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Probability of Secrecy Outage in Cognitive Radio
Networks over Rician-Fading Channels
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Abstract—In Rician-fading scenario, cognitive radio networks
(CRNs) with a source in a secondary system transmitting its con-
fidential information to a legitimate destination in the presence
of an eavesdropper, are considered in this paper. Under CRNs,
the interference power reaching at primary user (PU) is limited
by some pre-defined threshold. Secrecy outage not only occurs
when the achievable secrecy capacity for source-destination link
is smaller than a target rate, but also occurs in the case that
the interference power at PU is greater than that threshold.
Analytical expression for secrecy outage probability has been
derived and verified with simulation results. In addition, we have
also derived the analytical expression for probability of non-zero
secrecy capacity.

Keywords—Cognitive radio networks, wiretap, Rician-fading,
secrecy outage probability, probability of non-zero secrecy ca-
pacity.

I. INTRODUCTION

RECENTLY, cognitive radio has attracted many re-
searchers’ attention as it is a promising technology to

support as many services and applications as possible in
wireless networks with limited frequency spectrum [1]. In
cognitive radio networks (CRNs), a secondary user (SU) is
allowed to access and use the frequency spectrum of a licensed
primary user (PU) to transmit its confidential information to
a legitimate receiver subject to the constraint of promising
PU system performance, and this condition can be satisfied
if the interference power at PU is smaller than a pre-defined
threshold.

Moreover, security is also an very important issue in wire-
less communications, as it is inherently vulnerable to eaves-
droppers [2]. Traditionally, wireless security is considered in
the higher layers of communication systems by authentica-
tion and cryptography [3]. However, recent works show that
security can also be achieved in physical layer based on an
information-theoretic sense [1]-[5], and it can be viewed as
an alternative or a complement to cryptographic encryption
[4]. In the analysis of physical-layer security, three nodes
are normally involved: a legitimate transmitter, a legitimate
receiver, and an eavesdropper. Wyner [5] first introduced
a wiretap channel. It showed that if the source-destination
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channel is better than the source-eavesdropper channel, a non-
zero secrecy rate could be guaranteed in the source-destination
channel. Later, Wyner’s wiretap model has been generated
to non-degraded discrete memoryless broadcast channels [6],
Gaussian channels [7], and fading channels [8]-[14].

Secrecy capacity (SC) under Rayleigh-fading scenario is
considered in [8] and [9]. In [10], the effects of Nakagami-
m fading on SC and probability of non-zero secrecy capacity
(PNSC) were investigated. Under two different assumptions
on the transmitter channel state information, the definition of
SC was extended to account for the secrecy constraint over
Rayleigh-fading channels in [11]. In order to increase SC,
the authors in [12] proposed a novel artificial noise based
method to impair the source-eavesdropper channel. Liu [13]
derived analytical expressions for secrecy outage probability
(SOP) over correlated log-normal fading channels. SC and
SOP expressions in the form of infinite series have been
shown in [14] when the source-destination and the source-
eavesdropper channels are experienced correlated Rayleigh-
fading.

In this paper, we consider the physical-layer security in
CRNs. In CRNs, secrecy outage occurs either the achievable
secrecy rate is smaller than a target rate if SU can successfully
use the frequency spectrum of PU to transmit information,
or the interference power at PU is greater than a pre-defined
threshold. Moreover, another commonly used fading channel
model is the Rician distribution, which is used when there is
a line-of-sight (LOS) component existing in the transmission
[15]. Thus, it is interesting to study the impacts of Rician-
fading on the physical-layer security in CRNs. Keeping this
in mind, analytical expression for SOP in CRNs over Rician-
fading channels has been derived. In addition, the expression
of PNSC have been derived.

This paper is organized as follows. Section 2 presents
the system and channel model. Analytical expressions for
SOP and PNSC are given in Section 3. Section 4 reports
numerical results and discussions. Finally, concluding remarks
are presented in Section 5.

II. SYSTEM MODEL

In this paper, a wiretap channel model as shown in Fig. 1 is
considered in CRNs. Specifically, four nodes are considered:
a source (S), a destination (D), an eavesdropper (E) and a PU.
S is allowed to access and use the frequency bands of PU to
transmit its information to D while E is trying to overhear it.

As shown in Fig. 1, the received signals at D and E can be
expressed as

yD =
√
PshS,DXs + nD (1)
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Fig. 1. System Model

and
yE =

√
PshS,EXs + nE (2)

respectively, where Ps denotes the transmitted power at S,
hS,D and hS,E are the channel coefficients, Xs is the trans-
mitted symbol at S, and nD and nE are the additive white
Gaussian noise (AWGN) with variances of σ2

D and σ2
E , re-

spectively. The instantaneous signal-to-noise ratios (SNRs) of
the received signal at D and E are

γD = γ̄D|hS,D|2 (3)

and
γE = γ̄E |hS,E |2 (4)

where γ̄D = Ps/σ
2
D and γ̄E = Ps/σ

2
E .

The received signal at PU is

yP =
√
PshS,PXs + nP (5)

where hS,P is the channel coefficient and nP is the AWGN
with a variance of σ2

P . The instantaneous interference power
at PU is

PI = Ps |hS,P |2 + σ2
P . (6)

For simplicity, we use h0, h1 and h2 to represent hS,D,
hS,E and hS,P , respectively. Moreover, we also assume that
all the channels undergo identical and independent Rician-
fading. Thus, hi, where i = 0, 1, 2, are independent and
identical Rician-distributed random variables. The channel
state information hi is assumed to be available at S. From
[15], the probability density function (PDF) of |hi|2 is given
by

f|hi|2(x) = (1 +Ki)e
−[−Ki+(1+Ki)x]I0

(
2
√
Ki(1 +Ki)x

)
(7)

where I0(·) is the zero-order modified Bessel function of the
first kind, and Ki are the specular-to-total diffused power
ratios of the Rician-fading channels, defined as

Ki =
A2
i

2σ2
i

(8)

where A2
i is the power level of LOS component, and 2σ2

i is
the power level of the scattered components of the channels.
The cumulative distribution function (CDF) of |hi|2 can be
expressed as [15]

F|hi|2(x) = 1−Q1

(√
2Ki,

√
2(1 +Ki)x

)
(9)

where Q1(·, ·) is the first-order Marcum Q function.

III. PROBABILITY OF SECRECY OUTAGE

In this section, the analytical expressions for SOP and PNSC
will be presented. The achievable rates at D and E are

RD = log2(1 + γD) (10)

and
RE = log2(1 + γE) (11)

respectively. Thus, the instantaneous achievable secrecy rate
for S-D link is

Cs = max{RD −RE , 0}. (12)

Assuming γD > γE , the secrecy rate in (12) can be re-
expressed as

Cs = log2

(
1 + γD
1 + γE

)
. (13)

In non-CRNs systems, the SOP is defined as the probability
of the secrecy rate Cs is less than a given target rate Rs, where
Rs > 0 [13]. While in CRNs systems, S can only use the
frequency spectrum of PU to transmit information to D when
PI ≤ Γ, where Γ is the interference temperature limit. Hence,
SOP can be defined as the probability that the secrecy rate
Cs is less than Rs subject to the interference power constraint
at PU, or the probability that the interference power at PU is
greater than the interference temperature limit. Thus, the SOP
in CRNs systems is

Psop = Pr(Cs < Rs)Pr(PI ≤ Γ) + Pr(PI > Γ). (14)

Substituting (3) and (4) into (13), we have

Cs = log2

(
1 + γ̄D|h0|2

1 + γ̄E |h1|2

)
. (15)

After some calculations, the probability expression of
Pr(Cs < Rs) can be written as

Pr(Cs < Rs) = Pr

(
|h0|2 < A+B |h1|2

)
(16)

where

A =
2Rs − 1

γ̄D
(17)

and
B =

γ̄E
γ̄D
× 2Rs . (18)

Since |h0|2 and |h1|2 are independent random variables with
PDF and CDF respectively shown in (7) and (9), we substitute
(7) and (9) into (16) and obtain the expression of Pr(Cs <
Rs) as shown in (19).
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Pr(Cs < Rs) =

∫ ∞
0

F|h0|2(A+Bx)× f|h1|2(x)dx

=1− (1 +K1)e−K1

∫ ∞
0

Q1

(√
2K0,

√
2(1 +K0)(A+Bx)

)
e−(1+K1)xI0

(
2
√
K1(1 +K1)x

)
dx.

(19)

Pr(Cs < Rs) = 1−
√

1 +K1

K1
e
−

[
K0+K1+A(1+K0)− K1(1+K1)

2[1+K1+B(1+K0)]

]
∞∑
n=0

n∑
p=0

K0
n(1 +K0)p

Γ(n+ 1)Γ(p+ 1)

p∑
m=0

(
p

m

)
AmBp−m

× Γ(p−m+ 1)

[1 +K1 +B(1 +K0)]
p−m+ 1

2

Mm−p− 1
2 ,0

(
K1(1 +K1)

1 +K1 +B(1 +K0)

) (20)

Next, after some manipulations, we have a simpler ex-
pression of Pr(Cs < Rs) as shown in (20), in which
Γ(n + 1) = n! is the Gamma function,

(
p
m

)
= p!

m!(p−m)! ,
and M·,·(·) represents the Whittaker function defined in [16].
The detailed derivations of (20) is shown in Appendix.

In what follows, the truncation error of the infinite series
of (20) will be analysed. Assuming that only the first N + 1
terms (i.e., n takes from 0 to N ) in (20) are used to calculate
Pr(Cs < Rs), and substituting (A.6) into (19), the truncation
error can be expressed as

E = (1 +K1)e−(K0+K1)

∫ ∞
0

∞∑
n=N+1

K0
n

(n!)2

× Γ

(
1 + n, (1 +K0)(A+Bx)

)
e−(1+K1)x

× I0
(

2
√
K1(1 +K1)x

)
dx.

(21)

Note that the incomplete Gamma function shown in (21) is
bounded by

Γ

(
1 + n, (1 +K0)(A+Bx)

)
= n!e−(1+K0)(A+Bx)

n∑
p=0

[(1 +K0)(A+Bx)]
p

p!

< n!.

(22)

Thus, the truncation error E is upper bounded as

E < (1 +K1)e−(K0+K1)
∞∑

n=N+1

K0
n

n!

×
∫ ∞

0

e−(1+K1)xI0

(
2
√
K1(1 +K1)x

)
dx.

(23)

From Eq. 6.614.3 of [16] and after some calculations, we
have

E <
1√
K1

e−(K0+
K1
2 )

∞∑
n=N+1

K0
n

n!
M− 1

2 ,0
(K1)

=
1√
K1

e−(K0+
K1
2 )

(
eK0 −

N∑
n=0

K0
n

n!

)
M− 1

2 ,0
(K1).

(24)

Obviously, it has lim
N→∞

∑N
n=0

K0
n

n! = eK0 , which means the
truncation error E converges to zero as n goes to infinity.

Next, as the interference power is PI = Ps|h2|2 + σ2
P , the

probability when PI ≤ Γ, i.e., Pr(PI ≤ Γ), is given as

Pr(PI ≤ Γ) = Pr(Ps|h2|2 + σ2
P ≤ Γ)

=Pr

(
|h2|2 ≤

Γ− σ2
P

Ps

)

=1−Q1

(√
2K2,

√
2(1 +K2)(Γ− σ2

P )

Ps

)
.

(25)
Finally, the probability expression of Pr(PI > Γ) as shown

in (14) can be obtained using the relationship of Pr(PI >
Γ) = 1− Pr(PI ≤ Γ).

PNSC is another important characterization of the physical-
layer security and is defined as the probability that the secrecy
rate for S-D link is positive, which can be computed as [8]

PNSC = 1− Psop
=Pr(Cs > Rs)Pr(PI ≤ Γ)

s.t. Rs = 0.

(26)

By setting Rs = 0 in (20) and using the relationship of
Pr(Cs > 0) = 1−Pr(Cs < 0), we have the final expression
of Pr(Cs > 0) denoted as (27) shown on the top of the next
page.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results and discussions are pre-
sented. In Fig. 2, we present the analytical SOP versus γ̄D/γ̄E ,
and those analytical results are obtained from SOP expression
by truncating the infinite series with different values of N .
As depicted in Fig. 2, it is observed that larger value of N
results in better SOP performance when N < 30 under certain
conditions, as truncation error is still large and more terms
are needed to calculate the analytical results. However, this
increment of N does not improve the SOP performance when
N > 30. This is because truncation error is very small when
N > 30 and it is insignificant in calculating the analytical
results. Hence, in what follows, we choose N = 30 to
calculate the analytical results.
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Pr(Cs > 0) =

√
1 +K1

K1
e
−

[
K0+K1− K1(1+K1)

2[1+K1+
γ̄E
γ̄D

(1+K0)]

]
∞∑
n=0

n∑
p=0

K0
n(1 +K0)p( γ̄Eγ̄D )p

Γ(n+ 1)Γ(p+ 1)

× Γ(p+ 1)

[1 +K1 + γ̄E
γ̄D

(1 +K0)]
p+ 1

2

M−p− 1
2 ,0

(
K1(1 +K1)

1 +K1 + γ̄E
γ̄D

(1 +K0)

)
.

(27)
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Fig. 2. Secrecy outage probability versus γ̄D/γ̄E with Rs = 0.5 bits/s/Hz,
K1 = 5, K0 = K2 = 10, Γ/Ps = 9 dB, and γ̄P = 20 dB.

Fig. 3 shows the SOP versus average SNR γ̄D with γ̄E =
5 dB, 10 dB and 15 dB, respectively. In Fig. 3, simulation
results are obtained by performing 500000 independent trials
at each γ̄D point. It is seen that simulation curves match well
with the analytical results. This match verifies the analytical
expression derived. Moreover, we also observe that a lower
SOP value could be obtained when γ̄D is comparably higher
with respective to γ̄E . It means that S has a higher probability
of successfully transmitting information to D without being
overheard by E when S-D link is better than S-E link.

SOP versus γ̄D/γ̄E under various specular-to-total diffused
power ratios of S-D link, K0, is shown in Fig. 4. Comparing
SOP performance with different K0 values, we find that SOP
performance with a higher value of K0 is superior to that with
a lower one, as S-D link is better when K0 is higher.

Fig. 5 shows SOP performance under different values of
Γ/Ps. As depicted in Fig. 5, we can see that a higher Γ leads
to better SOP performance. This is because under CRNs, S can
only use the PU frequency bands to transmit its confidential
information when the interference power, PI , at PU is less
than Γ. Therefore, SOP performance is better with a higher
value of Γ, as PI has less chance to exceed it. However, we
can also see from Fig. 5, this is not always hold with the
increment of Γ. There exits a particular value of Γ under
certain conditions, and SOP performance can not be improved
when Γ is beyond that value. This particular value is equal to
the maximum interference power at PU.
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Fig. 3. Secrecy outage probability versus average SNR at destination with
Rs = 0.5 bits/s/Hz, K0 = K1 = K2 = 10, Γ/Ps = 9 dB, and γ̄P = 20
dB.
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Fig. 4. Secrecy outage probability versus γ̄D/γ̄E with Rs = 0.5 bits/s/Hz,
K1 = 5, K2 = 10, Γ/Ps = 9 dB, and γ̄P = 20 dB.

PNSC performance with γ̄E = −15 dB, −10 dB and −5
dB is shown in Fig. 6. It is noted that PNSC performance can
be improved when γ̄D increases or γ̄E decreases. This is due
to the fact that S-D link is better than S-E link.
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Fig. 5. Secrecy outage probability versus γ̄D/γ̄E with Rs = 0.5 bits/s/Hz,
K0 = K1 = K2 = 5, and γ̄P = 20 dB.
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Fig. 6. PNSC versus average SNR at destination with Rs = 0.5 bits/s/Hz,
K0 = K1 = K2 = 10, Γ/Ps = 9 dB, and γ̄P = 20 dB.

V. CONCLUSION

In this paper, we focus on the secrecy outage performance
in cognitive radio networks, in which all the fading channels
are assumed to be Rician-faded. Analytical expressions with
infinite-series representations of secrecy outage probability and
probability of non-zero secrecy capacity have been derived. It
has been shown that summing up finite series is enough to
obtain the analytical results, as truncation error would con-
verge to zero. Simulation results verify the derived analytical
expressions.

APPENDIX

It is noted that the first-order Marcum Q function, Q1(·, ·),
inside of (19) is defined as [15]

Q1(a, b) =

∫ ∞
b

xe−( x
2+a2

2 )I0(ax)dx (A.1)

and the zero-order modified Bessel function of the first kind,
I0(·) , can be also represented by the infinite series

I0(x) =

∞∑
n=0

(x/2)
2n

(n!)2
. (A.2)

Substituting (A.2) into (A.1), and after some manipulations,
we have

Q1(a, b) = e−a
2/2

∞∑
n=0

a2n

2n(n!)2

∫ ∞
b2/2

e−uundu. (A.3)

Note that the incomplete gamma function is defined as [16]

Γ(a, x) =

∫ ∞
x

e−tta−1dt. (A.4)

with its special case shown as

Γ(1 + n, x) = n!e−x
n∑
p=0

xp

p!
. (A.5)

Thus, the integration part of (A.3) can be replaced by (A.5),
and letting a =

√
2K0 and b =

√
2(1 +K0)(A+Bx), we

obtain

Q1

(√
2K0,

√
2(1 +K0)(A+Bx)

)
=e−K0

∞∑
n=0

K0
n

(n!)2
Γ

(
1 + n, (1 +K0)(A+Bx)

)
=e−K0+(1+K0)(A+Bx)

∞∑
n=0

n∑
p=0

K0
n[(1 +K0)(A+Bx)]

p

n!p!
.

(A.6)
Next, substituting (A.6) into (19), we have

Pr(Cs < Rs) = 1− (1 +K1)e−[K0+K1+A(1+K0)]

×
∞∑
n=0

n∑
p=0

K0
n(1 +K0)p

Γ(n+ 1)Γ(p+ 1)

×
∫ ∞

0

e−[(1+K1)+B(1+K0)]x

(
A+Bx

)p
× I0

(
2
√
K1(1 +K1)x

)
dx.

(A.7)

Furthermore, the expression of
(
A+Bx

)p
in (A.7) can be

expanded using power series defined in Eq. 1.111 of [16] as(
A+Bx

)p
=

p∑
m=0

(
p

m

)
Am(Bx)p−m. (A.8)

From Eq. 6.643.2 of [16] and substituting (A.8) into (A.7),
we obtain the final expression of Pr(Cs < Rs) as shown in
(20),
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