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 

Abstract—In this paper, we present the expressions, not 

published up to now, that describe the AM/AM and AM/PM 

conversions of communication power amplifiers (PAs) via the 

Volterra series based nonlinear transfer functions. Furthermore, 

we present a necessary and sufficient condition of occurrence of 

the nonzero values of AM/PM conversion in PAs. Moreover, it 

has been shown that Saleh’s approach and related ones, which 

foresee nonzero level of AM/PM conversion, are not models 

without memory. It has been also shown that using a polynomial 

description of a PA does not lead to a nonzero AM/PM 

conversion. Moreover, a necessary condition of occurrence of an 

AM/AM conversion in this kind of modelling is existence of at 

least one nonzero polynomial coefficient associated with its odd 

terms of degree greater than one. 

 
Keywords—AM/AM and AM/PM conversions, nonlinear 

distortion, power amplifiers, Volterra series. 

 

I. INTRODUCTION 

OWER amplifiers (PAs) installed on satellites are main 

source of nonlinear distortion generated in satellite 

communication links [1]. Because of the obvious need for 

minimization of satellite power consumption, these amplifiers 

are forced to work at or near saturation regions of their 

characteristics. This causes, however, a significant increase of 

nonlinear distortion compared to the cases in which PAs would 

work exclusively in their linear ranges of operation. Therefore, 

the influence of these distortions on an appropriate behaviour 

of a satellite link must be alleviated. There are different 

techniques for doing this like pre- or post-distortion and 

equalization, to mention the two most popular. In all of them, 

accurate and workable models of PAs are necessary for their 

successful implementation. A good survey of these models is 

presented in [2]. In the literature, it is assumed that they can be 

divided into two separate groups (families): the one 

incorporating memory effects and the second not doing this. A 

notable representative of the first group is a model using the 

description via Volterra series [3]. The second family models 

the PA nonlinear distortion by giving the levels of amplitude-

to-amplitude (AM/AM) and amplitude-to-phase (AM/PM) 

conversions occurring in it. Here, a notable representative is a 

model developed by Saleh [4]. 

 In this paper, we refer to the above groups and show that 

the above taxonomy must be revised. Further objectives of this 

work are the following: 
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1. derivation of expressions for evaluation of AM/AM and 

AM/PM conversions with the use of Volterra series based 

nonlinear transfer functions [3] of PAs, 

2. showing that a necessary condition for occurrence of the 

AM/PM conversion in a PA is the existence of a memory in 

its nonlinear characteristic, 

3. the Saleh’s model and related ones, which foresee nonzero 

level of AM/PM conversion, are in fact models that 

incorporate memory effects (they are not models without 

memory as is thought). 

II. DERIVATION OF EXPRESSIONS FOR AM/AM AND AM/PM 

CONVERSIONS VIA VOLTERRA SERIES 

Let us begin with definitions of the AM/AM and AM/PM 

conversions. And to this end, assume that a modulated 

bandpass signal of the form 
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 (1) 

 

is applied to a PA.  

 In (1), 
cf  means frequency of a carrier, 2c cf  , t a time 

variable, and 1j    . Further, the symbol Re   in (1) 

denotes the operation of taking the real value of a complex 

number. Moreover, the bandpass signal  Bx t  (subscript B 

stands for bandpass) contains a slowly varying real-valued 

baseband signal  Sx t  (subscript S here stands for slowly 

varying) that modulates the carrier amplitude. The carrier 

phase changes with time according to a function  B t . This 

function, similarly as  Sx t , represents also a slowly varying 

baseband signal. 

 In what follows,  
*

  will be used for denoting the complex 

conjugate value of a given complex number. 

 Under assumptions underlying the PA response description 

in terms of the so-called AM/AM and AM/PM characteristics 

(conversions), for more details see, for example, [5], we can 

express the PA output signal as 
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In (2),     B SY t A x t  and       B B St t x t    are the 

carrier amplitude and its phase, respectively, at the amplifier 

output. It is assumed that the function   SA x t  is not a linear 

function of  Sx t . That is     S SA x t a x t  , where a stands 

for a real-valued constant. Moreover, it is assumed that an 

additional phase component   Sx t  in (2) is nonzero and 

depends upon the slowly varying baseband signal  Sx t . This 

means that we have to do here with a kind of amplitude 

modulation expressed by the nonlinear characteristic   

  SA x t  and with a phase modulation expressed by the 

function   Sx t , both caused by the signal  Sx t . Clearly, 

because of this, we refer to   SA x t  as the AM/AM 

characteristic and to   Sx t  as the AM/PM conversion. 

 In the well-known Saleh’s model [4], the above 

characteristics are approximated in the following way: 

 

    
 

  
  

  
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2
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2 2

2 2

,   
1 1
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S S

b x ta x t
A x t x t
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  

 

, (3) 

 

where the coefficients 
1a  and 

2a  as well as 
1b  and 

2b  assume 

real values and need adjustment to the measured data for a 

given amplifier. 

 Apart of the above convention of using AM/AM and 

AM/PM characteristics in modelling PAs for RF applications, 

conventional input-output descriptions of nonlinear systems 

that use polynomials, Volterra series, Hammerstein or Wiener 

models, or combined ones are also exploited [2]. The 

polynomial descriptions are used for describing systems 

without memory (memoryless), opposite to the remaining 

ones, which are applied to systems with memory. With regard 

to this fact, note that the AM/AM and AM/PM means of 

description is attributed to the former ones (memoryless) [2]. 

 In what follows, we will take a closer look at the above 

widespread opinion. To this end, we will try to find the form of 

functions   SA x t  and   Sx t  with the use of Volterra 

series based nonlinear transfer functions [3] describing a PA. 

Advantage of this approach lies in its generality. Namely, any 

Volterra series reduces to an ordinary polynomial, when its 

kernels (nonlinear impulse responses) become the 

multidimensional Dirac impulses [6]. Then, we get an usual 

(memoryless) polynomial description. We will exploit this fact 

later in our discussions. 

 Thus, let a PA be described by the Volterra series as 

 

  0 (1)( ) ( ) ( )y t h h x t d  

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     (4)  
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   

   

  

 

  
  

In (4), the input and output signals of PA are denoted by ( )y t  

and ( )x t , respectively. Further,  0
h  is a constant (dc 

component), but    1
h  ,    2

1 2,h   ,    3

1 2 3, ,h    , and so on, 

are, respectively, the first order (linear), second order, third 

order, and so on, nonlinear impulse responses (Volterra 

kernels) of PA analyzed. 

 At this point note also that if the kernels      1

1h h    , 

     2

1 2 2 1 2, ,h h      ,      3

1 2 3 3 1 2 3, , , ,h h        , and 

so on, become the multidimensional Dirac impulses in (4), 

then, according to [6], this relation reduces to an usual 

polynomial 

 

        
2 3

0 1 2 3( ) ...y t h h x t h x t h x t        , (5) 

 

where 
0 1 2 3,  ,  ,  ,h h h h  and son on, mean some constants being 

real numbers. 

  Substituting    Bx t x t  given by (1) into (4) leads to 
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 (6) 

 

 Observe now that the following inequalities:  
1B cB f  and 

2B cB f  hold, where 
1BB  and 

2BB  stand for bandwidths of 

the baseband signals  Sx t  and  B t , respectively. 

Moreover, see that we can choose the range of variables 

,  1,2,3,....,i i   in (6) much less than 
11 BB  and 

21 BB , that is  

1 21  and 1 ,  1,2,..,i B i BB B i     because the input-output 

characterization of any PA is very close to a polynomial 

description. But, as we already learned from the explanation 

regarding (5), in such a case, the nonlinear impulse responses 

in (6) are approximately the Dirac impulses. Taking into 

account the above two facts in (6), we can rewrite it as  
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where we have also restricted ourselves to retaining only the 

first N+1 components in the Volterra series description of a 

PA. 

 Note now that using (1) we can rewrite the products 

occurring in the iterated integrals of (7) in the following way 
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where the symbol  ,C n m  means combination of all the n 

non-conjugated terms in the second row of (8) with the n-m 

conjugated ones occurring in the third row of (8), of which 

products give the same resulting (product) frequency. 

Moreover,  
 ,

0

C n m

m

  denotes the operation of summation over 

all the distinct product terms in such a way that a given 

product is taken     , ! ! !C n m n m n m   times. Further, the 

symbol 

 ,

i

C n m

  in (11) stands for a sum of the auxiliary time 

variables 
i  related with one of the distinct product 

frequencies mentioned above. Note that there are in each case 

    , ! ! !C n m n m n m   such combinations. 

 By substituting (8) into (7), we arrive at 

 
 

 

   

     
 

 ,

0 , 1

0 ( )
1

1

 times

exp 2  .

( ) .. ( ,.., )
2

C n m n

c B c i i

m C n m i

n
N

S n
n

n

n

j n m t t d

x t
y t h h

    

 

 

 

  

 
 
 
 

  
       

  

  

  

  
 (9) 

 

 In what follows, we include a passband filter (with the 

center frequency 
cf ) at the PA output as a part of its model. 

By virtue of this filter, all the products in (9) related with the 

frequencies different from 
cf  will be filtered out. This means 

that we must substitute 2 1n m    in (9) and omit all the 

other components. (Obviously, the relation 2 1n m    will be 

fulfilled only for odd values of n.) Doing so, we get 
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  (10) 

 

where we denoted now by  By t  the PA output signal after 

passing through the bandpass output filter. 

 The Volterra series based nonlinear transfer functions of a 

nonlinear system are defined as the multidimensional Fourier 

transforms of its corresponding nonlinear responses [3]. That is 

as 
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 Taking into account (11) in (10), we obtain 
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where  n cf    and  n cf    denote such the frequency sets 

 1,.., nf f  whose elements ,  1, 2,..., ,if i n  can assume 

only the values 
cf  or 

cf , and whose sums give the value 

cf  or 
cf , respectively. 

 To proceed further, observe that the coefficients 

  , 1 / 2C n n   and   , 1 / 2C n n   occurring in (12) assume 

the same values. Moreover, observe that the following 
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 holds. 
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 Therefore, we can write 
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
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  
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

 


 (14) 

 

A new complex-valued function    
, , , ,( )

n

S cG x t H f n N  has 

been defined in (14). Let us denote the magnitude and phase of 

this function as     , , , ,
n

S cG x t H f n N  and  

    , , , ,
n

G S cx t H f n N , respectively. With the use of this 

notation, we can rewrite (12) in the following way: 

  

 
   

       

2 , , , ,

   cos , , , ,  .

( ) ( )
n

B S c

n

c B G S c

G x t H f n N

t t x t H f n N

y t

  

 

  


 (15) 

 

 Comparison of (2) with (15) shows that their form is the 

same. So, this validates the means of modelling of AM/AM 

and AM/PM conversions formulated in (2). Moreover, it 

follows from this comparison that the expressions describing 

the AM/AM and AM/PM characteristics, that is   SA x t  

and   Sx t , are given by 

 

       
2 , , , ,( )

n

S S cA x t G x t H f n N   (16a) 

 

and 
 

        , , , ,
n

S G S cx t x t H f n N  , (16b) 

 

respectively. 

III. DISCUSSION 

 We begin this section with formulation of the following 

theorem. 

 Theorem 1. The necessary and sufficient condition for 

occurrence of the nonzero values of AM/PM conversion in a 

PA is the existence of a memory in its nonlinear characteristic. 

 Proof: We construct the proof of this theorem by showing 

that the opposite would lead to a contradiction. To this end, 

consider the function    
, , , ,( )

n

S cG x t H f n N  given by (14). 

Next, assume that all the arguments  
,  2,3,...,

n
H n   in this 

function are some real numbers. That is  1

1H h ,  3

3H h , 

and so on. Note that this, according to the discussion 

underlying (5), means a description of a PA by a memoryless 

polynomial. With such values of  n
H , ( )G   is a real-valued 

function. That is its phase  G   is identically equal to zero. 

So, in other words, AM/PM conversion cannot be nonzero in 

this case.  
 When a PA is modelled by a Volterra series (being a 

description with memory [3]), the complex-valued arguments  
 

,  2,3,...,
n

H n   in (14) make    
, , , ,( )

n

S cG x t H f n N  a 

complex-valued function having nonzero phase  G  . So, the 

existence of a memory in characterization of a PA is also a 

sufficient condition. And this ends the proof. 

 Theorem 2. The Saleh’s model and related ones, which 

foresee nonzero level of AM/PM conversion, are 

characterizations incorporating memory effects. That is they 

are not models without memory. 

 Proof: Proof of this theorem follows directly from the 

relations (3), (16), and Theorem 1. 

 Note that in view of Theorem 2 the taxonomy of PAs 

presented in [2] must be revised. 

 Theorem 3. Modelling of transferring characteristics of a PA 

by a purely polynomial model does not lead to a nonzero 

AM/PM conversion. In this case, the necessary condition of 

occurrence of an AM/AM conversion is the existence of at 

least one nonzero nonlinear transfer function 
 

,  3,5,...,
n

nH h n  of a PA. 

  Proof: Note that proof of the first part of this theorem 

follows directly from Theorem 1. To show the validity of its 

second part, let us rewrite (14) in the following form  
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 (17) 

 

for the “without memory” case considered in this theorem. 

 Substituting (17) into (16a) gives 
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2

S S

n

n
N

S

n

A x t x t
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
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 
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 
 


 (18) 

 

Clearly,  1 Sx th   in (18) exhibits the linear part of a PA 

characteristic. But, the nonlinear part of it, responsible for the 

AM/AM conversion, is represented by the expression in the 

second row in (18). This expression has a nonzero value if at 

least one of the coefficients 
nh  is nonzero. And this ends the 

proof.  

IV. NOVELTY OF RESULTS PRESENTED AND COMPARISON 

WITH HITHERTO APPROACHES 

In this section, we discuss importance of the results 

achieved and compare them with the related ones, hitherto 

published in the literature. Regarding these issues here, we will 

be more precise than in Introduction because we know now all 

the details of the derivations presented in the previous two 

sections. 

First, our approach of applying the Volterra series to analyze 

distortion-oriented and measurement-based models of AM/AM 

and AM/PM conversions in PAs, like the Saleh’s model, is 

used in this paper for the first time in the literature. Obviously, 

there are publications, as for example [7-9], in which the 

Volterra series is used to model an entire bandpass RF (radio 

frequency) communication system containing PAs. 
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Surprisingly, however, in the case of PAs being system’s 

internal elements, another kind of modeling is applied in the 

articles mentioned above. That is not a natural approach, which 

involves application of the Volterra series for description of a 

mildly nonlinear circuit, in this case, a PA. But, note that the 

descriptions of devices and systems by the Volterra series are 

very popular among people designing RF amplifiers. For 

example, see [10]. 

In [7-9], the so-called quadrature model of a nonlinear 

device exhibiting the AM/AM and AM/PM conversions (in 

short, the quadrature model) for modelling PAs has been used. 

It consists of three functional blocks: two of them are described 

by memoryless nonlinearities and the third one is a 90 degree 

shifter. The memoryless nonlinear blocks are connected with 

each other in parallel, except that one of them is preceded by 

the block of a 90 degree shifter. The first branch of the 

connection represents an in-phase component, but the second 

one is a quadrature component of the model considered. The 

memoryless nonlinearities mentioned above are real-valued and 

can be expanded in power series (with real-valued coefficients). 

For more details regarding this model, see, for example, [7]. 

Note that the quadrature model of a PA described briefly 

above is not a physically-oriented one. That is it does not 

follow from any physical relations which describe the PA. It is 

an a priori model of which parameters are adjusted to the 

measured data. So, it can be classified as a behavioural or a 

black box model of the PA. However, the well-known 

disadvantage of such models is that they do not relate their 

parameters with any physical quantities describing the devices 

modelled. 

Opposite to this, the Volterra series model of a mildly 

nonlinear device relates its nonlinear transfer functions (or 

equivalently its nonlinear impulse responses) with the physical 

quantities associated with this device, like resistances, 

capacitances, inductances etc. And it is clear that this property 

is very valuable for the PA designer because it enables 

analytical analysis of the dependence of the AM/AM and 

AM/PM characteristics of PA upon the aforementioned 

physical quantities. 

At this point, we remark also that using the mathematical 

tools and approach, based on the functional analysis, which 

was exploited by Sandberg in [11], it is possible to prove that 

the quadrature model of PA is a model containing memory. 

This was done by one of the authors of this paper in [12]. 

Second, in all of the derivations presented in this paper, we 

do not refer to as the notion of an equivalent low-pass circuit 

(system) of a bandpass one. So, in this respect, this is a quite 

different approach from that which was used in [7]. Only 

common thing for both of them is the usage of the Volterra 

series. 

By the way, note at this point that a method using the notion 

of an equivalent low-pass circuit of a bandpass circuit and the 

Volterra series to model a weakly nonlinear satellite 

communication system have been presented previously by the 

authors of this paper in [13]. Furthermore, note that the method 

used in [13] differs also from that exploited in [7] because it 

does not use the quadrature model for PA. In it, PA is 

described by the Volterra series. 

Third, using the Volterra series for description of the entire 

mildly nonlinear communication system as well as for the PA 

alone makes the approach presented in this paper more 

transparent and consistent than all the other ones [7-9]. 

Fourth, the approach of this paper that resigns from the use 

of an equivalent low-pass circuit of a bandpass one is clear and 

transparent. So, thereby, it is more suitable for teaching than 

those proposed in [7-9]. 

Fifth, to our best knowledge, the formulae (16a) and (16b) 

expressing the AM/AM and AM/PM characteristics of a PA 

through its Volterra series based nonlinear transfer functions 

have been derived for the first time in this paper (and also in a 

conference paper [13] by applying a little bit different 

method). 

Sixth, other related results achieved in this paper, which are 

summarized in an a concise form through three short theorems 

given in section III, are new, too. Their novelty lies in the fact 

that they give rise to revision of the taxonomy and views 

presented in [2] and other papers regarding the Saleh’s model 

[4]. Simply, the latter model cannot be classified as a model 

without memory. 

V. FINAL REMARK 

The measurements carried out on PAs show that the 

AM/PM conversion occurring in them cannot be neglected. In 

this paper, we have shown how this conversion is related with 

the Volterra series based nonlinear transfer functions of a PA 

calculated at the carrier frequency.  

Admittedly, the Volterra series based models of PAs are not 

available in the literature. On one hand, they can be easily 

obtained from the existing ones, published up to now in the 

literature like the quadrature model [7] and its predecessors 

[14], [15], Saleh’s model [4], and the others mentioned in [2]. 

They will be however, achieved on this way, only models with 

the nonlinear transfer functions being fixed complex numbers 

(adjusted to the measured data).  

But, on the other hand, for getting the nonlinear transfer 

functions in analytical forms as functions of physical 

quantities, new investigations will be needed. Obviously, they 

will be connected with the physical modelling of PAs.     
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