.

that PID controller has the form:

Gc(s) = Kc

[
1 +

1

sTi
+

sTd
sTd
N + 1

]
(1)

where: Kc proportional gain, Ti - integral time, Td - derivative
time, N - dimensionless coefficient.
The value of the dimensionless coefficient N is determined by
bibliography analysis. Usually the value of the coefficient is
in the range of 2 to 30 [9]. It was assumed that N = 20 [8].

The dynamics of the controlled system is approximated by
a first-order inertial model with transport delay.

G(s) =
Ke−sL

1 + sT
(2)

where: K - static gain, T - inertia time constant, L - transport
delay time constant.
The model description can map the dynamics of a wide
range of industrial processes with satisfactory accuracy. It also
makes it possible to model the steady state. The presence of a
transport delay allows an approximation of potentially unstable
processes.

The ITAE (integral of time-weighted absolute error) was
selected as an optimality criterion [10]:

ITAE =

∫ t

0

t
∣∣e(t)∣∣ dt (3)

A. The Tuning Procedure

The procedure for the selection of the optimal settings of
PI and PID controllers consists of a few steps.

• First, the proportional and derivative parts of the PID
controller are disconnected. For the PI controller, only
the proportional part is disconnected.
Leaving the integral part of the controller at this stage
of the procedure is a distinctive feature of the method.
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It approximates the current system characteristic to the
target systems characteristics with PI or PID controllers
and facilitates the selection of the optimal controller
parameters.
According to the assumption that controlled system can
be approximated by model (2) the transfer function of the
open-loop control system which consists of connected in
series integral controller and model (2) is described by
the equation:

GO(so) =
TKKie−soθ

so (1 + so)
(4)

where: so = sT , θ = L
T

The module of the spectral transfer function is as follows:

|GOωo | =
KKiT

ωo
√

1 + ω2
o

(5)

where: ωo = ωT .
• At the next stage of the procedure, the gain of the integral

part of the controller is increased to get the closed loop
system to border stability.
At this stage, the controller ultimate gain Ki and the sus-
tained oscillation angular frequency ωosc of the controlled
variable y are assessed.

• On the basis of these parameters and taking into account
that |GOωosc | = 1 and (5) the time constant T of an
approximating model is identified.

T =

√
(KKi)2 − ω2

osc

ωosc
(6)

• The coefficient θ is calculated from the equation describ-
ing an argument of (5) at the stability border:

−π =
−π
2
− arctan(ωo osc)− ωo oscθ (7)

Taking into account that ωo osc = ωoscT the θ coefficient
is described by the equation:

θ =
π
2 − arctan(ωoscT )

ωoscT
(8)

• The set of equations (9) describe the optimal settings of
the PI controller [8].

Kc =
10

0.49√
θ
−0.67

K
Ti =

(
0.0058θ2 + 0.31θ + 0.91

)
T

(9)

The optimal settings of the PID controller are described
by set of equations 10 [8].

Kc =
10

0.81
3√
θ
−0.79

K
Ti = (0.4θ + 0.97)T

Td =
(

0.48
√
θ − 0.16

)
T

(10)

The equations (9) and (10) were obtained using the ap-
proximation of the set of PI and PID optimal settings. The
least squares method was used in this purpose. The obtained
formulas provide acceptable accuracy for θ = [0.2, 2].

B. The Impact of the Proposed Settings on Control Quality

Examples of step responses of the continuous systems
with PID controllers were shown in Fig. 2. The controllers
parameters were selected using the Ziegler-Nichols method
[5] and the proposed method [8]. The controlled system has a
transfer function described by (2) with θ = L

T = 0.2.

Fig. 2. The transients of the continuous control system with the PID
controller.

The use of the proposed method causes a slight increase of
the rise time as well as a decrease of the settling time and
the overshoot value. The control quality is significantly better
than for the Ziegler-Nichols method.

The transients for the proposed method in Fig. 2 have some
pulse disturbances. They arise from an interaction between the
derivative part of the PID controller and the transport delay of
the controlled system.

III. OPTIMAL SETTINGS OF DISCRETE TIME PI AND PID
CONTROLERS

The block diagram of an automatic control system with
discretized control signal with sampling period ∆t is shown
in Fig. 3.
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Fig. 3. Discretized automatic control system.

Simulation of the system presented in Fig. 3 requires the
separation of the elements that are solved with different
periods. The summation node as well as the controller are
solved with period ∆t. For the continuous part of the system,
the model of the controlled system is solved with the step δt.
The step δt may be either fixed or variable. It depends on the
chosen method of solving differential equations describing the
controlled system.
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A. An Implementation of the Discrete-time Controller

In SIMULINK environment, the above discrete control
system requires two ZOH (zero-order hold) extrapolators,
which must be placed before and after the continuous model
of the controller (Fig. 4).
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Fig. 4. Diagram of the discrete control system in SIMULINK.

Simulation results show that the insertion of the ZOH
extrapolators into the continuous system (Fig. 4) causes system
instability, even if the original continuous system was stable
and the transient of the controlled signal was optimal.

For the coefficient N = 20 the instability occurs even
for small values of the period ∆t. Optimal settings of the
controller (1) which are used with the system of Fig. 4 have
to be selected taking into account the sampling period ∆t. The
problem may be avoided by using the discrete form of the PID
controller.

The discrete controller form discussed above was used in
control system shown in Fig. 5.
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Fig. 5. Diagram of control system with a discrete controller in SIMULINK.

In block diagram in Fig. 5 the controller equations were
obtained using the Euler-Forward method [11], which gives
the PID controller equation applied to (1). It makes the system
in Fig. 5 correspond to the system in Fig. 4. That form of
equation of the PID controller is often implemented in control
devices [13]:

uk = Kc

[
ek +

∆tSk
Ti

+
Td (ek − ek−1)

∆t

]
(11)

where: Sk = Sk−1 + ek.
Equation (11) is called the position algorithm. Its

SIMULINK diagram is shown in Fig. 6. The block diagram
from the Fig. 6 is placed within the Triggered Subsystem
PID(z) block in diagram in Fig. 5.

B. Simulation Results

The transients of the output (controlled) signal for the
control systems with the continuous (1) controller and with
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Fig. 6. Position PID algorithm diagram in SIMULINK.

the discrete (11) controller are shown in Fig. 7 for the signal
sampling period: ∆t = 0.001. According to the time scaling
of the control system, the sampling period ∆t is related to the
inertia time constant T .

Fig. 7. Transients of the continuous and discrete control system.

Settings for both controllers were calculated from equations
(10). The controlled system was defined by the formula (2)
with coefficient θ = L/T = 0.2. Transients of the controlled
signal obtained from discrete and continuous control systems
are very close (Fig. 7). The similar behavior of the continuous
(1) and the discrete (11) controllers is observed for a relatively
high value of the coefficient N . As was previously mentioned,
the value of N is equal to 20. This value of the coefficient N
lowers the filtering influence in the derivative component of
the continuous controller (1).

The step responses of the control systems with the PI and
the PID controllers are shown in Figs. 8 and 9. Simulations
were made for various values of ∆t. In each simulation
the controller parameters were set up to the optimal values
calculated for the continuous controller (1). It can be seen
that despite the selecting optimal parameters, the increase of
the ∆t causes loss of the control quality for both types of
controllers. The PID controller is more sensitive to the change
of ∆t (Fig. 9).
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Fig. 8. Transients of the controlled variable in the control system with PI
controller for different sampling periods.

Fig. 9. Transients of the controlled variable in the control system with PID
controller for different sampling periods.

C. Influence of the Sampling Rate on the Discrete-time PI
Controller Parameters

The Nelder-Mead method was used to find optimal (3)
settings of PI controller [12]. Optimal parameters of the PI
controller are shown in Fig. 10. The results show the influence
of the sampling period of the control signal on the control
quality and optimal parameters of the controller. It can be
seen that the increase of the sampling period ∆t causes the
decrease of the optimal value of the proportional gain Kc.
Simultaneously, the optimal value of the integral time Ti
increases. The system behaves this way for small values of
θ. Along with the increase of the coefficient θ, the optimal
values of Kc decrease and are almost independent of the
sampling time. The optimal values of Ti are more sensitive
to the sampling period. It means that for systems with small
θ the use of the optimal settings of the continuous controller
for the discrete controller requires one to change both of its

parameters: Kc and Ti. For the systems with larger θ only the
Ti value ought to be changed.

Fig. 10. Optimal parameters of the PI controllers for different values of: the
θ coefficient and the sampling period ∆t.

The ITAE index optimal values as a function of the sampling
period ∆t of control signal are shown in Fig. 11. These values
correspond to the settings shown in Fig. 10.

Fig. 11. ITAE optimal values as a function of ∆t, for a system with PI
controller.

Continuous control systems are characterized by the lowest
values of the ITAE index (Fig. 11). The phenomenon occurs
for all values of θ. It means that the continuous system gives
the best control quality. The use of a discrete controller only
degrades the quality of control. The controller responds to
the system signals in a periodic manner with the period ∆t,
therefore a part of information about the control system state
between samples is lost. The discrete controller generates the
control signal based on the deficient data. It has to lead to a
loss of control quality.

The step responses of the system with PI controller are
shown in Fig. 12. The controller settings were chosen accord-
ing to Fig. 10. The controlled system has θ = 0.2.



SAMPLING RATE IMPACT ON THE TUNING OF PID CONTROLLER PARAMETERS 47

Fig. 12. Transients of the controlled signals of control system with PI
controller for optimal settings related to the period ∆t.

Plots in Figs. 8 and 12 show that the overshoot was reduced,
especially for the system with a large value of sampling period
∆t. The rise time was elongated. It causes the slowing down of
the transient of the controlled variable. However, the settling
time has been improved.

D. Influence of the sampling rate on the discrete-time PID
controller parameters

Optimal PID controller settings were identified with use of
the Nelder-Mead method. These settings as a function of θ
and ∆t coefficients are shown in Figs. 13, 14 and 15.

Fig. 13. Optimal values: Kc, Ti of the PID controllers for different values
of: the θ coefficient and the sampling period ∆t.

As it is shown in Fig. 13 for the small value of θ the optimal
value of the proportional gain Kc decreases with the increase
of ∆t. Simultaneously, the optimal value of integral time Ti
increases. The optimal value of derivative time Td decreases
along with an increase in ∆t - Fig. 14. It should be noted
that for small values of θ the change of Td is relatively small

Fig. 14. Optimal values: Kc, Td of the PID controllers for different values
of: the θ coefficient and sampling period ∆t.

Fig. 15. Optimal values: Td, Ti of the PID controllers for different values
of: the θ coefficient and sampling period ∆t.

(Figs. 14 and 15). Along with the increase of θ the range of
optimal values of Kc decreases, while the ranges of changes
of optimal values of Ti and Td increase.

It means that for systems with small θ the use of the optimal
settings of the continuous controller for the discrete controller
requires a significant change of Kc, small changes of Ti and
almost no change of Td. For the systems with larger θ both:
Ti and Td must be changed, while Kc may remain almost
unchanged. In relation to the PI controller the control system
with use of PID controller is more sensitive to proportional
gain Kc (Figs. 10 and 13).

The ITAE index optimal values as a function of the sampling
period of the controlled signal for a system with PID controller
are shown in Fig 16.

Just as for the system with PI controller the best control
quality is observed for continuous control system with PID
controller. The use of the discrete controller only degrades
control quality. The use of the PID controller improves control
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Fig. 16. ITAE optimal values as a function of ∆t, for a system with PID
controller.

Fig. 17. Step responses of the control system with PID controller for optimal
settings related to the period ∆t.

quality, especially for the systems with large values of the θ
(Figs. 11 and 16).

The optimal step responses of the system with PID con-
troller are shown in Fig. 17. The controller settings cor-
responding to the values are shown in Figs. 13 and 14.
Comparing the plots in Figs. 9 and 17 it can be seen that
the control quality has been significantly improved especially

for the systems with large value of the sampling period. The
overshoot has been reduced and the settling time became
shorter.

IV. CONCLUSION

The settings of the PI and the PID controllers chosen using
the authors method [8] allows one to achieve optimal (3)
control quality of the controlled system. These settings used
with discrete controllers do not provide optimal control quality.
The control quality decreases with the increase of the sampling
period ∆t of the control signal. To maintain the required
quality, value correction of the controller settings is needed.

Changes of control quality and the changes of controller
settings they require depend on the chosen form of the discrete
controller. It was noted that the discrete implementation of
continuous controller whose equation was derived using the
Euler-Forward method is very sensitive to changes of the
control signal sampling rate, especially for the higher values
of the N coefficient in (1). Even a small value of ∆t may
destabilize a system which is stable and optimally tuned with
the continuous controller.
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