The Influence of Sintering Conditions on the Inkjet Printed Paths Resistance

Authors

  • Grzegorz Tomaszewski Rzeszów University of Technology
  • Tadeusz Wałach Rzeszów University of Technology
  • Jerzy Potencki Rzeszów University of Technology
  • Mariusz Pilecki Rzeszów University of Technology

Abstract

The sintering of elements performed with the inkjet printing technique is one of the stages of flexible printed circuit manufacturing process. It is a crucial factor to determining the printed paths conductivity playing often an important role in the printed circuit. In this paper the study of the influence of thermal sintering conditions (temperature, time) on the resistance of paths made with inkjet printing on flexible substrates by using two electrically conductive inks was presented. The results of the investigations show that the sintering temperature is the main factor determining the paths resistance. Therefore, in some applications the sintering temperature higher than the one specified by the ink manufacturer can be used to decrease the paths resistance and to improve some circuit parameters. However, it should be noticed that the effective resistance decrease occurs only up to a certain temperature due to the appearance cracks in the printed paths.

References

M. Jakubowska, Techniki drukarskie w elektronice. Materiały i technologie, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2013 (in Polish).

P. Jankowski Mihułowicz, G. Tomaszewski, M. Węglarski, Flexible antenna design for semi-passive HF RFID transponder in ink-jet technology, Przegląd Elektrotechniczny (Electrical Review), No. 4, 2015, pp. 1-5, doi: 10.15199/48.2015.04.01.

P. Jankowski-Mihułowicz, W. Kalita, M. Skoczylas, M. Węglarski, Modelling and Design of HF RFID Passive Transponders with Additional Energy Harvester, International Journal of Antennas and Propagation, vol. 2013, 2013, pp. 1-10, doi: 10.1155/2013/242840.

Z. Stempien, E. Rybicki, T. Rybicki, J. Lesnikowski, Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications, Sensors and Actuators B: Chemical, vol. 224, pp. 714-725, 2016, doi:10.1016/j.snb.2015.10.074.

E. Sowade, F. Göthel, R. Zichner, and R. R. Baumann, Inkjet printing of UHF antennas on corrugated cardboards for packaging applications, Applied Surface Science, vol. 332, pp. 500-506, 2015, doi: 10.1016/j.apsusc.2015.01.113.

J. Felba, H. Schaefer, Materials and Technology for Conductive Microstructures, Nanopackaging: Nanotechnologies and Electronics Packaging (ed. J. E. Morris), Springer, 2008, pp. 239-263, doi: 10.1007/978-0-387-47325-3_5.

W. Zhang, E. Bi, M. Li, and L. Gao, Synthesis of Ag/RGO composite as effective conductive ink filler for flexible inkjet printing electronics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 490, pp. 232-240, 2016, doi: 10.1016/j.colsurfa.2015.11.014.

A. Kamyshny, J. Steinke, S. Magdassi, Metal-based Inkjet Inks for Printed Electronics, The Open Applied Physics Journal, vol. 4, 2011, pp. 19-36, doi: 10.2174/1874183501104010019.

J. Felba, K. Nitsch, T. Piasecki, S. Tesarski, A. Mościcki, A. Kinart, D. Bonfert, K. Bock, Properties of conductive microstructures containing nano sized silver particles, 11th Electronics Packaging Technology Conference, EPTC '09, Singapore, 9-11.12.2009, pp. 879-883, doi: 10.1109/EPTC.2009.5416421.

T. Fałat, B. Płatek, J. Felba, Sintering process of silver nanoparticles in ink-jet printed conductive microstructures - Molecular dynamics approach, 13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 16-18.04.2012, pp. 1-5, doi: 10.1109/ESimE.2012.6191782.

M. Puchalski, P. J. Kowalczyk, Z. Klusek, W. Olejniczak, The Applicability of Global and Surface Sensitive Techniques to Characterization of Silver Nanoparticles for Ink-Jet Printing Technology, Nanotechnology and Nanomaterials: Silver Nanoparticles (ed. David Pozo Perez), InTech, 2010, pp. 63-78, doi: 10.5772/8507.

J. Felba, A. Mościcki, Wykorzystanie druku strumieniowego do tworzenia mikrostruktur przewodzących elektrycznie (Electrically conductive microstructures made by ink-jet printing technology), Drukowana elektronika w Polsce (ed. M. Jakubowska, J. Sitek), Monografia Instytutu Tele- i Radiotechnicznego, Warszawa, 2010 (in Polish).

Amepox Microelectronics, Nano Ink AX JP-60n Low Temerature Conductive Ink for Jet Printing, datasheet (downloaded from the manufacturer site), 05.2014).

Harima Chemicals Group, NanoPaste series, Concept & Electronic Materials, datasheet (downloaded from the manufacturer site), 12.2013, pp. 20-21.

V. Zardetto, T. M. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties, Polymer Physics, vol. 49, Issue 9, 2011, pp. 638–648, doi: 10.1002/polb.22227.

J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U. S. Schubert, and D. Lupo, Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink, Thin Solid Films, vol. 556, pp. 452-459, 2014, doi: 10.1016/j.tsf.2014.02.001.

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics, Applied Surface Science, vol. 336, pp. 157-162, 2015, doi: 10.1016/j.apsusc.2014.10.120.

G. Tomaszewski, J. Potencki, T. Wałach. M. Pilecki, Investigation of ink spreading on various substrates in inkjet technology, Elektronika, ISSN: 0033-2089, vol. 3, 2015, pp. 259-274, doi: 10.15199/13.2015.3.6.

Downloads

Published

2016-06-20

Issue

Section

Technologies and Materials