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 

Abstract—We presents the design and test results of 

a picosecond-precision time interval measurement module, 

integrated as a System-on-Chip in an FPGA device. 

Implementing a complete measurement instrument of a high 

precision in one chip with the processing unit gives an 

opportunity to cut down the size of the final product and to lower 

its cost. Such approach challenges the constructor with several 

design issues, like reduction of voltage noise, propagating through 

power lines common for the instrument and processing unit, or 

establishing buses efficient enough to transport mass 

measurement data. The general concept of the system, design 

hierarchy, detailed hardware and software  solutions are 

presented in this article. Also, system test results are depicted 

with comparison to traditional ways of building a measurement 

instrument. 

 
Keywords—time interval measurement, time-to-digital 

converter, system on chip, measurement data processing 

I. INTRODUCTION 

N general, each measurement system consists of three main 

parts: the adequate measuring device, processing core and 

user interface [1]. A time interval measurement system usually 

involves a time interval counter (TIC) implemented as the 

measuring device (fig. 1). The TIC measures the time elapsed 

between two events represented by leading edges of two input 

signals: START and STOP. The TIC converts measured time 

intervals into raw measurement data, which are sent to the 

processor. It is worth mentioning, that the TIC performs data 

pre-processing, removing conversion errors, before 

measurement frames are being sent to the processor. Those 

errors are called bubble errors and they are discussed later in 

this paper.  

 

 
Fig. 1. Common model of a time interval measurement system 

 An important part of the system is the processor, which is 

responsible for organizing the work of the entire system. It also 

performs all the calculations needed for translating the raw 

measurement data into calibration characteristics and 

measurement results expressed in seconds. Additionally, it 

handles the communication between the TIC and the user. The 

last part of the system is the user interface. In this design it is 
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implemented as a standard command line interface, with user 

friendly text inputs and outputs. The user is then able to 

initialize the device, calibrate and conduct measurements. The 

measurement system was implemented in Zynq SoC (fig. 2) 

manufactured by Xilinx. The device consists of two 

subsystems, i.e.: processing system (PS) and programmable 

logic (PL) [2]. The first one is being used for implementing 

software, which handles data processing in a classic, program 

flow manner. The processing subsystem contains an 

application processing unit (APU), standard I/O devices 

(UARTs, I2C, SPI, Ethernet etc.), a DDR memory controller 

and an expandable interconnect matrix, binding the subsystem 

together in the terms of efficient mass data transfers. In  the 

APU a dual core ARM A9 processor is implemented along 

with complementary sub-circuitry, that contains: two layer 

cache memory (32kB L1 memory for each core, 512 kB L2 

shared memory), direct memory  access (DMA) controller, 

generic interrupt controller (GIC), snoop control unit (SCU) 

for data coherency and  256 kB of on-chip memory (OCM) for 

local read/write operations. The OCM bypasses the L2 cache 

and is connected directly to both processor, providing fast and 

up to date storage, properly suited for e.g. inter core 

communication. 

 

 
Fig. 2. Zynq SoC block diagram. 

The PL subsystem is in fact an FPGA device, which size and 

capabilities depend on the chosen Zynq model. The whole 

Zynq family consists of either Artix-7 or Kintex-7 FPGA 

devices operating as the PL subsystem. Two parts of the SoC 
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communicate with each other by a set of AXI standard-based 

busses [3]. Those busses can be divided into two main groups: 

general purpose buses (AXI GP) and high performance buses 

(AXI HP). There is also a special group of buses, called 

advanced coherency port (ACP), automatizing cache memory 

invalidation, yet being a variation of the AXI HP and not 

considered in this design. The SoC has an extra feature, which 

may lead to slight improvement in data throughput. The AXI 

HP has some busses connected directly to the DDR memory 

controller. This route is discussed in the next section of the 

paper.  

The AXI GP port serves as a maintenance bus, ideally fitted 

for register-like access. Data transfer rate achieved on this port 

is not very high, but there are data integrity mechanisms, 

providing sufficient an error-free communication between the 

processor and the peripheral. On the contrary, the AXI HP port 

was designed to maximize data throughput. The data transfer is 

synchronous streaming. The port is initially configured so that 

the PL operates as a data transactions master and the DDR 

controller (or APU) as a slave. This scheme provides reliable 

and fast data transactions, if timing is crucial for proper 

operation. In order to achieve high data throughput, no data 

integrity mechanisms are implemented. Furthermore, the 

transactions are run independently from the APU unit, which 

means that the core software needs to invalidate both L1 and 

L2 caches in order to read newly arrived data from the DDR 

memory. Of course, this results in data transfer delays and 

needed to be handled properly, in order to avoid data mismatch 

while processing measurement results. 

II. SYSTEM DESIGN 

The designed measurement system (fig. 3) consists of several 

components and implements some design techniques in order 

to achieve high performance [4]. While designing the 

measurement system, several issues were taken into account. 

One of the main issue was efficient mass data transport 

throughout the system. A massive amount of data is being sent 

from the TIC to the DDR memory while conducting time 

interval measurements. The AXI HP port is tuned for optimal 

transfer speed between the PL and DDR controller [2]. 

The AXI HP port requires a sophisticated bus controller on 

the PL side in order to operate. Instead of designing one from 

the scratch, it is reasonable to utilize a ready to use IP core, the 

AXI DMA module, prepared by Xilinx [5]. Such module is 

configured as a bridge between the TIC interface and the AXI 

HP interface. Although AXI DMA automatizes many bus 

operations and eases transactions, it still requires a stream type 

bus, conditioned by the AXI Stream standard. That is why 

a custom translation module was designed. 

The translation module communicates via the wide 

asynchronous bus, requesting new measurements from TIC 

and acquiring data frames. Next it translates those frames 

according to the AXI Stream protocol specification and 

streams the data to the AXI DMA module, from where it is 

transported to the DDR memory. The translation module 

is  configured with the number of measurements to be 

conducted. 

The second major issue was to control the TIC and adjacent 

components in a unified manner. The control and status 

registers were placed in a continuous memory space, just like 

ordinary processor peripherals. This could be achieved by 

using the AXI GP buses. Commands sent to the peripherals 

and status words received from them did not need fast 

transactions and would be sent reliably, without errors. The 

AXI GP is connected to the translation module. Thanks to such 

configuration, the module is in fact the master for both the TIC 

and the AXI DMA. By sending a reset signal followed by the 

number of measurements to be conducted, the translation 

module initiates each transaction in the TIC, and forwards the 

converted frame into the AXI DMA. 
  

 

Fig. 3. Measurement system implementation. 

The third design issue was to establish an efficient 

communication channel with the system user. The basic 

method was to utilize one USART port in the PS. This enabled 

a simple command prompt using a standard serial terminal 

device.  

The last important issue was to establish an efficient inter-

CPU link, so that both cores could communicate between each 

other and exchange information. As mentioned earlier, the on-

chip RAM was used, due to possibility of bypassing the L2 

cache and other circuitry, directly connecting both CPU cores 

with minimal software and hardware overhead. 

III. DATA FLOW HIERARCHY 

Each system, where massive data flows are expected, needs 

to have clarified hierarchical data flow design. Configuring the 

right connection between masters and slaves is essential in 

achieving high data throughput in the system. 

The Zynq SoC has an organized hierarchy in terms of data 

flow [6]. Each connection is organized as point to point, 

master to slave. Furthermore, each module is responsible only 

for those masters and slave, to which it is directly connected. 

Fig. 4 shows a generalized data flow structure of the Zynq 

SoC. Each arrow connecting two modules is directed from 

a local master to a local slave, e.g. the SCU module is a master 

for L2 cache, DDR controller and OCM or PL, at the same 

time being a slave for each of CPU cores. 
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Fig. 4. Data flow in the SoC. 

In addition, the SCU is responsible only for transactions it is 

involved in, e.g. when the CPU0 sends information to the DDR 

memory, the SCU only guarantees undisrupted transfer to the 

L2 cache. It is the task of the L2 cache to properly transfer 

information to the DDR controller. This liability split of each 

module increases the total throughput and allows to trim the 

total performance in a more flexible way. 

In the presented design three main data paths are taken into 

account: measurement frames, inter-CPU data exchange and 

other (program code, register access etc.). Those are marked 

green, blue and red, respectively in fig. 4. The most critical is 

the data measurement path. In order to achieve high data 

throughput resulting in higher measurement rate, the data path 

needs to be fast and have the minimal amount of hubs and 

multiplexes as possible. This is because, in every hub or data 

multiplexer, while transmitting data through one path, other 

paths enter a wait state. To many wait states lower overall data 

throughput on a certain path. In some modules e.g. SCU or 

DDR controller, the programmer may set the priority of certain 

data paths. The DDR controller may be set to handle data 

coming from AXI HP first, making the SCU to wait until the 

streaming transaction from the PL would end [5]. 

The second most important data path is the blue one. 

Through this route both CPU cores can communicate with 

each other. It is very important, that the data don’t have to be 

passed through the L2 cache memory. The reason for this is 

memory invalidation. When one CPU writes to the OCM some 

information, the second one isn’t aware of that event. If the 

second CPU would check on the OCM memory at least two 

times, the second and next readout would be not from OCM 

but from the L2 cache, where the content of the whole OCM 

would be copied to save time. If the first CPU changes the 

content of the OCM, the L2 cache controller is unaware of that 

event, resulting in misinterpretation of data by the second core. 

The second core would have to refresh the L2 cache each time 

it wants to read from the OCM, in order to fetch valid data. 

The same applies for the first core, when it wants to check if 

the second one responded with new data. Invalidating L2 

cache (which is 512 kB) would take some time, where the 

CPU would do nothing else but iterate throughout every sector 

of the cache memory, invalidating its content. Zynq SoC has 

was designed to avoid such scenario. The only cache a CPU 

has to invalidate is the L1 cache memory, invalidated in step. 

This is because L1 is smaller than L2 and has separate caching 

for program and processing data. The data exchange 

mechanism between CPU cores is presented later on. 

The third data route (red) is the most commonly used by both 

cores. There the program instructions are carried out along 

with configuration and status data to and from peripheral 

registers, respectively. The compiled program for the main 

core slightly exceeds the capacity of L2 cache. This means, 

that for the most of the time, the code is stored in the L2 cache 

and the cores execute it, fetching from the cache memory. This 

drastically reduces the count of accesses to the DDR memory 

(where the program is stored) both cores have to perform, so 

the DDR controller  could be set with a higher priority for the 

AXI HP PL to PS connection from the time counter. The 

second part of the red route is accessing peripheral registers. 

This route is used the least amount of time, so doesn’t require 

high data throughput.  

This data flow configuration allows to transfer measurement 

data efficiently through the system with minimal interference 

with program code and peripheral configuration data. 

IV. TRANSLATION MODULE 

As it has been mentioned already, the time interval counter 

was connected to the AXI DMA module, which efficiently 

forwards measurement data to the DDR memory. 

Unfortunately, the AXI DMA module requires specific 

streaming interface, defined by the AXI Stream protocol [3]. 

Such protocol enables synchronous transfer data words, where 

the master passes data to the slave. Basic configuration of this 

bus requires signals: ACLK – clock synchronizing both master 

and slave; TDATA – the data bus, usually 32 bits wide; 

TVALID – master informs the slave, that the TDATA contains 

valid data; TREADY – slave informing  the master that is 

ready for a next data word; TLAST – master informing the 

slave, that the current data word is the last one in the 

transaction. A typical transaction is depicted in fig. 5. 

 

 
Fig. 5. AXI Stream signal diagram. 

Signals are sampled during the rising edge of ACLK and are 

changed during the falling edge. With this set of signals, the 

master can control the latency of data sending. When 

the master is not ready to pass the next word, it clears the 

TVALID line, forcing the slave to enter a wait state. When 

the slave is not capable of handling new data waiting on the 

TDATA, it asserts a low state on the TREADY line. This 

forces the master to enter a wait state. In this way a simple but 

firm handshake is established. In this protocol, the master 

needs to know how many data words are needed to be sent. It 

is important, because the AXI DMA module samples the 

TLAST line, when to finish the transfer operation. In order to 

separate the data transfer functions from the TIC a data 

translation module was implemented. The time counter works 

in a single shot mode, generating one data frame per one 

measurement. To make the TIC work independently from the 

rest of the measurement system, an asynchronous data protocol 
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was implemented. It is also a two point, master-slave link, 

where the master initiates a transaction, but the slave sends 

data. A typical time chart of this protocol is depicted in fig. 6. 

The protocol contains three lines: READY – master informing 

the slave, that is ready for a new data frame; FRAME – data 

bus where the slave presents data to the master; VALID – 

slave informing the master, that new valid data is presented on 

the FRAME bus. 

 

 
Fig. 6. Dedicated asynchronous TIC bus. 

In the initial state, both READY and VALID lines are 

inactive (low) and the FRAME bus contains invalid data. 

When the master wants to receive new data, it sets the READY 

line. The slave starts operation (in this case the TIC starts 

a new measurement). When the slave is ready, it puts new data 

on the FRAME bus and sets the VALID line. When both 

VALID and READY lines are high, the master acquires data 

from the FRAME bus, which has to be stable. After data 

acquisition, master releases the READY line. Slave responds 

with resetting the VALID line. When both READY and 

VALID lines are again in inactive state, the slave is ready for 

a new transaction. 

This asynchronous protocol is flexible, so that it can be 

implemented in a variety of measurement and communication 

designs. The FRAME bus may be wider than 32 bits, allowing 

to send great amounts of data in  a one transaction. In fact, this 

feature is used in this design and is described later.  

The lack of a global synchronizing clock allows to utilize 

modules working in separate clock domains without the worry 

of errors due to clock skew. Even without a clock signal, 

implementing such protocol in a SoC results in high data 

throughput, which is presented at the end of this paper. 

The translation module was designed to serve as a bridge 

between the asynchronous TIC and synchronous AXI DMA 

modules. It has one configuration register to reset the module 

and to initiate a new measurement run. It also allows to set the 

desired measurement count. The module also has a status 

register, so that the CPU core can read the status of currently 

conducted measurements. One of the most important reasons 

of implementing the translation module was to divide a wide 

measurement frame into 32 bit words, in pursuance of AXI 

Stream protocol. The easiest way to obtain a sufficient 

behavior of the module, was to implement a finite state 

machine, controlling each of the presented busses according to 

configuration data present in control register. All states and 

conditions are depicted in fig. 7. 

After power-up, the device is in RESET state. The nRES 

signal may be applied by the Zynq Power On Reset circuitry, 

or by the CPU, through the control register. In this state all 

internal registers, flags and multiplexers are set to default 

values. After releasing the module from the reset state, it enters 

IDLE mode. In this state, the module waits for new data 

transactions to begin by the AXI DMA. Also only in this state 

the translation module samples the configuration register for 

the measurement count. In order to simplify the design, 

software precautions have to be implemented, e.g. the AXI 

DMA must not be triggered for a new transaction before 

configuring the translation module. In addition, it is highly 

recommended to reset the translation module after each 

finished measurement run. 

 

 

Fig. 7. Translation module state diagram. 

When AXI DMA sets the TREADY line, the translation 

module enters the REQ state. In this state, the module sets the 

READY line issuing a new measurement in the TIC. The 

module waits until the TIC finished the measurement and 

outputs a valid frame (VALID set). If so, the module enters the 

WR state, where subsequent 32 bit words of the measurement 

frame are sent. One of the 32 bit words from FRAME is 

transferred to TDATA and TVALID is set. In the next clock 

cycle, if the TREADY is active, the AXI DMA read the data 

word. The module stays in this state, updating the TDATA bus 

with sequent 32 bit words of the measurement frame. If it is 

the last 32 bit word of the last measurement frame, additionally 

the TLAST line is set. If it was the last data word and last 

measurement frame, the module releases READY, TVALID 

and TLAST, ending the transaction and entering the IDLE 

state. If it only is the last word, but not the last frame, the 

module resets the TVALID and READY lines. Then it 

switches to the STEP state. In this state, the module waits for 

the TIC to end operation (indicated by releasing the VALID 

line) and prepare for the next measurement. Also in this state 

the measurement counter is decremented. When the TIC is 

ready (VALID in low state), the module moves to the REQ 

state, ready to initiate a new measurement process in the TIC. 

V. TIME INTERVAL COUNTER 

The TIC measures the elapsed time between two events 

represented by leading edges of two signals – START and 

STOP [7]. Achieving picosecond precision in a range of 

several seconds was done by combining two stage 

interpolation, which is an extended interpolation method 

invented by Nutt in 1968 [8]. It combines a standard period 

counter and equivalent coding delay lines for coarse and fine 



TIME INTERVAL MEASUREMENT MODULE IMPLEMENTED IN SOC FPGA DEVICE   241 

 

time measurements, respectively (fig. 8). The period counter 

provides a wide measurement range, vastly longer than the 

range of the subsequent stages of interpolation. With 

a standard 32 bit counter and 500 MHz clock, a total range of 

over 4 seconds is achieved [9]. Utilizing a chain of buffers, 

a 16 delayed clock signals are generated that create a multi-

phase clock (MPC). 

 

 

Fig. 8. Two stage interpolation method. 

The first stage of interpolation (FIS) detects in which MFC 

the phase leading START/STOP edges occurred. By doing so, 

the measurement resolutions increases sixteen times in 

comparison to the counter method. In order to further increase 

the measurement resolution, in the second stage of 

interpolation (SIS), a delay line may be used. Instead of using 

a classic tapped delay line, a novel technique was applied, 

called multi edge coding in independent coding lines 

(described in detail in the next section). The measured time 

interval T is a linear combination of delay times measured by 

the period counter, FIS and SIS (1). 
 

             𝑇 = 𝑁𝑇0 + (𝑇𝑆𝑇1 + 𝑇𝑆𝑇2) − (𝑇𝑆𝑃1 + 𝑇𝑆𝑃2)       (1) 
 

where N – the number of counter periods, T – the clock period, 

TST1, TST2 – delays of START signal measured in first and 

second stages of interpolation respectively, TSP1, TSP2 – 

delays of STOP signal measured in first and second stages of 

interpolation respectively. Combining all presented 

components into a one module results in a time interval 

counter, with a structure shown in fig. 9. 

The TIC consists of several modules. Each input signal has 

its own interpolation channel. In each there is the MPC that 

generates delayed clock phases for the FIS. The FIS detects 

START/STOP edge and MPC correlation, triggering the SIS. 

After delaying the measured signal (because of processing 

delays in FIS) the SIS is fed with a special signal called the 

‘pattern’ (described in detail further in the text). Output of each 

interpolation stage is sent to code converter modules, 

compressing and reconditioning the measurement data. 

Triggering data from both interpolator FISs are driving the 

clock period counter through a synchronization circuit. The 

module counts clock periods between START and STOP 

edges. 

 
Fig. 9. Time interval counter block diagram. 

The measurement data consists of 30 bits from period 

counter, 4 bits from each FIS and 384 bits from each SIS. This 

gives 806 bits of measurement data, which is transferred to the 

TIC interface. In this interface, the main TIC control is 

performed, resetting the module before each measurement and 

communicating with the rest of the system by the 

asynchronous frame bus. The measurement frame is 896 bit 

long and contains all data generated by the TIC. The frame is 

organized in seven 128 bit big endian words (table. ). 

 
TABLE. I 

TIC DATA FRAME 

Word number Content (127:0 bits) Bit position in frame 

1 Generic field (127 – 0) 

2 SIS START 0 (255-128) 

3 SIS STOP 0 (383-256) 

4 SIS START 1 (511-384) 

5 SIS STOP 1 (639-512) 

6 SIS START 2 (767-640) 

7 SIS STOP 2 (895-768) 

 

The first word is the generic field. It contains four 32 bit 

words (from MSW to LSW): FIS STOP (number of MPC 

phase after which the STOP signal occurred), FIS START 

(respectively for START), PERIOD NUMBER, FRAME 

NUMBER. Although the output of each FIS is only 4 bits, 

resulting in 28 spare bits in each FIS field of the generic field, 

this approach was chosen, so that the measurement frame is 

32 bit aligned. This was a specially good feature for designing 

the translation module, where frames had to be converted into 

32 bit AXI Stream TDATA words. There words from the 

second to the seventh words contained paired SIS fields. Here 

three sets of SISs were used to increase the measurement 

resolution and precision. 

Due to hardware limitations of the target printed circuit 

board (PCB), this time counter could not be directly 

implemented in the design. The main limitation was lack of 

special low-jitter input buffers conditioning START and STOP 

signals, before entering the PL fabric of the Zynq device. The 

presented counter was implemented (with an USB interface) in 

a design described in [9]. In this particular design a special 

module imitating the behavior of the TIC was implemented 

and is described in following sections. 
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VI. TIME CODED DELAY LINE 

The second stage of interpolation is based on the method of 

the multi-edge coding in independent coding lines method 

[10]. It utilizes tapped delay lines, in which a special signal 

called the ‘pattern’ is propagated. The interpolator is depicted 

in fig. 10. The pattern generator generates a square wave with 

six edges when triggered by the input signal. Once generated, 

the pattern propagates through the tapped delay line. At the 

end of the measurement, the delay line is latched into 

associated D-type flip-flops. The synchronization signal needs 

to be delayed (Δt), according to the pattern generator delay in 

order to reduce the interpolator’s dead time. The output of each 

flip-flop is forwarded to a code converter, which eliminates 

conversion errors (called ‘bubble errors’). The converter also 

reduces the required amount of bits, on which the 

measurement result needs to be saved. A bubble error occurs 

mainly due to hardware inequalities of D flip-flops clock input 

threshold voltages or supply voltage noise. 

 

 
Fig. 10. Time coded delay line. 

The TIC was implemented in a Spartan-6 FPGA device, 

where 256 tap lines were needed to cover 125 ns measurement 

range. It is the time duration between two subsequent MPC 

phases generated with a 500 MHz clock. Using a code 

converter, only 128 bits were needed to compress the output 

word of the delay line in a lossless manner. The code converter 

takes the delay line word (256 bits), eliminates bubble errors 

and extracts numbers of flip-flops on which pattern edges were 

saved, marking corresponding bits as ‘1’ and clearing others. 

This process may be depicted as low-pass filtering and 

calculating the derivative module of the input signal, bit by bit. 

The converters splits such signal into sixteen bytes. The 

pattern generator and signal paths inside the interpolator are 

trimmed in such a way, that for each of those 16 bytes there 

are only 15 possible combinations of zeroes and ones. If an 

illegal combination is discovered, it is marked as the 16th state 

(error). So it is possible to save each combination number 

using four bits, making the compression ratio equals 2:1. 

VII. SOFTWARE MODEL 

The software was written in C, using a highly structural 

approach [11]. The chosen language gives better performance 

in time critical operations in the CPU, than higher level object 

languages (e.g. C++, Java). This design does not implement an 

operating system, so it need more time constrains between 

software modules, than it would be for a OS design. The 

compiler was a trimmed version of GCC compiler. 

The software model was divided into four logical groups (fig. 

11) [12]. 

 

 
Fig. 11. Structure of design software. 

First group is called System. It contains a date/time 

manipulation library, custom definitions of data types used in 

the design, initialization and control routines and the main 

project function. The second group, tagged ‘Comm’, includes 

the inter-CPU mailbox protocol and UART state machine. The 

‘TIC stack’ group contains a four level software stack 

responsible for communicating with the TIC hardware, 

configuring it, triggering calibration and measurements, 

downloading and processing measurement frames as well as 

computing the measured time intervals. The last group called 

‘Frame gen’ contains a software frame generator, emulating 

the time interval counter behavior.  

Dividing the software in such a manner eases software 

maintenance. It also allows making fast changes in the design. 

If e.g. the designer would change the TIC hardware, one would 

have to change only one layer of the ‘TIC stack’ group, 

leaving the rest of the project untouched. 

VIII. INTER-CPU MAILBOX MECHANISM 

In a multi CPU system one of the most important issues is to 

establish a reliable and efficient connection between CPU 

cores [2]. As program code has to be generated independently 

for each of the cores, there has to be a standard way of 

exchanging data. The connection should have little latency and 

not require additional handling (refreshing, handshaking). That 

is why a mailbox style of messaging was implemented in the 

OCM of the application processing unit of the PS subsystem 

(fig. 12). 

The OCM is divided into two banks. Each bank is 

unidirectional. In a typical mailbox scheme, a postman 

(sender) puts the message in the mailbox and raises a flag. The 

recipient only needs to check if the flag is raised. If so, it opens 

the mailbox, reads the information and resets the flag. This 

mechanism consists of two main elements: a flag and payload. 

If a CPU wants to send new information, it should first check 

the corresponding ‘send flag’, if the last message was read. If 

the flag is low, it should copy the desired content to the 

payload area and finally set the flag. The receiver CPU would 

check the flag, copy valid content and lower the flag after 

finishing download. Each CPU has its own transfer area, so 

that a full duplex communication is available. Dividing the 

OCM into two areas gives almost 128 kB (minus space for the 

flags) of payload for each core. At this level of abstraction it is 

does not matter what is transferred in the payload area.  
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Fig. 12. Inter-CPU mailbox mechanism. 

The software handling this protocol was written in a fully 

structural technique, so that each CPU core acquires 

information about oneself and automatically configures own 

OCM bank to proper operation. 

IX. TIME STAMP GENERATION 

The C language standard implements a standard date/time 

manipulation library. The only issue is that the standard does 

not specify the hardware layer of that library. It is essential, 

because the time interval ought to be claimed from an interrupt 

service routine (ISR). The CPU usually jumps into a timer 

ISR, when the desired timer has reached zero and needs to be 

reloaded with its preprogrammed value. Inside that ISR usually 

an integer is incremented, representing the elapsed time from 

the system power-up. For example, if the timer is fed with 

a 100 MHz clock, and it has a preprogramed value of 100, 

after each 100 ticks the timer would generate an interrupt. This 

would make the CPU enter a proper ISR every 1 µs. Inside that 

ISR, a static variable is incremented. The variable represents 

how many microseconds passed since system power-up. The C 

compiler provides a low level function called 

‘__gettimeofday’. The programmer can implement the static 

variable into that function. By doing so, the standard ‘time’ C 

library automatically manage date time presentation format for 

the system (fig. 13). 

The mentioned function has to acquire a pointer to a specific 

time structure. Inside that structure it has to update two elapsed 

time fields: in seconds and microseconds. That elapsed value 

can be read from the presented ISR time counter. The system 

timer is based on a SCU timer, located in CPU0 private 

address space. It generates interrupts every 1 µs. Inside the ISR 

an integer is incremented. 

When the program needs to get present time value, it calls to 

the standard ‘time’ function, which returns an integer equal to 

the number of seconds, which passed since the system power-

up. In turn, the standard functions calls for the implemented 

‘__gettimeofday’ function, waiting for certain time structures 

to be updated. After the update, the ‘time’ function processes 

new data and returns to the main program. 

 
Fig. 13. Simple way of binding standard time library with the system. 

Despite the software overhead, it is worth implementing 

standard functions, because of two main reasons. First, the 

software is less error prone, because standard libraries are 

mostly delivered as high quality add-on to compilers. Second, 

the main software can be compiled and tested on every 

platform implementing a C standard. In this case, more 85% of 

the software was developed and tested on a standard PC, 

substituting only the bottom-most functionalities while 

migrating to the Zynq platform. 

X. COMMAND LINE INTERPRETER 

An advanced measurement system should be equipped with 

a straightforward user interface (UI), that should give the user 

a handset of commands to control the system. It also should 

correct at least minor input errors which may appear. One of 

the most basic UI is a command prompt. Analyzing vast 

majority of OS text interfaces (MS PowerShell, UNIX bash, 

sh, csh, etc.), a typical command prompt should allow the user 

to input commands with additional parameters. The command 

line interpreter (CLI) was developed in order to enter text 

commands with parameters. The module operates on the input 

string taking four steps: text preprocessing, command division 

and searching, memory allocation and function invocation. 

In the first step, CLI analyses the input string, detects 

unnecessary leading, trailing and multiple separators (fig. 14) 

and eliminates them. The standard separator is a spacebar 

(ASCII 0x20). After preprocessing, the input string is being 

divided into separate words. The first word is always the 

command, and the other are parameters (fig. 15). 

 

 
Fig. 14. An input string containing the user command with parameters. 

 
Fig. 15. The user command after pre-processing. 
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The software contains a table with strings representing 

commands along with pointers for functions executing those 

commands. Each function is declared according to the UNIX 

ABI (UNIX application binary interface), where the function 

get a number of passed parameters and a table of pointers to 

strings with those parameters (fig. 16). The CLI compares the 

first word of the input string with each entry of the data table. 

If it finds a matching word it proceeds to the next step. Other 

way, it returns an error status. In the last step, the CLI 

dynamically allocates memory for all command words as 

depicted in fig. 17.  

 

 

Fig. 16. Main command structure with linked functions. 

 

Fig. 17. Dynamically allocated strings for the evaluated function. 

Each ‘argv’ entry is a pointer to one word, terminated by 

a null character. The standard requires to allocate one 

additional string containing only the null character. The ‘argc’ 

parameter is the number of arguments (not counting the last 

null character). After preparing ‘argv’ and ‘argc’ fields, the 

CLI invokes the function associated with the first word of the 

input string. In this example it would be ‘funCalib’. Each 

function returns an integer value. This value is captured by the 

CLI and returned to the main program after releasing allocated 

memory resources. 

XI. FRAME GENERATOR 

As mentioned earlier, the TIC module could not be 

implemented because of hardware limitations of the target 

PCB. In this case an equivalent peripheral served as a dummy 

TIC. At one side connected to the AXI GP port, where the 

software loaded a generated data frame. On the other side, it 

was connected to the translation unit, simulating the behavior 

of the TIC. The frame generation module was using a standard 

pseudo-random number generator, which may be found in the 

‘stdlib’ C library. It generates integer values with a uniform 

probability density from zero to 32767. It also has a seeding 

function, which allows to initialize the generator each time 

with a different starting value. The frame generator produces 

random values only in the FIS and every SIS of the 

measurement frame.  It may work in one of two state: 

calibration and measurement. In calibration mode, the frame 

generator produces FIS and SIS fields with uniform probability 

density functions (PDFs). This is because in the real TIC 

a calibration was performed with the use of a standard code 

density test [13]. The measurement mode was designed to 

imitate the TIC’s behavior during standard measurements, 

which means a normal PDF for  each detected pattern edge in 

SIS. This is because the input time interval represents a normal 

PDF. These two methods of operation are depicted in fig. 18. 

Testing the real TIC behavior during calibration it was noticed, 

that every pattern edge appeared within specific ranges (table 

). 

 

 
Fig. 18. Calibration and measurement PDFs for an artificial 

TCDL word generation. 

TABLE II 

UNIFORM PDFS OF PATTERN EDGE POSITIONS. 

Pattern edge Minimal position Maximal position 

1 15 30 

2 30 55 

3 45 68 

4 58 85 

5 70 90 

6 88 112 

 

The mechanism for generating pattern edge positions is 

relatively simple. Each position was randomized within 

specified range. If two sequent pattern edges were generated 

on positions closer than to one another than 5, the second edge 

position is shifted, thus preventing overlapping. In order to 

generate pattern edge positions with a normal PDF a Box-

Muller generator was used. The mean and standard deviation 

values for each edge were chosen as the mean value and 1/8 of 

corresponding uniform PDF range respectively (table iii). 

 
TABLE III 

NORMAL PDFS OF PATTERN EDGE POSITIONS. 

Pattern edge Mean StdDev 

1 22 1 

2 42 3 

3 56 2 

4 71 3 

5 80 2 

6 100 3 

 

After generating all 6 pattern edge positions, those values 

were converted backward according to the TCDL converter in 

the SIS, so that the result would be a 128 bit word, which 

could be generated in a real measurement. This procedure is 

repeated for each of 6 SIS (three for START and three for 

STOP channels). In the measurement mode, the FIS fields 

contain constant values, while in the calibration mode, the FIS 

fields contain randomized numbers, in a uniform range 

between 0 and 15. The period counter contains zero during 
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calibration and a constant value during measurement. The 

frame counter contains the number of current frame being 

processed. 

XII. FRAME DECODING AND PROCESSING 

The frame decoding piece of software is directly responsible 

for proper configuration and communication with the TIC in 

the PL. It was designed as a three level stack, where each level 

is responsible for a different functionality of the device. The 

lowest (zero) level is responsible for configuring the 

translation module and AXI DMA. It also receives data frames 

from the TIC. The software abstraction is done on this level. 

When a major change in hardware occurs, e.g. a TIC with 

a completely different interface is implemented, only this level 

has to be rewritten, leaving the rest unmodified. The whole 

software could be written and tested on PC, using a standalone 

GCC compiler, before integrating the system together. 

The middle (first) level contains the frame decoder. This 

decoder is specific for the measurement method, where the SIS 

implements multi-edge coding in independent coding lines. If 

the structure of the TIC would change, e.g. instead of two 

stage interpolation, time stamp method would be implemented, 

this level would be the only one to be rewritten. Certain 

precaution were taken while developing this level, e.g. when 

the number of coding lines in every SIS would have to change, 

the software designer would only have to change one macro-

definition recompile and reload the code. The frame decoder 

analyses  one frame at a time. First it decodes the generic field, 

recovering both FIS values, period and frame counters. Next it 

sweeps remaining six 128 bit words, decompressing and 

acquiring pattern edge positions for each line. Decoded data 

are saved either into a calibration table or measurement 

dynamic list, depending on the current system operation. 

The highest (second) level is the calibration and 

measurement level. This level is generic for most counters. If 

there had to be e.g. a major change in TIC way of measuring 

time intervals or changing TIC into a completely different 

measurement device,  leaving communication considerations 

unchanged, only this level would have to be rewritten.  

During calibration, a structured table is allocated, where each 

cell corresponds to one equivalent coding line step of each 

interpolation channel. Each step has its own width, value (in 

nanoseconds), DNL and INL values [13]. The content of this 

table serves as a transfer characteristic while conducting 

measurements. In the measurement mode, the decoding 

module allocates a dynamic linked list, filling it with computed 

measurement point. Each point contains the decoded FIS, SIS 

and counter fields, along with a system timestamp when the 

measurement occurred. It also contains the computed mean 

value of the measurement (in nanoseconds) along with error 

span (which is the width of both START and STOP 

quantization steps of SIS). Thanks to a custom memory 

management system, the dynamic linked list is allocated and 

released faster, than using the ‘stdlib’ standard C library, 

containing ‘malloc’ and ‘free’ functions. 

XIII. TEST RESULTS 

The presented design was implemented in an AVNET 

ZYNQ Mini Module-Plus (MMP) with AVNET MMP 

BASEBOARD2. The MMP board contained a XC7Z045 Zynq 

SoC, with a Kintex-7 equivalent PL subsystem. The original 

TIC for test purposes was implemented in a Spartan-6 FPGA 

on a custom PCB. The complete project was designed and 

tested using the Xilinx ISE Design Suite 14.7. The software for 

APU cores was written in Xilinx SDK 14.7. The output code 

was uploaded to a µSD card, from which Zynq fetched the 

code during boot-up. The system was tested in respect of three 

parameters: reliability, raw data throughput, calibration and 

measurement duration time. During the first test properly 

responds to control commands sent through serial console 

were verified (fig. 19). 

The module responded properly to each command. The serial 

console could be substituted with an additional channel in the 

inter-CPU protocol, and could be controlled by additional user 

interface programs, giving chance of implementing e.g. 

a graphic LCD with touch panel. Second test was conducted to 

obtain information about the system throughput. In this case 

one measurement frame was generated and transferred to the 

TIC simulation hardware. Next, the software ‘conducted 

measurements’ reading that constant frame. The AXI DMA 

was set to read different data sizes each time (fig. 20). 

 

 

Fig. 19. System reliability test. 

 

Fig. 20. Test results of data throughput in the system. 

It may be noticed, that for small data packets the total 
throughput is low, whilst for larger packets the throughput 
increases, saturating at about 200 MBps. Considering 
maximum PL to PS Zynq throughput of 300 MBps [3] and 
a chain of transfer points in the PL, this result is satisfactory. 
One of main reasons of such throughput distribution is that the 
L2 cache controller gives a higher priority for bigger data 
packets than for smaller ones. With a higher priority, measured 
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frames are fetched from the DDR memory more quickly than 
e.g. the software code for a CPU core. 

The last test was performed during the normal device 
operation, where a standard 106 point calibration and 105 point 
measurements were conducted in two cases. First, the TIC was 
simulated in pure software (generated frames were copied to 
the download area), second the TIC was simulated in 
hardware, utilizing the translation and AXI DMA modules. 
Results are show in table iv with comparison to the classic 
system approach where Spartan-6 FPGA with the TIC was 
communicating with PC host via USB 2.0. 

 
TABLE IV 

COMPARISON OF OPERATION TIMES OF TIC EMULATED IN SOFTWARE AND 

HARDWARE. 

Zynq software TIC 
simulation 

Zynq hardware TIC 
simulation 

Spartan-6 TIC 

Calib. Meas. Calib. Meas. Calib. Meas. 

3 s 2 s 15 s 5 s 30 s 15 s 

 

It is clearly show that the hardware TIC simulation performs 

its operation 2 to 3 times faster than the classic approach, 

where the measurement system communicates with PC 

software via physical link. The main reason is that Zynq gives 

better opportunities for implementing custom data buses. In 

a classic approach, the designer is constrained to hardware 

limitations of used interface ICs, PCB design limitations etc. 

On the other hand, one must remember, that a SoC requires 

designing every piece of hardware and software from the 

scratch, becoming a more error prone approach. 

XIV. CONCLUSIONS 

A complete precise measurement instrument was 

implemented as SoC in a single FPGA device. Such 

 

 

implementation releases new vital opportunities by reducing 

the size and power consumption of the instrument. In addition, 

integrating the measurement system substantially increases the 

measurement rate in comparison with traditional approaches, 

where the device had to communicate with a host through third 

party interfaces, usually being bottlenecks of fast designs. 

REFERENCES 

[1] R. B. Northrop, “Introduction to Instrumentation and measurements”, 

Taylor & Francis Group, Broken Sound Parkway 2005 

[2] http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html  

[3] http://www.xilinx.com/support/documentation/ip_documentation/ug761

_axi_reference_guide.pdf 

[4] G. Grzęda, “Control and data processing module for time interval 

counter in SoC device” (in Polish), WAT 2015 

[5] http://www.xilinx.com/support/documentation/ip_documentation/axi_d

ma/v7_1/pg021_axi_dma.pdf  

[6] http://www.xilinx.com/support/documentation/user_guides/ug585-

Zynq-7000-TRM.pdf 

[7] R. Szplet, “Time-to-Digital Converters”, in Design, Modeling and 

Testing of Data Converters, Berlin, Springer-Verlag, pp. 211-246,2014 

[8] R. Nutt, “Digital time interval meter”, Rev. Sci. Instrum., vol 39, pp. 

1342-1345, 1968 

[9] R. Szplet, D. Sondej, G. Grzęda, „Interpolating time counter with multi-

edge coding”, EFTF/IPC, pp 321-324, July 2013 

[10] K. Klepacki, R. Szplet, R. Pełka, „A 7.5 ps single-shot precision 

integrated time counter with segmented delay line”, Review of 

Scientific Instruments, vol 85, no. 3,2014 

[11] B. Kernigham, D. Ritchie, „The ANSI C Programming Language”, 

Prentice Hall, Englewood Cliffs 1995 

[12] G. Grzęda, D. Sondej, R. Szplet, „Diagnostic and control software for 

interpolating time counter in programmable logic device” (in Polish), 

Measurement Automation Monitoring, vol 60, pp. 441-443, 2014 

[13] S. Cova, M. Bertolaccini, „Differential linearity testing and precision 

calibration of multichannel time sorters”, Nuclear Instruments and 

Methods, vol. 77, pp. 269-276, 1970 


