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 

Abstract—This paper presents comparison of prototype 
location system built with standard components of 2.4 and 5 GHz 
WLAN network infrastructure. The system can be used for 
personal or other objects’ positioning, both for indoor and 
outdoor environments. The system is local, i.e. its operational 
area is limited to WLAN network operating range. The system is 
based on standard and widely available WLAN components 
(access points, network adapters). The goal is to avoid any 
hardware and software modifications. Also position calculation 
should not be power hungry operation. Method of location is 
based in Received Signal Strength Indication (RSSI) returned by 
most of RF ICs (including WLAN). The main focus is research of 
how much accuracy (and usefulness) can be expected from 
standard WLAN hardware. Both static and dynamic scenarios 
have been tested and compared. 

 
Keywords—indoor location, personal location, wireless LAN, 

RSSI measurement 

I. INTRODUCTION 

AVIGATION is one of the most important technical issue 
of all times – starting with first lighthouse in 400 BC, 

towards improving maritime navigation systems in Middle 
Ages, through long range systems (e.g. Omega, Loran), 
ending with true global navigation: satellite GPS in the 1970s. 
The last mentioned system is constantly developing and it is 
used by many different applications, working in different 
environments.  

The most popular and used global satellite navigation 
systems are GPS and Glonass (with Galileo and Beidou in 
future). These systems have enough accuracy for most 
applications in their free/civilian versions. Constant progress 
in electronics made them affordable and truly portable: small, 
light and less power-hungry devices. Unfortunately, this 
progress is not enough yet to overcome main limitations of 
currently available receivers: noise figure. Thus, all nowadays 
satellite navigation can be used only in outdoor environment. 
On the other hand, there are still missing effective alternatives 
for indoor use. Although there has been proposed a variety of 
location methods, based on various physical phenomena (e.g. 
video, ultrasound, MEMS dynamics, UWB pulses), none of 
them became dominating [1-9]. The main reasons are: 

 high cost of infrastructure, 

 high cost or power consumption of data processing, 

 unacceptably low accuracy. 
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The infrastructure used in proposed prototype indoor 
systems is based on existing WLAN infrastructure. There are 
many ways of gathering data from WLAN access points (AP). 
Mentioned approaches are based on analysis of the following 
signal parameters [10]: 

 Time of Arrival (TOA), 

 Time Difference of Arrival (TDOA), 

 Angle of Arrival (AOA), 

 Received Signal Strength Indication (RSSI). 
Data gathered using one these methods can be applied in 

selected algorithms to: 

 compute distance between user and network APs of 
known coordinates, 

 compare gathered data with previously prepared map 
of signal parameters for the location, where system is 
running (fingerprinting). 

System which is a subject of this paper uses RSSI values to 

compute distances between user and corresponding WLAN 

APs points. It must be noted that RSSI is not a Received 

Signal Power Indication (RSPI) – a true received signal power 

measurement. Such systems are much more expensive and 

impractical in scope of consumer electronics. 

The used RSSI is assumed to be time-invariable function of 

a RSPI, defined (with some accuracy) by manufacturer of a 

WLAN RF IC. It is further altered by receiving path (antenna, 

PCB transmission line, impedance mismatch etc.). However, it 

is assumed that the total relation between RSSI and a received 

signal is similar and constant for all used devices.  
Main difficulties, that have influence on system accuracy 

are: 

 reflection, diffraction and dissipation of 
electromagnetic waves in a building environment, 

 existence of interfering signals. 
One of main objectives of this paper is to compare the 

system accuracy in two available 802.11 frequency bands: 2.4 
GHz and 5 GHz. Comparison is based on system tests in two 
environments: indoor and outdoor. 

The tests included both static (motionless user) and dynamic 

scenarios (user in motion). In both cases, APs of known 

position (infrastructure) are devices that broadcast their 

service set identifiers (SSID) - beacon frames. User position is 

calculated using RSSI of received signals and with known 

APs positions (fig. 1). Such approach have following 

advantages: 

 concurrent operation of WLAN network and location 

system, 

 software or hardware modification of the 

infrastructure (AP) is not needed, 

 no hardware modification of user device is necessary 

– most currently used RF ICs provide RSSI read-out, 

 position calculation requires very little computational 

power (see further details). 
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Fig. 1. Location system schema. 

 
There are possible two scenarios of user operation. In both 

cases the mobile device must measure RSSI values of at least 
3 APs. In first scenario, based on known APs’ positions (e.g. 
delivered by WWW service) user is able to calculate its own 
position by itself. In second scenario, user only reads RSSI 
values of “visible” APs and sends them to remote service, 
where position is calculated and returned. The latter approach 
hides APs’ positions from user. 

II. MATHEMATICAL MODEL 

First problem concerned the way of modeling 
electromagnetic wave dissipation with the distance. In an ideal 
situation, assuming the wave is propagating in free space, 
Friis equation can be used to compute received power 
[11, 12]. However for practical reasons, other approach is 
used, as suggested in [13]. 

 
𝑅𝑆𝑆𝐼 [𝑑𝐵𝑚] = 𝑅𝑆𝑆𝐼(𝑑0) − 10𝑛𝑝𝑙𝑜𝑔10 (

𝑑

𝑑0
) (1) 

where: 

 𝑑0 – reference distance of 1 m, 

 𝑅𝑆𝑆𝐼(𝑑0) – RSSI indication at reference 

distance [dBm], 

 𝑛𝑝 – attenuation factor. 

The log model has been used for 2.4 GHz frequency band. 
Other models can be found in [10, 14-16]. After experiments 
with the system, other equation has been proposed for the 
5 GHz frequency band: 

 
𝑅𝑆𝑆𝐼 [𝑑𝐵𝑚] = 𝑅𝑆𝑆𝐼(𝑑0) − 10𝑛𝑝𝑙𝑜𝑔10 (

𝑑

𝑑0
) − 𝛿2 (2) 

where: 

 δ
2
 – variances of previously gathered RSSI in 5 GHz 

band, 

 and the other symbols have the same meaning as in 

(1). 
 
This original modification, based on [13], improved 

location accuracy [14-17]. It appears that the motionless user 
can achieve the biggest advantage. It can be used in order to 
compute starting position in a well-developed system, i.e. 
system using fingerprinting. Unfortunately, this approach has 
not been useful for 2.4 GHz frequency band, because of very 
high dynamics of the read RSSI values (thus RSSI readout 

saturation). One of the reasons could be interfering signals in 
commonly used 2.4 GHz band. 

Another way to improve accuracy has been increasing the 
attenuation factor 𝑛𝑝, if the computed distance has been too 

long regarding to known geometry of the room. This method 
has been used for both bands.  

After computing the distance d between the receiver and all 
N access points, with known coordinates xi and yi, the next 
step is to compute the position of the receiver using simple 2D 
trilateration (fig. 2). 

 

Fig. 2. 2D trilateration example for 3 APs. 

 
Starting point is set of basic circle equations for N access 

points (3): 

 

{
 
 

 
 
𝑑1
2 = (𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2

𝑑2
2 = (𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2

⋮
𝑑𝑖
2 = (𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2

⋮
𝑑𝑁
2 = (𝑥 − 𝑥𝑁)

2 + (𝑦 − 𝑦𝑁)
2

               

 𝑖 = 1,2… ,𝑁 − 1 

(3) 

where: 

 x,y – unknown user position, 

 xi,yi – known position of i-th AP, 

 di – distance between user and i-th AP, 

 N – total number of APs. 
Each formula (i = 1, 2, …, N-1) can be re-arranged as: 
 

 

{
 
 

 
 
𝑥2 + 𝑦2 = 𝑑1

2 + 2𝑥𝑥1 + 2𝑦𝑦1 − 𝑥1
2 − 𝑦1

2

𝑥2 + 𝑦2 = 𝑑2
2 + 2𝑥𝑥2 + 2𝑦𝑦2 − 𝑥2

2 − 𝑦2
2

⋮
𝑥2 + 𝑦2 = 𝑑𝑖

2 + 2𝑥𝑥𝑖 + 2𝑦𝑦𝑖 − 𝑥𝑖
2 − 𝑦𝑖

2

⋮
𝑥2 + 𝑦2 = 𝑑𝑁

2 + 2𝑥𝑥𝑁 + 2𝑦𝑦𝑁 − 𝑥𝑁
2 − 𝑦𝑁

2

 (4) 

 

Finally, all but last equations (i = 1, 2, …, N-1) can be 

substituted to the last N-th formula: 

2𝑥(𝑥𝑁 − 𝑥𝑖)  + 2𝑦(𝑦𝑁 − 𝑦𝑖) =
=  𝑥𝑛

2 − 𝑥𝑖
2 + 𝑦𝑛

2 − 𝑦𝑖
2 − (𝑑𝑛

2 − 𝑑𝑖
2) (5) 



COMPARISON OF 2.4 AND 5 GHZ WLAN NETWORK FOR PURPOSE OF INDOOR AND OUTDOOR LOCATION 73 

 

Because this is a linear equation, it can be represented in a 

matrix form: 

 𝐴𝑋 = 𝐵 (6) 

where: 

 𝑋 = [
𝑥
𝑦] (7) 

and: 

 

𝐴 = [

2(𝑥𝑁 − 𝑥1) 2(𝑦𝑁 − 𝑦1)
2(𝑥𝑁 − 𝑥2) 2(𝑦𝑁 − 𝑦2)

⋮ ⋮
2(𝑥𝑁 − 𝑥𝑁−1) 2(𝑦𝑁 − 𝑦𝑁−1)

] (8) 

and: 

 

𝐵 =

[
 
 
 

𝑥𝑁
2 − 𝑥1

2 + 𝑦𝑁
2 − 𝑦1

2 − (𝑑𝑁
2 − 𝑑1

2)

𝑥𝑁
2 − 𝑥2

2 + 𝑦𝑁
2 − 𝑦2

2 − (𝑑𝑁
2 − 𝑑2

2)
⋮

𝑥𝑁
2 − 𝑥𝑁−1

2 + 𝑦𝑁
2 − 𝑦𝑁−1

2 − (𝑑𝑁
2 − 𝑑𝑁−1

2 )]
 
 
 

 (9) 

Finally, user position X can be calculated as: 

 𝑋 = 𝐴−1𝐵 (10) 

III. LOCALIZATION SYSTEM SETUP 

The main criteria for choosing WLAN infrastructure is its 
cost-effectiveness. The selected hardware is easily available 
TP-Link TL-WDR3500 access point supporting both 2.4 and 
5 GHz WLAN bands. 

The investigated system has used 7 routers as APs and 1 
router as users’ receiver. The latter router had installed 
OpenWRT GNU/Linux distribution, which allowed readout of 
RSSI values. Wireless tools library for Linux has been used 
there with iwlist command, returning following data: 

wlan0  Scan completed :  

Cell 01 - Address: 00:12:17:46:A6:A4 

ESSID:"NetworkName_1" 

[[Protocol (computing)|Protocol]]:IEEE 802.11n 

Mode:Master 

Channel:1 

Encryption key:off 

… 

Quality=82/100  Signal level=-48  

The most important field is “Signal level” (in dBm units). 
Fields “ESSID” or “Cell xx – Adress:” have been used to 
identify corresponding AP. 

Measured RSSI values from receiving AP have been 
decoded by Python script and Paramiko library: 

ssh = paramiko.SSHClient() 

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) 

ssh.connect( '192.168.1.1', username = 'root', password = 

'password' ) 

stdin, stdout, stderr=ssh.exec_command( "iwlist wlan0 scan | 

egrep 'Address|Quality'" ) 

User position has been calculated and visualized in Matlab 
environment: 

for n=1:l  

RSS(n,i) = dataArray(k,n); 

 

 

  d(n,i) = 10^(-((RSS(n,i)-(-54))/(10*1.413))); 

  if (d(n,i) > 12) 

     d(n,i) = 10^(-((RSS(n,i)-(-54))/(10*1.832))) 

  end 

end 

for p=1:(l-1) 

 A(p,1) = [2*(x(l)-x(p))                    ]; 

 A(p,2) = [              2*(y(l)-y(p))];  

 B(p,i) = [(d(p,i)^2 - d(l,i)^2) - (x(p)^2 - x(l)^2) - (y(p)^2 - 

y(l)^2)]; 

end 

x0=A\B 

 

The research aimed at proving that the usage of WLAN 

infrastructure (co-working as a location system) would not 

interfere with normal operation of network devices. The 

abovementioned TP-Link routers fulfilled the above criteria. 

IV. INDOOR ENVIRONMENT 

Indoor tests have been performed in a laboratory room, 

which consists an elongated rectangular shape (15 m x 4.8 m) 

inside the university building. The structure is typical 60’s 

construction: bricks, concrete and steel. The “upper” wall is 

fully windowed – fig. 3. The access points had no clean line of 

sight and large amount of wooden-metal obstacles (laboratory 

tables) in the middle of the area were significant difficulties 

for the system. However, it was possible to obtain useful 

location data. The indoor environment map is shown in the 

fig. 3. 

 

 

Fig. 3. Indoor room map. 

A. Static Location 

There have been measured positions of a four static test 
points (A-D). Their coordinates are presented in tab. 1. Static 
tests have been conducted for at least 50 measurements taken 
for each point. There have been used 6 APs as signal 
transmitters (standard beacon frame) at following locations 
shown in tab. 2. 
 

TABLE 1. INDOOR COORDINATES OF TEST POINTS 

 A B C D 

X [m] 9.4 7.75 3.85 3.85 

Y [m] 3.7 2 1.4 5.4 

 

TABLE 2. INDOOR COORDINATES OF APS 

 1 2 3 4 5 6 7 

X [m] 0.6 14.55 8.4 14.55 9.7 5.8 0.65 

Y [m] 0.35 0.35 0.4 4.3 4.6 2.4 4.6 
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Fig. 4. Positioning spread at location A. 

 

 
TABLE 3. LOCATION ERROR STATISTICS AT POINT A 

Band [GHz] 
Error [m] 

Min. Average Max. 

2.4 0.13 2.54 7.17 

5 1.47 2.86 5.53 

 

 

 

Fig. 5. Cumulative histogram of positioning error for location A. 

 

 
TABLE 4. LOCATION ACCURACY FOR POINT A 

Cases [%] 
Error [m] 

2.4 GHz band 5 GHz band 

≥ 50 

≥ 70 

≥ 90 

≤ 2 

≤ 3.5 

≤ 4.5 

≤ 2.5 

≤ 3.5 

≤ 4.5 

 

 

Fig. 6. Positioning spread at location B. 

 

 
TABLE 5. LOCATION ERROR STATISTICS AT POINT B 

Band [GHz] 
Error [m] 

Min. Average Max. 

2.4 0.16 2.99 6 

5 0.15 1.11 2.6 

 

 

 

Fig. 7. Cumulative histogram of positioning error for location B. 

 

 
TABLE 6. LOCATION ACCURACY FOR POINT B 

Cases [%] 
Error [m] 

2.4 GHz band 5 GHz band 

≥ 50 

≥ 70 

≥ 90 

≤ 2.5 

≤ 4 

≤ 5.5 

≤ 1 

≤ 1.5 

≤ 2 
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Fig. 8. Positioning spread at location C. 

 

TABLE 7. LOCATION ERROR STATISTICS AT POINT C 

Band [GHz] 
Error [m] 

Min. Average Max. 

2.4 2.06 3.36 4.21 

5 1.18 1.82 3.53 

 

Fig. 9. Cumulative histogram of positioning error for location C. 

 
TABLE 8. LOCATION ACCURACY FOR POINT C 

Cases [%] 
Error [m] 

2.4 GHz band 5 GHz band 

≥ 50 

≥ 70 

≥ 90 

≤ 3.5 

≤ 3.5 

≤ 4 

≤ 1.5 

≤ 2 

≤ 2.5 

 
TABLE 9. LOCATION ERROR STATISTICS AT POINT D 

Band [GHz] 
Error [m] 

Min. Average Max. 

2.4 2.82 3.24 5.07 

5 1.96 3.02 5.02 

 
TABLE 10. LOCATION ACCURACY FOR POINT D 

Cases [%] 
Error [m] 

2.4 GHz band 5 GHz band 

≥ 50 

≥ 70 

≥ 90 

≤ 3.25 

≤ 3.25 

≤ 3.5 

≤ 3 

≤ 3.5 

≤ 4 

 

Fig. 10. Positioning spread at location D. 

 

 

Fig. 11. Cumulative histogram of positioning error for location D. 

 

There cannot be pointed clear winner for the above tests. 

Positioning at point A is performed more accurately in 2.4 

GHz band (fig. 4,5; tab. 3,4), whether at points B and C in 5 

GHz bands (fig. 6-9, tab. 5-8). Note that for all test cases, 

maximal location error is less than 6m. Possible error 

reduction could be obtained by eliminating locations outside 

the room. 

B. Dynamic Location 

Tests with user in motion were taken in both outdoor and 

indoor environments and in two previously mentioned 

frequency bands. The tests’ purpose was to check the path 

tracking ability of the system. Plots present test environment, 

computed points and zones of correctness. The test area has 

been divided to three zones, which means points in that zone 

are (fig. 12): 

 correctly computed – internal zone (dark), 

 threshold values – middle zone (shadowed), 

 incorrectly computed – outside the middle zone. 
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Fig. 12. Dynamic location for 2.4 GHz band. 

 

 

Fig. 13. Dynamic location for 5 GHz band. 

 

TABLE 11. COMPARISON OF 2.4 GHZ AND 5 GHZ IN INDOOR PATH TRACKING 

ABILITY 

Band [GHz] 
No. of points in particular “zones” 

Correct Threshold Incorrect 

2.4 15 25 60 

5 20 13 37 

 

Results of this test show that location using 5 GHz band has 

an advantage over 2.4 GHz band –  more points were added to 

first (correct) zone in indoor environment. 

V. OUTDOOR ENVIRONMENT 

Measurements in outdoor environment have been 

conducted between faculty building and a car park. Access 

points in the outdoor space had a clean line of sight 

communication, but the area was surrounded by small amount 

of trees. All APs have been places 130 cm above the ground 

level. The outdoor environment map is shown in the fig. 14. 

 

Fig. 14. Outdoor area map. 
 

Coordinates of the access points are shown in table 12. 
 

TABLE 12. OUTDOOR AP COORDINATES 

 1 2 3 4 5 6 7 

X [m] 0 2.75 8.9 21 21.8 14.75 4 

Y [m] 13.5 3.75 0 4 16 23 22.25 

 
Two different points, A and B, have been selected for static 

tests, with coordinates in the tab. 13. 
 

TABLE 13. COORDINATES OF THE STATIC TEST POINTS 

 A B 

X [m] 11.1 11.1 

Y [m] 12.4 7.35 

 

A. Static Location 

 

Fig.15. Positioning spread at location A (11.1, 12.4). 
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TABLE 14. LOCATION ERROR STATISTICS AT POINT A 

Band [GHz] 
Error [m] 

Min. Average Max. 

2.4 0.04 0.3 0.84 

5 0.29 1.69 3.62 

 

 

Fig.16. Cumulative histogram of positioning error for location A. 

 

 
TABLE 15. LOCATION ACCURACY FOR POINT A 

Cases [%] 
Error [m] 

2.4 GHz band 5 GHz band 

≥ 50 

≥ 70 

≥ 90 

≤ 0.25 

≤ 0.5 

≤ 0.5 

≤ 1.75 

≤ 2 

≤ 3 

 

 

Fig.17. Positioning spread at location B (7.35, 12.4). 

 
TABLE 16. LOCATION ERROR STATISTICS AT POINT B 

Band [GHz] 
Error [m] 

Min. Average Max. 

2.4 1.1 2.76 4.63 

5 0.02 1.54 3.88 

 

 

Fig.18. Cumulative histogram of positioning error for location B. 
 

TABLE 17. LOCATION ACCURACY FOR POINT B 

Cases [%] 
Error [m] 

2.4 GHz band 5 GHz band 

≥ 50 

≥ 70 

≥ 90 

≤ 3 

≤ 3.5 

≤ 4 

≤ 1.5 

≤ 2 

≤ 2.5 

 
Also in outdoor environment, there cannot be pointed clear 

winner for the above tests. Positioning at point A is performed 
more accurately in 2.4 GHz band (fig. 15,16; tab. 14,15), 
whether at points B and C in 5 GHz bands (fig. 17,18; tab. 
16,17). Note that for all test cases, maximal location error is 
less than 4 m. Generally, closer similarity of outdoor 
environment to the used free-space propagation model 
resulted in higher location accuracy. 

B. Dynamic Location 

Tests with user in motion were repeated in outdoor 
environment (both bands). The test area has been divided to 
three zones, which means points in that zone are (fig. 19, 20): 

 correctly computed – internal zone (dark), 

 threshold values – middle zone (shadowed), 

 incorrectly computed – outside the middle zone. 

 

Fig. 19. Dynamic location for 2.4 GHz band. 
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Fig. 20. Dynamic location for 5 GHz band. 

 
TABLE 18. COMPARISON OF 2.4 GHZ AND 5 GHZ IN OUTDOOR PATH 

TRACKING ABILITY 

Band [GHz] No. of points in particular “zones” 

Correct Threshold Incorrect 

2.4 17 4 29 

5 40 5 5 

 
Results of this test show that outdoor tracking using 5 GHz 

band again has an advantage over 2.4 GHz band – more points 
were added to first (correct) zone in outdoor environment. 

VI. CONCLUSIONS 

No clear winner can be found both for indoor and outdoor 
environment. Depending on band, environment or particular 
location, positioning using 2.4 or 5 GHz band can be 
comparable or significantly different in terms of accuracy. 
Perhaps hybrid system could use strength of both bands, if 
only we know which one gives more accurate measurement at 
particular time. 

Tracking moving object in 5 GHz band performed better 
than using 2.4 GHz band, especially outdoors. 

The other problems influencing location accuracy were 
dense network communication in the 2,4 GHz band – 
especially indoor (fig. 21 and 22). Because details of 
calculating RSSI value are usually hidden by RF IC 
manufacturer (or weakly covered by documentation), 
influence of other channels and networks is difficult to take 
into account. 

Other factors reducing positioning accuracy are low 
dynamics of RSSI readouts (approx. 60 dB) and its 
granularity. This can be observed as non-symmetrical and 
“jumping” spread over reference points. This and significant 
systematic error (shift) makes simple averaging techniques 
inefficient. 

However, despite of above-mentioned problems and 
limitations, local positioning, both indoor and outdoor, using 
standard and unmodified WLAN infrastructure can be 
successful. Achievable accuracy of a few meters makes is still 
usable for middle-size non-critical applications: markets, 
commercial centers, museums, industrial zones etc. 

 

 

Fig.21. Interfering signals in indoor environment. 

 

 

Fig. 22. Interfering signals in outdoor environment. 
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