
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 3, PP. 237-246

Manuscript received July 20, 2016; revised August, 2016. DOI: 10.1515/eletel-2016-0032



Abstract—We presents the design and test results of

a picosecond-precision time interval measurement module,

integrated as a System-on-Chip in an FPGA device.

Implementing a complete measurement instrument of a high

precision in one chip with the processing unit gives an

opportunity to cut down the size of the final product and to lower

its cost. Such approach challenges the constructor with several

design issues, like reduction of voltage noise, propagating through

power lines common for the instrument and processing unit, or

establishing buses efficient enough to transport mass

measurement data. The general concept of the system, design

hierarchy, detailed hardware and software solutions are

presented in this article. Also, system test results are depicted

with comparison to traditional ways of building a measurement

instrument.

Keywords—time interval measurement, time-to-digital

converter, system on chip, measurement data processing

I. INTRODUCTION

N general, each measurement system consists of three main

parts: the adequate measuring device, processing core and

user interface [1]. A time interval measurement system usually

involves a time interval counter (TIC) implemented as the

measuring device (fig. 1). The TIC measures the time elapsed

between two events represented by leading edges of two input

signals: START and STOP. The TIC converts measured time

intervals into raw measurement data, which are sent to the

processor. It is worth mentioning, that the TIC performs data

pre-processing, removing conversion errors, before

measurement frames are being sent to the processor. Those

errors are called bubble errors and they are discussed later in

this paper.

Fig. 1. Common model of a time interval measurement system

 An important part of the system is the processor, which is

responsible for organizing the work of the entire system. It also

performs all the calculations needed for translating the raw

measurement data into calibration characteristics and

measurement results expressed in seconds. Additionally, it

handles the communication between the TIC and the user. The

last part of the system is the user interface. In this design it is

G. Grzęda is with Institute of Telecommunication, Military University

of Technology, Warsaw, Poland (e-mail: grzegorz.grzeda@wat.edu.pl)
R. Szplet is with Institute of Telecommunication, Military University

of Technology, Warsaw, Poland (e-mail: ryszard.szplet@wat.edu.pl)

implemented as a standard command line interface, with user

friendly text inputs and outputs. The user is then able to

initialize the device, calibrate and conduct measurements. The

measurement system was implemented in Zynq SoC (fig. 2)

manufactured by Xilinx. The device consists of two

subsystems, i.e.: processing system (PS) and programmable

logic (PL) [2]. The first one is being used for implementing

software, which handles data processing in a classic, program

flow manner. The processing subsystem contains an

application processing unit (APU), standard I/O devices

(UARTs, I2C, SPI, Ethernet etc.), a DDR memory controller

and an expandable interconnect matrix, binding the subsystem

together in the terms of efficient mass data transfers. In the

APU a dual core ARM A9 processor is implemented along

with complementary sub-circuitry, that contains: two layer

cache memory (32kB L1 memory for each core, 512 kB L2

shared memory), direct memory access (DMA) controller,

generic interrupt controller (GIC), snoop control unit (SCU)

for data coherency and 256 kB of on-chip memory (OCM) for

local read/write operations. The OCM bypasses the L2 cache

and is connected directly to both processor, providing fast and

up to date storage, properly suited for e.g. inter core

communication.

Fig. 2. Zynq SoC block diagram.

The PL subsystem is in fact an FPGA device, which size and

capabilities depend on the chosen Zynq model. The whole

Zynq family consists of either Artix-7 or Kintex-7 FPGA

devices operating as the PL subsystem. Two parts of the SoC

Time interval measurement module

implemented in SoC FPGA device
Grzegorz Grzęda and Ryszard Szplet

I

238 G. GRZĘDA, R. SZPLET

communicate with each other by a set of AXI standard-based

busses [3]. Those busses can be divided into two main groups:

general purpose buses (AXI GP) and high performance buses

(AXI HP). There is also a special group of buses, called

advanced coherency port (ACP), automatizing cache memory

invalidation, yet being a variation of the AXI HP and not

considered in this design. The SoC has an extra feature, which

may lead to slight improvement in data throughput. The AXI

HP has some busses connected directly to the DDR memory

controller. This route is discussed in the next section of the

paper.

The AXI GP port serves as a maintenance bus, ideally fitted

for register-like access. Data transfer rate achieved on this port

is not very high, but there are data integrity mechanisms,

providing sufficient an error-free communication between the

processor and the peripheral. On the contrary, the AXI HP port

was designed to maximize data throughput. The data transfer is

synchronous streaming. The port is initially configured so that

the PL operates as a data transactions master and the DDR

controller (or APU) as a slave. This scheme provides reliable

and fast data transactions, if timing is crucial for proper

operation. In order to achieve high data throughput, no data

integrity mechanisms are implemented. Furthermore, the

transactions are run independently from the APU unit, which

means that the core software needs to invalidate both L1 and

L2 caches in order to read newly arrived data from the DDR

memory. Of course, this results in data transfer delays and

needed to be handled properly, in order to avoid data mismatch

while processing measurement results.

II. SYSTEM DESIGN

The designed measurement system (fig. 3) consists of several

components and implements some design techniques in order

to achieve high performance [4]. While designing the

measurement system, several issues were taken into account.

One of the main issue was efficient mass data transport

throughout the system. A massive amount of data is being sent

from the TIC to the DDR memory while conducting time

interval measurements. The AXI HP port is tuned for optimal

transfer speed between the PL and DDR controller [2].

The AXI HP port requires a sophisticated bus controller on

the PL side in order to operate. Instead of designing one from

the scratch, it is reasonable to utilize a ready to use IP core, the

AXI DMA module, prepared by Xilinx [5]. Such module is

configured as a bridge between the TIC interface and the AXI

HP interface. Although AXI DMA automatizes many bus

operations and eases transactions, it still requires a stream type

bus, conditioned by the AXI Stream standard. That is why

a custom translation module was designed.

The translation module communicates via the wide

asynchronous bus, requesting new measurements from TIC

and acquiring data frames. Next it translates those frames

according to the AXI Stream protocol specification and

streams the data to the AXI DMA module, from where it is

transported to the DDR memory. The translation module

is configured with the number of measurements to be

conducted.

The second major issue was to control the TIC and adjacent

components in a unified manner. The control and status

registers were placed in a continuous memory space, just like

ordinary processor peripherals. This could be achieved by

using the AXI GP buses. Commands sent to the peripherals

and status words received from them did not need fast

transactions and would be sent reliably, without errors. The

AXI GP is connected to the translation module. Thanks to such

configuration, the module is in fact the master for both the TIC

and the AXI DMA. By sending a reset signal followed by the

number of measurements to be conducted, the translation

module initiates each transaction in the TIC, and forwards the

converted frame into the AXI DMA.

Fig. 3. Measurement system implementation.

The third design issue was to establish an efficient

communication channel with the system user. The basic

method was to utilize one USART port in the PS. This enabled

a simple command prompt using a standard serial terminal

device.

The last important issue was to establish an efficient inter-

CPU link, so that both cores could communicate between each

other and exchange information. As mentioned earlier, the on-

chip RAM was used, due to possibility of bypassing the L2

cache and other circuitry, directly connecting both CPU cores

with minimal software and hardware overhead.

III. DATA FLOW HIERARCHY

Each system, where massive data flows are expected, needs

to have clarified hierarchical data flow design. Configuring the

right connection between masters and slaves is essential in

achieving high data throughput in the system.

The Zynq SoC has an organized hierarchy in terms of data

flow [6]. Each connection is organized as point to point,

master to slave. Furthermore, each module is responsible only

for those masters and slave, to which it is directly connected.

Fig. 4 shows a generalized data flow structure of the Zynq

SoC. Each arrow connecting two modules is directed from

a local master to a local slave, e.g. the SCU module is a master

for L2 cache, DDR controller and OCM or PL, at the same

time being a slave for each of CPU cores.

TIME INTERVAL MEASUREMENT MODULE IMPLEMENTED IN SOC FPGA DEVICE 239

Fig. 4. Data flow in the SoC.

In addition, the SCU is responsible only for transactions it is

involved in, e.g. when the CPU0 sends information to the DDR

memory, the SCU only guarantees undisrupted transfer to the

L2 cache. It is the task of the L2 cache to properly transfer

information to the DDR controller. This liability split of each

module increases the total throughput and allows to trim the

total performance in a more flexible way.

In the presented design three main data paths are taken into

account: measurement frames, inter-CPU data exchange and

other (program code, register access etc.). Those are marked

green, blue and red, respectively in fig. 4. The most critical is

the data measurement path. In order to achieve high data

throughput resulting in higher measurement rate, the data path

needs to be fast and have the minimal amount of hubs and

multiplexes as possible. This is because, in every hub or data

multiplexer, while transmitting data through one path, other

paths enter a wait state. To many wait states lower overall data

throughput on a certain path. In some modules e.g. SCU or

DDR controller, the programmer may set the priority of certain

data paths. The DDR controller may be set to handle data

coming from AXI HP first, making the SCU to wait until the

streaming transaction from the PL would end [5].

The second most important data path is the blue one.

Through this route both CPU cores can communicate with

each other. It is very important, that the data don’t have to be

passed through the L2 cache memory. The reason for this is

memory invalidation. When one CPU writes to the OCM some

information, the second one isn’t aware of that event. If the

second CPU would check on the OCM memory at least two

times, the second and next readout would be not from OCM

but from the L2 cache, where the content of the whole OCM

would be copied to save time. If the first CPU changes the

content of the OCM, the L2 cache controller is unaware of that

event, resulting in misinterpretation of data by the second core.

The second core would have to refresh the L2 cache each time

it wants to read from the OCM, in order to fetch valid data.

The same applies for the first core, when it wants to check if

the second one responded with new data. Invalidating L2

cache (which is 512 kB) would take some time, where the

CPU would do nothing else but iterate throughout every sector

of the cache memory, invalidating its content. Zynq SoC has

was designed to avoid such scenario. The only cache a CPU

has to invalidate is the L1 cache memory, invalidated in step.

This is because L1 is smaller than L2 and has separate caching

for program and processing data. The data exchange

mechanism between CPU cores is presented later on.

The third data route (red) is the most commonly used by both

cores. There the program instructions are carried out along

with configuration and status data to and from peripheral

registers, respectively. The compiled program for the main

core slightly exceeds the capacity of L2 cache. This means,

that for the most of the time, the code is stored in the L2 cache

and the cores execute it, fetching from the cache memory. This

drastically reduces the count of accesses to the DDR memory

(where the program is stored) both cores have to perform, so

the DDR controller could be set with a higher priority for the

AXI HP PL to PS connection from the time counter. The

second part of the red route is accessing peripheral registers.

This route is used the least amount of time, so doesn’t require

high data throughput.

This data flow configuration allows to transfer measurement

data efficiently through the system with minimal interference

with program code and peripheral configuration data.

IV. TRANSLATION MODULE

As it has been mentioned already, the time interval counter

was connected to the AXI DMA module, which efficiently

forwards measurement data to the DDR memory.

Unfortunately, the AXI DMA module requires specific

streaming interface, defined by the AXI Stream protocol [3].

Such protocol enables synchronous transfer data words, where

the master passes data to the slave. Basic configuration of this

bus requires signals: ACLK – clock synchronizing both master

and slave; TDATA – the data bus, usually 32 bits wide;

TVALID – master informs the slave, that the TDATA contains

valid data; TREADY – slave informing the master that is

ready for a next data word; TLAST – master informing the

slave, that the current data word is the last one in the

transaction. A typical transaction is depicted in fig. 5.

Fig. 5. AXI Stream signal diagram.

Signals are sampled during the rising edge of ACLK and are

changed during the falling edge. With this set of signals, the

master can control the latency of data sending. When

the master is not ready to pass the next word, it clears the

TVALID line, forcing the slave to enter a wait state. When

the slave is not capable of handling new data waiting on the

TDATA, it asserts a low state on the TREADY line. This

forces the master to enter a wait state. In this way a simple but

firm handshake is established. In this protocol, the master

needs to know how many data words are needed to be sent. It

is important, because the AXI DMA module samples the

TLAST line, when to finish the transfer operation. In order to

separate the data transfer functions from the TIC a data

translation module was implemented. The time counter works

in a single shot mode, generating one data frame per one

measurement. To make the TIC work independently from the

rest of the measurement system, an asynchronous data protocol

240 G. GRZĘDA, R. SZPLET

was implemented. It is also a two point, master-slave link,

where the master initiates a transaction, but the slave sends

data. A typical time chart of this protocol is depicted in fig. 6.

The protocol contains three lines: READY – master informing

the slave, that is ready for a new data frame; FRAME – data

bus where the slave presents data to the master; VALID –

slave informing the master, that new valid data is presented on

the FRAME bus.

Fig. 6. Dedicated asynchronous TIC bus.

In the initial state, both READY and VALID lines are

inactive (low) and the FRAME bus contains invalid data.

When the master wants to receive new data, it sets the READY

line. The slave starts operation (in this case the TIC starts

a new measurement). When the slave is ready, it puts new data

on the FRAME bus and sets the VALID line. When both

VALID and READY lines are high, the master acquires data

from the FRAME bus, which has to be stable. After data

acquisition, master releases the READY line. Slave responds

with resetting the VALID line. When both READY and

VALID lines are again in inactive state, the slave is ready for

a new transaction.

This asynchronous protocol is flexible, so that it can be

implemented in a variety of measurement and communication

designs. The FRAME bus may be wider than 32 bits, allowing

to send great amounts of data in a one transaction. In fact, this

feature is used in this design and is described later.

The lack of a global synchronizing clock allows to utilize

modules working in separate clock domains without the worry

of errors due to clock skew. Even without a clock signal,

implementing such protocol in a SoC results in high data

throughput, which is presented at the end of this paper.

The translation module was designed to serve as a bridge

between the asynchronous TIC and synchronous AXI DMA

modules. It has one configuration register to reset the module

and to initiate a new measurement run. It also allows to set the

desired measurement count. The module also has a status

register, so that the CPU core can read the status of currently

conducted measurements. One of the most important reasons

of implementing the translation module was to divide a wide

measurement frame into 32 bit words, in pursuance of AXI

Stream protocol. The easiest way to obtain a sufficient

behavior of the module, was to implement a finite state

machine, controlling each of the presented busses according to

configuration data present in control register. All states and

conditions are depicted in fig. 7.

After power-up, the device is in RESET state. The nRES

signal may be applied by the Zynq Power On Reset circuitry,

or by the CPU, through the control register. In this state all

internal registers, flags and multiplexers are set to default

values. After releasing the module from the reset state, it enters

IDLE mode. In this state, the module waits for new data

transactions to begin by the AXI DMA. Also only in this state

the translation module samples the configuration register for

the measurement count. In order to simplify the design,

software precautions have to be implemented, e.g. the AXI

DMA must not be triggered for a new transaction before

configuring the translation module. In addition, it is highly

recommended to reset the translation module after each

finished measurement run.

Fig. 7. Translation module state diagram.

When AXI DMA sets the TREADY line, the translation

module enters the REQ state. In this state, the module sets the

READY line issuing a new measurement in the TIC. The

module waits until the TIC finished the measurement and

outputs a valid frame (VALID set). If so, the module enters the

WR state, where subsequent 32 bit words of the measurement

frame are sent. One of the 32 bit words from FRAME is

transferred to TDATA and TVALID is set. In the next clock

cycle, if the TREADY is active, the AXI DMA read the data

word. The module stays in this state, updating the TDATA bus

with sequent 32 bit words of the measurement frame. If it is

the last 32 bit word of the last measurement frame, additionally

the TLAST line is set. If it was the last data word and last

measurement frame, the module releases READY, TVALID

and TLAST, ending the transaction and entering the IDLE

state. If it only is the last word, but not the last frame, the

module resets the TVALID and READY lines. Then it

switches to the STEP state. In this state, the module waits for

the TIC to end operation (indicated by releasing the VALID

line) and prepare for the next measurement. Also in this state

the measurement counter is decremented. When the TIC is

ready (VALID in low state), the module moves to the REQ

state, ready to initiate a new measurement process in the TIC.

V. TIME INTERVAL COUNTER

The TIC measures the elapsed time between two events

represented by leading edges of two signals – START and

STOP [7]. Achieving picosecond precision in a range of

several seconds was done by combining two stage

interpolation, which is an extended interpolation method

invented by Nutt in 1968 [8]. It combines a standard period

counter and equivalent coding delay lines for coarse and fine

TIME INTERVAL MEASUREMENT MODULE IMPLEMENTED IN SOC FPGA DEVICE 241

time measurements, respectively (fig. 8). The period counter

provides a wide measurement range, vastly longer than the

range of the subsequent stages of interpolation. With

a standard 32 bit counter and 500 MHz clock, a total range of

over 4 seconds is achieved [9]. Utilizing a chain of buffers,

a 16 delayed clock signals are generated that create a multi-

phase clock (MPC).

Fig. 8. Two stage interpolation method.

The first stage of interpolation (FIS) detects in which MFC

the phase leading START/STOP edges occurred. By doing so,

the measurement resolutions increases sixteen times in

comparison to the counter method. In order to further increase

the measurement resolution, in the second stage of

interpolation (SIS), a delay line may be used. Instead of using

a classic tapped delay line, a novel technique was applied,

called multi edge coding in independent coding lines

(described in detail in the next section). The measured time

interval T is a linear combination of delay times measured by

the period counter, FIS and SIS (1).

 𝑇 = 𝑁𝑇0 + (𝑇𝑆𝑇1 + 𝑇𝑆𝑇2) − (𝑇𝑆𝑃1 + 𝑇𝑆𝑃2) (1)

where N – the number of counter periods, T – the clock period,

TST1, TST2 – delays of START signal measured in first and

second stages of interpolation respectively, TSP1, TSP2 –

delays of STOP signal measured in first and second stages of

interpolation respectively. Combining all presented

components into a one module results in a time interval

counter, with a structure shown in fig. 9.

The TIC consists of several modules. Each input signal has

its own interpolation channel. In each there is the MPC that

generates delayed clock phases for the FIS. The FIS detects

START/STOP edge and MPC correlation, triggering the SIS.

After delaying the measured signal (because of processing

delays in FIS) the SIS is fed with a special signal called the

‘pattern’ (described in detail further in the text). Output of each

interpolation stage is sent to code converter modules,

compressing and reconditioning the measurement data.

Triggering data from both interpolator FISs are driving the

clock period counter through a synchronization circuit. The

module counts clock periods between START and STOP

edges.

Fig. 9. Time interval counter block diagram.

The measurement data consists of 30 bits from period

counter, 4 bits from each FIS and 384 bits from each SIS. This

gives 806 bits of measurement data, which is transferred to the

TIC interface. In this interface, the main TIC control is

performed, resetting the module before each measurement and

communicating with the rest of the system by the

asynchronous frame bus. The measurement frame is 896 bit

long and contains all data generated by the TIC. The frame is

organized in seven 128 bit big endian words (table.).

TABLE. I

TIC DATA FRAME

Word number Content (127:0 bits) Bit position in frame

1 Generic field (127 – 0)

2 SIS START 0 (255-128)

3 SIS STOP 0 (383-256)

4 SIS START 1 (511-384)

5 SIS STOP 1 (639-512)

6 SIS START 2 (767-640)

7 SIS STOP 2 (895-768)

The first word is the generic field. It contains four 32 bit

words (from MSW to LSW): FIS STOP (number of MPC

phase after which the STOP signal occurred), FIS START

(respectively for START), PERIOD NUMBER, FRAME

NUMBER. Although the output of each FIS is only 4 bits,

resulting in 28 spare bits in each FIS field of the generic field,

this approach was chosen, so that the measurement frame is

32 bit aligned. This was a specially good feature for designing

the translation module, where frames had to be converted into

32 bit AXI Stream TDATA words. There words from the

second to the seventh words contained paired SIS fields. Here

three sets of SISs were used to increase the measurement

resolution and precision.

Due to hardware limitations of the target printed circuit

board (PCB), this time counter could not be directly

implemented in the design. The main limitation was lack of

special low-jitter input buffers conditioning START and STOP

signals, before entering the PL fabric of the Zynq device. The

presented counter was implemented (with an USB interface) in

a design described in [9]. In this particular design a special

module imitating the behavior of the TIC was implemented

and is described in following sections.

242 G. GRZĘDA, R. SZPLET

VI. TIME CODED DELAY LINE

The second stage of interpolation is based on the method of

the multi-edge coding in independent coding lines method

[10]. It utilizes tapped delay lines, in which a special signal

called the ‘pattern’ is propagated. The interpolator is depicted

in fig. 10. The pattern generator generates a square wave with

six edges when triggered by the input signal. Once generated,

the pattern propagates through the tapped delay line. At the

end of the measurement, the delay line is latched into

associated D-type flip-flops. The synchronization signal needs

to be delayed (Δt), according to the pattern generator delay in

order to reduce the interpolator’s dead time. The output of each

flip-flop is forwarded to a code converter, which eliminates

conversion errors (called ‘bubble errors’). The converter also

reduces the required amount of bits, on which the

measurement result needs to be saved. A bubble error occurs

mainly due to hardware inequalities of D flip-flops clock input

threshold voltages or supply voltage noise.

Fig. 10. Time coded delay line.

The TIC was implemented in a Spartan-6 FPGA device,

where 256 tap lines were needed to cover 125 ns measurement

range. It is the time duration between two subsequent MPC

phases generated with a 500 MHz clock. Using a code

converter, only 128 bits were needed to compress the output

word of the delay line in a lossless manner. The code converter

takes the delay line word (256 bits), eliminates bubble errors

and extracts numbers of flip-flops on which pattern edges were

saved, marking corresponding bits as ‘1’ and clearing others.

This process may be depicted as low-pass filtering and

calculating the derivative module of the input signal, bit by bit.

The converters splits such signal into sixteen bytes. The

pattern generator and signal paths inside the interpolator are

trimmed in such a way, that for each of those 16 bytes there

are only 15 possible combinations of zeroes and ones. If an

illegal combination is discovered, it is marked as the 16th state

(error). So it is possible to save each combination number

using four bits, making the compression ratio equals 2:1.

VII. SOFTWARE MODEL

The software was written in C, using a highly structural

approach [11]. The chosen language gives better performance

in time critical operations in the CPU, than higher level object

languages (e.g. C++, Java). This design does not implement an

operating system, so it need more time constrains between

software modules, than it would be for a OS design. The

compiler was a trimmed version of GCC compiler.

The software model was divided into four logical groups (fig.

11) [12].

Fig. 11. Structure of design software.

First group is called System. It contains a date/time

manipulation library, custom definitions of data types used in

the design, initialization and control routines and the main

project function. The second group, tagged ‘Comm’, includes

the inter-CPU mailbox protocol and UART state machine. The

‘TIC stack’ group contains a four level software stack

responsible for communicating with the TIC hardware,

configuring it, triggering calibration and measurements,

downloading and processing measurement frames as well as

computing the measured time intervals. The last group called

‘Frame gen’ contains a software frame generator, emulating

the time interval counter behavior.

Dividing the software in such a manner eases software

maintenance. It also allows making fast changes in the design.

If e.g. the designer would change the TIC hardware, one would

have to change only one layer of the ‘TIC stack’ group,

leaving the rest of the project untouched.

VIII. INTER-CPU MAILBOX MECHANISM

In a multi CPU system one of the most important issues is to

establish a reliable and efficient connection between CPU

cores [2]. As program code has to be generated independently

for each of the cores, there has to be a standard way of

exchanging data. The connection should have little latency and

not require additional handling (refreshing, handshaking). That

is why a mailbox style of messaging was implemented in the

OCM of the application processing unit of the PS subsystem

(fig. 12).

The OCM is divided into two banks. Each bank is

unidirectional. In a typical mailbox scheme, a postman

(sender) puts the message in the mailbox and raises a flag. The

recipient only needs to check if the flag is raised. If so, it opens

the mailbox, reads the information and resets the flag. This

mechanism consists of two main elements: a flag and payload.

If a CPU wants to send new information, it should first check

the corresponding ‘send flag’, if the last message was read. If

the flag is low, it should copy the desired content to the

payload area and finally set the flag. The receiver CPU would

check the flag, copy valid content and lower the flag after

finishing download. Each CPU has its own transfer area, so

that a full duplex communication is available. Dividing the

OCM into two areas gives almost 128 kB (minus space for the

flags) of payload for each core. At this level of abstraction it is

does not matter what is transferred in the payload area.

TIME INTERVAL MEASUREMENT MODULE IMPLEMENTED IN SOC FPGA DEVICE 243

Fig. 12. Inter-CPU mailbox mechanism.

The software handling this protocol was written in a fully

structural technique, so that each CPU core acquires

information about oneself and automatically configures own

OCM bank to proper operation.

IX. TIME STAMP GENERATION

The C language standard implements a standard date/time

manipulation library. The only issue is that the standard does

not specify the hardware layer of that library. It is essential,

because the time interval ought to be claimed from an interrupt

service routine (ISR). The CPU usually jumps into a timer

ISR, when the desired timer has reached zero and needs to be

reloaded with its preprogrammed value. Inside that ISR usually

an integer is incremented, representing the elapsed time from

the system power-up. For example, if the timer is fed with

a 100 MHz clock, and it has a preprogramed value of 100,

after each 100 ticks the timer would generate an interrupt. This

would make the CPU enter a proper ISR every 1 µs. Inside that

ISR, a static variable is incremented. The variable represents

how many microseconds passed since system power-up. The C

compiler provides a low level function called

‘__gettimeofday’. The programmer can implement the static

variable into that function. By doing so, the standard ‘time’ C

library automatically manage date time presentation format for

the system (fig. 13).

The mentioned function has to acquire a pointer to a specific

time structure. Inside that structure it has to update two elapsed

time fields: in seconds and microseconds. That elapsed value

can be read from the presented ISR time counter. The system

timer is based on a SCU timer, located in CPU0 private

address space. It generates interrupts every 1 µs. Inside the ISR

an integer is incremented.

When the program needs to get present time value, it calls to

the standard ‘time’ function, which returns an integer equal to

the number of seconds, which passed since the system power-

up. In turn, the standard functions calls for the implemented

‘__gettimeofday’ function, waiting for certain time structures

to be updated. After the update, the ‘time’ function processes

new data and returns to the main program.

Fig. 13. Simple way of binding standard time library with the system.

Despite the software overhead, it is worth implementing

standard functions, because of two main reasons. First, the

software is less error prone, because standard libraries are

mostly delivered as high quality add-on to compilers. Second,

the main software can be compiled and tested on every

platform implementing a C standard. In this case, more 85% of

the software was developed and tested on a standard PC,

substituting only the bottom-most functionalities while

migrating to the Zynq platform.

X. COMMAND LINE INTERPRETER

An advanced measurement system should be equipped with

a straightforward user interface (UI), that should give the user

a handset of commands to control the system. It also should

correct at least minor input errors which may appear. One of

the most basic UI is a command prompt. Analyzing vast

majority of OS text interfaces (MS PowerShell, UNIX bash,

sh, csh, etc.), a typical command prompt should allow the user

to input commands with additional parameters. The command

line interpreter (CLI) was developed in order to enter text

commands with parameters. The module operates on the input

string taking four steps: text preprocessing, command division

and searching, memory allocation and function invocation.

In the first step, CLI analyses the input string, detects

unnecessary leading, trailing and multiple separators (fig. 14)

and eliminates them. The standard separator is a spacebar

(ASCII 0x20). After preprocessing, the input string is being

divided into separate words. The first word is always the

command, and the other are parameters (fig. 15).

Fig. 14. An input string containing the user command with parameters.

Fig. 15. The user command after pre-processing.

244 G. GRZĘDA, R. SZPLET

The software contains a table with strings representing

commands along with pointers for functions executing those

commands. Each function is declared according to the UNIX

ABI (UNIX application binary interface), where the function

get a number of passed parameters and a table of pointers to

strings with those parameters (fig. 16). The CLI compares the

first word of the input string with each entry of the data table.

If it finds a matching word it proceeds to the next step. Other

way, it returns an error status. In the last step, the CLI

dynamically allocates memory for all command words as

depicted in fig. 17.

Fig. 16. Main command structure with linked functions.

Fig. 17. Dynamically allocated strings for the evaluated function.

Each ‘argv’ entry is a pointer to one word, terminated by

a null character. The standard requires to allocate one

additional string containing only the null character. The ‘argc’

parameter is the number of arguments (not counting the last

null character). After preparing ‘argv’ and ‘argc’ fields, the

CLI invokes the function associated with the first word of the

input string. In this example it would be ‘funCalib’. Each

function returns an integer value. This value is captured by the

CLI and returned to the main program after releasing allocated

memory resources.

XI. FRAME GENERATOR

As mentioned earlier, the TIC module could not be

implemented because of hardware limitations of the target

PCB. In this case an equivalent peripheral served as a dummy

TIC. At one side connected to the AXI GP port, where the

software loaded a generated data frame. On the other side, it

was connected to the translation unit, simulating the behavior

of the TIC. The frame generation module was using a standard

pseudo-random number generator, which may be found in the

‘stdlib’ C library. It generates integer values with a uniform

probability density from zero to 32767. It also has a seeding

function, which allows to initialize the generator each time

with a different starting value. The frame generator produces

random values only in the FIS and every SIS of the

measurement frame. It may work in one of two state:

calibration and measurement. In calibration mode, the frame

generator produces FIS and SIS fields with uniform probability

density functions (PDFs). This is because in the real TIC

a calibration was performed with the use of a standard code

density test [13]. The measurement mode was designed to

imitate the TIC’s behavior during standard measurements,

which means a normal PDF for each detected pattern edge in

SIS. This is because the input time interval represents a normal

PDF. These two methods of operation are depicted in fig. 18.

Testing the real TIC behavior during calibration it was noticed,

that every pattern edge appeared within specific ranges (table

).

Fig. 18. Calibration and measurement PDFs for an artificial

TCDL word generation.

TABLE II

UNIFORM PDFS OF PATTERN EDGE POSITIONS.

Pattern edge Minimal position Maximal position

1 15 30

2 30 55

3 45 68

4 58 85

5 70 90

6 88 112

The mechanism for generating pattern edge positions is

relatively simple. Each position was randomized within

specified range. If two sequent pattern edges were generated

on positions closer than to one another than 5, the second edge

position is shifted, thus preventing overlapping. In order to

generate pattern edge positions with a normal PDF a Box-

Muller generator was used. The mean and standard deviation

values for each edge were chosen as the mean value and 1/8 of

corresponding uniform PDF range respectively (table iii).

TABLE III

NORMAL PDFS OF PATTERN EDGE POSITIONS.

Pattern edge Mean StdDev

1 22 1

2 42 3

3 56 2

4 71 3

5 80 2

6 100 3

After generating all 6 pattern edge positions, those values

were converted backward according to the TCDL converter in

the SIS, so that the result would be a 128 bit word, which

could be generated in a real measurement. This procedure is

repeated for each of 6 SIS (three for START and three for

STOP channels). In the measurement mode, the FIS fields

contain constant values, while in the calibration mode, the FIS

fields contain randomized numbers, in a uniform range

between 0 and 15. The period counter contains zero during

TIME INTERVAL MEASUREMENT MODULE IMPLEMENTED IN SOC FPGA DEVICE 245

calibration and a constant value during measurement. The

frame counter contains the number of current frame being

processed.

XII. FRAME DECODING AND PROCESSING

The frame decoding piece of software is directly responsible

for proper configuration and communication with the TIC in

the PL. It was designed as a three level stack, where each level

is responsible for a different functionality of the device. The

lowest (zero) level is responsible for configuring the

translation module and AXI DMA. It also receives data frames

from the TIC. The software abstraction is done on this level.

When a major change in hardware occurs, e.g. a TIC with

a completely different interface is implemented, only this level

has to be rewritten, leaving the rest unmodified. The whole

software could be written and tested on PC, using a standalone

GCC compiler, before integrating the system together.

The middle (first) level contains the frame decoder. This

decoder is specific for the measurement method, where the SIS

implements multi-edge coding in independent coding lines. If

the structure of the TIC would change, e.g. instead of two

stage interpolation, time stamp method would be implemented,

this level would be the only one to be rewritten. Certain

precaution were taken while developing this level, e.g. when

the number of coding lines in every SIS would have to change,

the software designer would only have to change one macro-

definition recompile and reload the code. The frame decoder

analyses one frame at a time. First it decodes the generic field,

recovering both FIS values, period and frame counters. Next it

sweeps remaining six 128 bit words, decompressing and

acquiring pattern edge positions for each line. Decoded data

are saved either into a calibration table or measurement

dynamic list, depending on the current system operation.

The highest (second) level is the calibration and

measurement level. This level is generic for most counters. If

there had to be e.g. a major change in TIC way of measuring

time intervals or changing TIC into a completely different

measurement device, leaving communication considerations

unchanged, only this level would have to be rewritten.

During calibration, a structured table is allocated, where each

cell corresponds to one equivalent coding line step of each

interpolation channel. Each step has its own width, value (in

nanoseconds), DNL and INL values [13]. The content of this

table serves as a transfer characteristic while conducting

measurements. In the measurement mode, the decoding

module allocates a dynamic linked list, filling it with computed

measurement point. Each point contains the decoded FIS, SIS

and counter fields, along with a system timestamp when the

measurement occurred. It also contains the computed mean

value of the measurement (in nanoseconds) along with error

span (which is the width of both START and STOP

quantization steps of SIS). Thanks to a custom memory

management system, the dynamic linked list is allocated and

released faster, than using the ‘stdlib’ standard C library,

containing ‘malloc’ and ‘free’ functions.

XIII. TEST RESULTS

The presented design was implemented in an AVNET

ZYNQ Mini Module-Plus (MMP) with AVNET MMP

BASEBOARD2. The MMP board contained a XC7Z045 Zynq

SoC, with a Kintex-7 equivalent PL subsystem. The original

TIC for test purposes was implemented in a Spartan-6 FPGA

on a custom PCB. The complete project was designed and

tested using the Xilinx ISE Design Suite 14.7. The software for

APU cores was written in Xilinx SDK 14.7. The output code

was uploaded to a µSD card, from which Zynq fetched the

code during boot-up. The system was tested in respect of three

parameters: reliability, raw data throughput, calibration and

measurement duration time. During the first test properly

responds to control commands sent through serial console

were verified (fig. 19).

The module responded properly to each command. The serial

console could be substituted with an additional channel in the

inter-CPU protocol, and could be controlled by additional user

interface programs, giving chance of implementing e.g.

a graphic LCD with touch panel. Second test was conducted to

obtain information about the system throughput. In this case

one measurement frame was generated and transferred to the

TIC simulation hardware. Next, the software ‘conducted

measurements’ reading that constant frame. The AXI DMA

was set to read different data sizes each time (fig. 20).

Fig. 19. System reliability test.

Fig. 20. Test results of data throughput in the system.

It may be noticed, that for small data packets the total
throughput is low, whilst for larger packets the throughput
increases, saturating at about 200 MBps. Considering
maximum PL to PS Zynq throughput of 300 MBps [3] and
a chain of transfer points in the PL, this result is satisfactory.
One of main reasons of such throughput distribution is that the
L2 cache controller gives a higher priority for bigger data
packets than for smaller ones. With a higher priority, measured

246 G. GRZĘDA, R. SZPLET

frames are fetched from the DDR memory more quickly than
e.g. the software code for a CPU core.

The last test was performed during the normal device
operation, where a standard 106 point calibration and 105 point
measurements were conducted in two cases. First, the TIC was
simulated in pure software (generated frames were copied to
the download area), second the TIC was simulated in
hardware, utilizing the translation and AXI DMA modules.
Results are show in table iv with comparison to the classic
system approach where Spartan-6 FPGA with the TIC was
communicating with PC host via USB 2.0.

TABLE IV

COMPARISON OF OPERATION TIMES OF TIC EMULATED IN SOFTWARE AND

HARDWARE.

Zynq software TIC
simulation

Zynq hardware TIC
simulation

Spartan-6 TIC

Calib. Meas. Calib. Meas. Calib. Meas.

3 s 2 s 15 s 5 s 30 s 15 s

It is clearly show that the hardware TIC simulation performs

its operation 2 to 3 times faster than the classic approach,

where the measurement system communicates with PC

software via physical link. The main reason is that Zynq gives

better opportunities for implementing custom data buses. In

a classic approach, the designer is constrained to hardware

limitations of used interface ICs, PCB design limitations etc.

On the other hand, one must remember, that a SoC requires

designing every piece of hardware and software from the

scratch, becoming a more error prone approach.

XIV. CONCLUSIONS

A complete precise measurement instrument was

implemented as SoC in a single FPGA device. Such

implementation releases new vital opportunities by reducing

the size and power consumption of the instrument. In addition,

integrating the measurement system substantially increases the

measurement rate in comparison with traditional approaches,

where the device had to communicate with a host through third

party interfaces, usually being bottlenecks of fast designs.

REFERENCES

[1] R. B. Northrop, “Introduction to Instrumentation and measurements”,

Taylor & Francis Group, Broken Sound Parkway 2005

[2] http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[3] http://www.xilinx.com/support/documentation/ip_documentation/ug761

_axi_reference_guide.pdf

[4] G. Grzęda, “Control and data processing module for time interval

counter in SoC device” (in Polish), WAT 2015

[5] http://www.xilinx.com/support/documentation/ip_documentation/axi_d

ma/v7_1/pg021_axi_dma.pdf

[6] http://www.xilinx.com/support/documentation/user_guides/ug585-

Zynq-7000-TRM.pdf

[7] R. Szplet, “Time-to-Digital Converters”, in Design, Modeling and

Testing of Data Converters, Berlin, Springer-Verlag, pp. 211-246,2014

[8] R. Nutt, “Digital time interval meter”, Rev. Sci. Instrum., vol 39, pp.

1342-1345, 1968

[9] R. Szplet, D. Sondej, G. Grzęda, „Interpolating time counter with multi-

edge coding”, EFTF/IPC, pp 321-324, July 2013

[10] K. Klepacki, R. Szplet, R. Pełka, „A 7.5 ps single-shot precision

integrated time counter with segmented delay line”, Review of

Scientific Instruments, vol 85, no. 3,2014

[11] B. Kernigham, D. Ritchie, „The ANSI C Programming Language”,

Prentice Hall, Englewood Cliffs 1995

[12] G. Grzęda, D. Sondej, R. Szplet, „Diagnostic and control software for

interpolating time counter in programmable logic device” (in Polish),

Measurement Automation Monitoring, vol 60, pp. 441-443, 2014

[13] S. Cova, M. Bertolaccini, „Differential linearity testing and precision

calibration of multichannel time sorters”, Nuclear Instruments and

Methods, vol. 77, pp. 269-276, 1970

