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Abstract—For the first time, operator o appeared in the 

literature on weakly nonlinear circuits in a Narayanan’s paper on 

modelling transistor nonlinear distortion with the use of Volterra 

series. Its definition was restricted only to the linear part of a 

nonlinear circuit description. Obviously, as we show here, 

Narayanan’s operator o had meaning of a linear convolution 

integral. The extended version of this operator, which was applied 

to the whole nonlinear circuit representation by the Volterra 

series, was introduced by Meyer and Stephens in their paper on 

modelling nonlinear distortion in variable-capacitance diodes. We 

show here that its definition as well as another definition 

communicated to the author of this paper are faulty.  We draw 

here attention to these facts because the faults made by Meyer 

and Stephens were afterwards replicated in publications of 

Palumbo and his coworkers on harmonic distortion calculation in 

integrated CMOS amplifiers, and recently in a paper about 

distortion analysis of parametric amplifier by H. Shrimali and S. 

Chatterjee. These faults are also present in some class notes for 

students, which are available on WWW-pages. 

Keywords—Operator o, descriptions of mildly nonlinear 

circuits in the frequency-domain,  nonlinear distortion, Volterra 

series. 

I. INTRODUCTION 

 O our best knowledge, an operator denoted shortly as o 

appeared for the first time in the literature in [1] in the 

context of the nonlinear distortion analysis in bipolar transistor 

circuits with the use of Volterra series [2]. In [1], this operator 

was defined strictly as a linear operator, associated with the 

linear impedance. Moreover, it was assumed to be an operator 

working in the time domain. Furthermore, its definition was 

not extended by Narayanan to a nonlinear case in [1], albeit 

really a nonlinear problem of calculating nonlinear distortion 

was considered in [1]. Only a linear part of the models used for 

the circuit analysis was described by Narayanan with the use of 

operator o, but their strictly nonlinear part in another way. 

 Referring to as the derivations presented in [1], Meyer and 

Stephens interpreted incorrectly [3] the operator o as one that 

enables an input-output circuit description in a mixed way, that 

is with the use of voltages and currents in the time domain and 

functions describing a circuit in the multi-dimensional 

frequency domain. The expression for such the mixed way of 

description of a nonlinear circuit behaviour, which they have 

given in [3] referring to as [1], cannot be however found in [1]. 

Even worse, Meyer and Stephens by publishing their 

ambiguous expression caused that many researchers afterwards 

begin to believe that a general description of a nonlinear circuit 
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in the aforementioned mixed form does exist. Among them, 

there were the authors of the papers [4-7], and now such the 

belief seems to be very common either in research papers or 

didactic materials for students, see, for example, [8] and [9], 

respectively. In [8], the operator o became even an ordinary 

multiplication. 

The problem sketched above has been already discussed 

briefly by the author of this paper at oral presentation and in a 

conference paper [10]. However, not all of its aspects have been 

addressed. Therefore, they need in our opinion more 

explanation.  
The remainder of this paper is organized as follows. In the 

next section, we show thoroughly that o in [1] denotes in fact 
only a convolution integral, nothing more. In section III, we 
consider an imprecise definition [3] of the operator o and show 
that a Volterra series applying this operator does not in fact 
exist. Next, the corrected representation for description of a 
mildly nonlinear circuit or system is presented. Section IV is 
devoted to a new interpretation by Meyer of his o operator 
definition, which was recently communicated to the author of 
this paper [14]. It is shown here that this new interpretation is 
also faulty. The paper ends with some conclusions. 

II. MEANING OF OPERATOR O IN WORK OF NARAYANAN 

Narayanan in his first paper [1] in a series of articles on 

nonlinear distortion analysis in bipolar transistor circuits with 

the use of the Volterra series [2] introduced an operator 

(operation) o. Referring to an equivalent nonlinear circuit of 

the common-emitter bipolar transistor connection shown below 

in Fig. 1, he simply said that “the impedances are represented 

by their transforms and o denotes that it operates on the 

voltage across it” [1, page 1000 therein]. And nothing more 

about the operator o. 
 

Fig. 1. Equivalent nonlinear circuit for the common-emitter bipolar transistor 
connection after Narayanan [1]. 
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Note that to be precise in our reference to [1] the original 

notation from Narayanan’s article regarding the elements of the 

equivalent circuit in Fig. 1 was retained in this figure. But, for 

more details connected with the construction of the equivalent 

scheme shown in Fig. 1 and terminology used, the interested 

reader is referred to [1]. 

For proceeding further to deduce what the above 

Narayanan’s descriptive definition of the operator  o  does 

really mean, let us yet rewrite here the nodal equations for the 

circuit of Fig. 1 formulated in [1, page 1000]. So, in this case, 

we have 
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where  2k v ,  3 2v v  , and  2 3 1,g v v v  are the 

nonlinear current sources that depend upon the corresponding 

voltages. 

Looking at the form of equations (1), (2), and (3), we 

observe that the operator o is used in them solely in connection 

with the linear elements occurring in the equivalent circuit 

scheme of Fig. 1. And in Fig. 1, we have the following linear 

circuit elements: resistors 
br  and 

cr ; capacitors 
1C , 

2C , and 

3C ; input generator impedance  gZ s  and output load 

impedance  LZ s . 

Further, we do not see in (1), (2), or (3) any application of 

the operator o to the nonlinear current sources   2k v , 

 3 2v v  , and  2 3 1,g v v v . Hence, it follows that o is a 

strictly linear operator associated exclusively with the linear 

circuit elements. As such, it is, generally saying, a convolution 

integral operator of the form 

     

          NEy t NE ox t h x t d  




    (4) 

 

where t denotes a time variable,  x t  means the voltage 

across a given circuit element (or current flowing through it), 

and the meaning of  y t  is just opposite. The symbol NE in 

(4) is used to denote the “name of a given circuit element”. 

And finally,  NEh t  is the so-called impulse response (of a 

given element). 

Comparing notation associated with the operator o used in 

(4) and by Narayanan, which is repeated in (1), (2), or (3), we 

see that the following element names: 1 br  and 1 cr ; 
1sC , 

2sC , and 
3sC ;  1 gZ s  and  1 LZ s  are associated with 

the resistors 
br  and 

cr ; capacitors 
1C , 

2C , and 
3C ; input 

generator impedance  gZ s  and output load impedance 

 LZ s , respectively. 

Observe now that a more convenient notation than that 

used by Narayanan in [1] could be applied by the use of a 

name associated, in some way, with the name of the function 

occurring on the right–hand side of (4), for example, as 

 

         NE NEy t H x t h x t d  




   . (5) 

 

The convention presented in (5) is used in the theory of 

systems and operators. Moreover, in the above context, 

observe also, that precisely saying, o stands only for carrying 

out an operation of integral convolution. One of the operands 

of this operation is the circuit element impulse response 

 NEh t , as expressed in (4) and (5). This is the cause that (4) 

and (5) can be also written equivalently in the following way 

 

             NE NE NEy t h ox t h x t h x t     , (6) 

 

where the symbols " "o , " " , and " "  stand alternatively for 

the convolution operation. Note that the latter two are widely 

used in the research literature and textbooks on the linear 

theory and signal processing for denoting convolution integral 

operation.  

It can be shown by exploiting only some basics of linear 

circuit theory that the impulse responses of the circuit resistive 

and capacitive elements occurring in Fig. 1 assume the 

following forms 
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for example, see [11]. In (7),  t  means the Dirac impulse. 

Moreover, 1b bg r  and 1c cg r  in (7) mean the 

corresponding conductances associated with the resistors 
br  

and 
cr , respectively. Further, the symbol ( )1 t  in (8) stands for 

the Heaviside unit step function. 

Regarding the impedances  gZ s  and  LZ s , or more 

conveniently, their admittances    1g gY s Z s  and 

   1L LY s Z s , respectively, (as they are in fact used in 

formulation of the nodal equations (1), (2), and (3)), we shall 

present, in what follows, some impulse responses for them for 

some concrete forms of the above impedances. Let us first 

consider an example of the impedance  gZ s r sL  , with 

r meaning a resistance connected in series with an inductance 

L. Hence, the equivalent admittance will have in this case the 

following form 

 

  
 
1 1 1 1

g

g

Y s
rZ s r sL L s
L
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



 . (9) 

 

For such the form of the transform as occurring on the right-

hand side of (9), we get from a table of Laplace transforms 

(see, for example, [12]) the following function of time 

 

     
1

1
gY

r
t
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L


   . (10) 

 

As a second illustrative example, consider now the 

impedance of a series connection of a resistance r, an 

inductance L, and a capacitance C. For this connection, we will 

have    1gZ s r sL sC    or equivalently as the 

admittance 
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g
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Looking at the table [11] of the Laplace transforms, we get 

for (11) the inverse transform as 
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with the coefficients  2r L   and    
2

1 2LC r L   . 

So, concluding, we can say that depending upon the form 

of the impedance  gZ s , we easily find the associated 

operand  
gYh t  - for performing the convolution operation 

related to it - by using the procedure sketched above. 

Moreover, the same regards the impedance  LZ s . 

III. MEANING OF OPERATOR O IN WORK OF MEYER AND 

STEPHENS 

In their paper [3], Meyer and Stephens claim that 

Narayanan in [1] has derived a special Volterra series 

representation, which, referring to an equivalent circuit of Fig. 

1, would allow to describe the relation between the circuit 

output voltage   3v t  and its input current  gi t  as   
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where  1A f ,  2 1 2,A f f , and  3 1 2 3, ,A f f f  mean the 

nonlinear (current-to-voltage) transfer functions of the circuit of 

Fig. 1 of the first, second, and third order, respectively. In [3], 

these transfer functions are called the Volterra coefficients. 

Obviously, they are the one-, two-, and three-dimensional 

Fourier transforms of the corresponding nonlinear circuit 

impulse responses of the first-, second-, and third-order [13], 

accordingly. Regarding the operator o used in (13), Meyer and 

Stephens say in [3, page 47] that “the operator sign indicates 

that the magnitude and phase of each term in 
n

gi  is to be 

changed by the magnitude and phase of  1 2, ,...,n nA f f f ”. As 

we know the operation of convolution does this, when we 

transform it to the frequency domain. But, it should be 

mentioned now (what was not done in [3]) that the symbol o in 

(13) has slightly different meanings in the consecutive 

components on the right-hand side of (13). Namely, it means 

subsequently the one-, two-, and three-dimensional convolution 

integrals, on the contrary to its definition in [1], where it meant 

only one-dimensional convolution integral. Furthermore, bad 

news for [3] is also that it is impossible at all to find a Volterra 

series description like that given by (13) in the Narayanan’s 

work [1]. 

We shall show now that such a representation as given by 

(13) does not exist at all, even in the linear case. To this end, let 

us write 

 

          1 1 1g g goa i t a i t a i t d  




    (14) 

 

with   1a t  meaning the first-order (liner) impulse response of 

the circuit in Fig. 1. Next, note that (14) would correspond to 

the first component on the right-hand side of (13). 

Further, we introduce the Fourier inverse transform of 

 1A f given by 

      1 1 exp 2a t A f j ft df




    (15) 
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into (14). This leads to 

 

         1 1 exp 2g goa i t A f j f df i t d   
 

 

   , (16) 

 

which after rearranging the terms and introducing a new 

variable ' t    gives 
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 . (17) 

 

Further, recognizing in (17) a Fourier transform for  gi t  

(denote it by  gI f ), we can rewrite (17) as 

 

         1 1 exp 2g goa i t A f I f j ft df




  . (18) 

 

So, finally, we see that (18) represents nothing else than an 

inverse Fourier transform of    1 gA f I f .  

Using a more compact notation 1{}F    for the inverse 

Fourier transform, we can rewrite (18) as 

 

 

       1

1 1{ }g goa i t F A f I f  (19) 

 

Comparing now the right-hand side expression in (19) with 

   1 goA f i t  in (13), we see that they differ from each other. 

And the first makes sense, but the latter not. 

Note now that the same argumentation can be applied to the 

second, third, and all the further components on the right-hand 

side of (13). So, this allows us to write a correct version of (13) 

in the following way 
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where 
1

1, 2, 3, ...{},  i iF 
 , means the inverse i-dimensional 

Fourier transform. 

 Substituting     1g f gI f F i t  in (20), we get finally 
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 (21) 

 

where 
1 {}

zf
F   stands for the one-dimensional Fourier 

transform, in which the frequency variable is denoted as 

,  1, 2,3,...zf z   . 

 Observe now that the description (21) resembles the mixed 

time-frequency representation given by (13). In fact, the 

former is a correct version of the latter.  

 Moreover, observe also that (21) is nothing else than a 

Volterra series in the time domain, now with the Fourier 

transforms used in it. 

IV. NEW EXPLANATION OF OPERATOR O BY MEYER 

 Prof. R. Meyer has been informed by the author of this 

paper about a problem with his definition of the operator o. 

He received an earlier version of this paper describing the 

problem in detail. His answer [14] was as follows (applying 

our notation used in the previous sections): „We introduced an 

operator o in our paper that can be defined precisely as 

follows. Let  1 22 , 2 , , 2n nA j f j f j f    be a function of 

complex arguments 
1 22 , 2 , , 2 nj f j f j f   . Let 

  1 2sin 2 ...s s snK f f f t      be a sinusoid of 

amplitude K, frequency  1 2 ...s s snf f f    and phase  . 

Then 
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   

 
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1 2 1 2

1 2

1 2
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  +... 2 , 2 , 2

sin 2 . ..

  2 , 2 ,..., 2   .
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s s sn

s s sn

A j f j f j f o K f f

f t A j f j f j f

K f f f t

argA j f j f j f

   

   



   

  

   

   









 (22) 

 

This definition defines an unambiguous mapping from the 

field of arbitrary sine waves to another field of sine waves. If 

this definition is rigorously followed (as in our paper)  the 

effects of weak nonlinearities in causing distortion in 

electronic circuits can be (and were) accurately calculated.” 

 In what follows, we will show that also this definition is 

not correct for 1n  . First, however, let us make some 

remarks regarding the above refined definition of prof. Meyer. 

 Remark 1. The original definition that was published in [3] 

is directly related with the Volterra series and its theory. 

Simply, the Volterra series is formulated in [3] with the use of 

the operator o. The definition formulated in [14] is a refined 

and revised version of the former one. Therefore, the function 
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 1 22 , 2 , , 2n nA j f j f j f    of the complex arguments 

mentioned before cannot be considered in isolation from the 

Volterra theory. In this context, it means nothing else than the 

n-th order nonlinear transfer function of a nonlinear system. 

Remark 2. Meyer’s new definition of the operator o in (22) 

is also faulty. Simply, such and operator related with the 

Volterra series does not exist for 1n   . We will show this in 

detail later. Obviously, one can arbitrary define such the 

operator o as in (22) (or some other one), but it will be useless 

in defining the Volterra series correctly. 

Remark 3. The analysis carried out in [3] is correct. 

However, this is a result of consequently using the well-

known form of the Volterra series as defined, for example, in 

[13]. Not by using a faulty operator o. Getting the results 

obtained in [3] would not be simply possible using this 

incorrectly defined operator o. 

Remark 4. Two Meyer’s definitions of the operator o: one 

formulated in [3] and next given in [14] are not identical. The 

former is more general because it was formulated for any 

signals, but the latter exclusively for a specific class of 

signals, sinusoidal ones. In other words, the range of validity 

of a model using the operator o defined in [3] would be wider 

than that of the model specified in [14] if these definitions 

were correct. 

Let us consider now the case associated with putting 1n   

(a linear one). It will be treated here separately because, as we 

will see later, it leads to some other results as those we get for 

1n  . Obviously, the case of 1n   is associated with the first 

term in the Volterra series that is a (linear) convolution 

integral operator. To analyze it, we refer again to our example 

of a circuit presented in Fig. 1. For this circuit, the first term 

of the Volterra series was formulated in (14). Assume now that 

the input signal  gi t  has, as assumed in the second 

Meyer’s definition [14], the following form 

   

 
   

      

1 1

1 1

sin 2 cos 2 2

  exp 2 exp 2  ,
2

s s

s s

K f t K f t

f t f
K

j j t

    

  

 

  

  

 

  (23) 

where the phase shift 2    . By substituting (23) into 

(14), we get  

        

      

      

       

      

1 1 1

1 1

1 1

1

1

1

1

1

1 1 11

exp 2
2

exp 2 exp 2
2

exp 2 exp 2

exp 2 exp 2
2

exp 2   .

s

s s

s s

s s

g

s s s

K
a i t a j

K
j d j

a j d j

K
a j d j

A

f t

f t f t

f f t

f f t

f f tj A f

 

  

   



 

  

 

 



  















  

   

    


    



   

 

  



 

  







      (24) 

 

In (24), the definition of the one-dimensional Fourier 

transform has been used. Moreover, we have used a shorter 

notation for the argument in  1A  . That is we have written 

 1 1sA f  instead of  1 12 sA j f  and  1 1sA f  instead of 

 1 12 sA j f , respectively. We will use this shorter notation 

consequently in what follows. 

Further, note that after some algebraic manipulations (24) 

can be rewritten as 

 

 

        

     
    
      

1

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1

1

1

exp 2
2

exp 2  =

cos 2

=Re exp 2

s

s

s

g A

A

s s f

s s f

s s f

s s

A

f f t

f f t

f f

K
a i t A j

A j

K A

A K

t

f tj f

 

 

  









   


  












 



 (25) 

 

because    
*

1 111s sf fA A     holds. Moreover,  11 sA f  

and 
 11 sA f

  in (25) mean the magnitude and phase, 

respectively, of the circuit linear transfer function  1A   

calculated at the frequency 
1sf . 

Observe now that the relationships in (25) allow to 

formulate a definition of operator o in the following way 

   

     

      1

1 1 1

1 1

cos 2

Re exp 2  

 

  . 

df

s

df

s s

A o K

A K j

f f t

f f t









 

 





 (26) 

 

So, the descriptive version of the definition given by (26) 

will be as follows: Take the complex-valued function 

  1exp 2 s tK fj    instead of  1cos 2 s tK f    and 

calculate the circuit transfer function  11A f  at the 

frequency 
1 1sf f  of the above cosine function. Multiply 

then   1exp 2 s tK fj    by  11 sA f  and take finally the 

real part of this product. As a result we get  

    
1 1

1 11 cos 2
sAs s f

f f tK A      as required by the 

Meyer’s second definition [14].  

So, we can say that it is possible to formulate a 

mathematically precise definition of the operator o for the 

linear case, which fulfills the Meyer’s postulate [14]. This 

definition is specified by (26).  

In what follows, let us check whether we can get a 

similar result for the strictly nonlinear cases for which 

1n  . To this end, let us start with 2n  . In this case, the 

second Meyer’s definition [14] uses the sinusoid 
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    

    

   

1 2 1 2

1 2

1 2
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2
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p
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K
j
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  

 











   

   





 

 (27) 

 

of frequency  1 2s sf f . To simplify derivation, let use for it 

a shorter notation   1 2s s sf f f   in what follows. Further, 

according to the aforementioned definition, we apply the 

signal defined by (27) in the second component of a Volterra 

series [13] describing the nonlinear circuit of our example. 

This component has the following form 

 

         2

2 2 1 2 1 2 1 2,  .g g ga i t a i t i t d d     
 

 

      (28) 

 

In (28),   2

2 ga i t  means a two-dimensional convolution 

between a function 
2a  of two time variables and a function gi  

of one time variable. 

By introducing gi  given by (27) into (28), we get 
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     
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2 2 1 2
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 

 
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  
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 
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 (29) 

 

Applying then a two-dimensional Fourier transformation in 

(29) leads to 
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s
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 

 

 

 

 

   

   

 (30) 

  

The relationship (29) can be made more compact by using the 

following equalities [13]:    
*

2 2, ,s s s sf f fA A f      and 

   
*

2 2, ,s s s sf f f fA A      in it. Applying this, we obtain 
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t
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
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   

 

 

 



 

 

 (31) 

 

Finally, let us introduce  1 2s s sf f f   and 2     in 

the first equality in (31). It can be rewritten then as 
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 (32) 

 

But, according to the Meyer’s second definition [14], we 

should get in this case the following result 

 
 

       
2 1 2

1 2 1 2 ,2 sin 2,
s s

s s s s A f f
K f f tA f f       . (33) 

 

Comparison of the expression on the right-hand side of 

equality (32) with the sinusoid given by (33) shows that they 

differ completely from each other. The amplitudes, 

frequencies, and phases of the sinusoids differ because we 

have 2 2K K ,     1 2 1 22 s s s sf f f f   , and  2 2    

   1 2 22 1 2 12, ,s s s s s sf f f fA f fA
  

 
   , respectively. Moreover, the 

magnitude and phase of the circuit nonlinear transfer function 

 2A   occurring in (32) and (33) are calculated for different 

frequency pairs. That is for   1 2 1 2,s s s sf f f f   and  1 2,s sf f , 

accordingly. Furthermore, the expression in (32) contains a dc 

component,      2

2 1 2 1 22 ,Re s s s sf f f fK A    . Contrary to 

this, the dc component in (33) equals zero. 

 So, the results obtained above for the case 2n   show that 

it is not possible to construct an operator o in a similar way as 

it was done for the linear case (i.e. for 1n  ). In other words, 

as seen in (25), the last equality in it, which is the basis for the 

definition of an operator o for 1n  , really holds. But, in 

opposite to this, the expression on the right-hand side of the 

equality (32), which could be also rewritten in the form of 

Re  , is not equal to the expression given by (33). 

 Analyzing the derivations that led to (32) and the form of 

the expression in (33), we come easily to the conclusion that 

the same holds also for the cases with 2n  . That is it is not 

possible to construct an operator o for these cases in a similar 

way as it was done for the linear case.  

 Finally, we conclude that the second Meyer’s definition of 

the operator o is faulty, too. 
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V. CONCLUSIONS 

 It has been shown that the definition of the operator o 

given in [3] was faulty. The needed corrections have been 

carried out and explained in section III of this paper. A new 

interpretation of the operator o (its second definition), 

communicated to the author of this paper in [14], has been 

discussed here, too. It has been shown that only a part of this 

definition that regards a linear circuit part has sense. Its 

remaining items are faulty.  
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