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Abstract—In the literature, Saleh’s description of the AM/AM 

and AM/PM conversions occurring in communication power 

amplifiers (PAs) is classified as a representation without memory. 

We show here that this view must be revised. The need for such 

revision follows from the fact that the Saleh’s representation is 

based on the quadrature mapping which, as we show here, can be 

expanded in a Volterra series different from an usual Taylor 

series. That is the resulting Volterra series possesses the nonlinear 

impulse responses in form of sums of ordinary functions and 

multidimensional Dirac impulses multiplied by coefficients being 

real numbers. This property can be also expressed, equivalently, 

by saying that the nonlinear transfer functions associated with the 

aforementioned Volterra series are complex-valued functions. In 

conclusion, the above means that the Saleh’s representation 

incorporates memory effects. 

 
Keywords—AM/AM and AM/PM conversions, quadrature 

model, Saleh’s representation, power amplifiers, Volterra series, 

memory effects. 

I. INTRODUCTION 

ALEH’S description of the AM/AM and AM/PM 

conversions [1] occurring in communication power 

amplifiers (PAs) is viewed in the literature, see, for example, a 

tutorial [2], as a representation which does not incorporate 

memory effects. The objective of this paper is to show that this 

view must be revised because the Saleh’s representation [1] is 

based on the quadrature mapping which, as we show here, can 

be expanded in a Volterra series different from an usual Taylor 

series. More precisely, we show here that the aforementioned 

Volterra series possesses the nonlinear impulse responses in 

form of sums of ordinary functions and multidimensional 

Dirac impulses multiplied by coefficients being real numbers. 

The latter means also, equivalently, that the nonlinear transfer 

functions associated with the above Volterra series are 

complex-valued functions. 

 In the above context, note that there is a related theory, for 

more details see, for example [3-6], which says that the 

memoryless systems (devices) described by a Volterra series 

are only such ones which possess the nonlinear impulse 

responses in form of pure multidimensional Dirac impulses 

multiplied by coefficients being real numbers. In the 

multidimensional frequency domains, this means equivalently 

that the corresponding nonlinear transfer functions of a given 

system (device) are real-valued constants. 

 In view of the above, the properties of the aforementioned 

Saleh’s equivalent quadrature model show that it is not a 

memoryless one. In other words, it is a model with memory. 
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II. GENERAL MODEL OF AM/AM AND AM/PM CONVERSIONS 

AND SALEH’S REPRESENTATION 

To begin, let us first recall the basics of modelling of the 
AM/AM and AM/PM characteristics of PAs (or other devices 
and systems) as it is done in the communications literature; as, 
for example, in [7]. Then, one applies the following bandpass 
signal at the PA input 

  

       cos cx t r t t t    , (1) 

 

where 2c cf   with 
cf  meaning the carrier frequency. 

Moreover, t in (1) denotes a time variable and 1j   . 

Furthermore, the bandpass input signal  x t  contains a slowly 

varying real-valued baseband signal  r t  which modulates the 

carrier amplitude. And the carrier phase changes with the time 

according to a function  t . The latter function, similarly as 

 r t , represents also a slowly varying baseband signal. 

After [7], the PA output to (1) can be then expressed as 
 

           cos .cy t A r t t t r t     (2) 

 
 

Note that   A r t  and     t r t   in (2) denote the 

carrier amplitude and its phase, respectively, at the amplifier 

output. The function   A r t  is assumed to be a nonlinear 

function of  r t . That is     A r t a r t   holds, where a 

stands for a real-valued constant. Moreover, it is assumed that 

an additional phase component   r t  in (2) does not equal 

zero and depends upon the slowly varying baseband signal 

 r t . This means that a kind of the amplitude modulation 

expressed by the nonlinear characteristic   A r t  as well as 

the phase modulation expressed by another function   r t  

occur, and both are caused by the signal  r t . Therefore, we 

refer to   A r t  as the AM/AM characteristic and to 

  r t  as the AM/PM characteristic. 

 The operation described by (2), which is performed by a PA 

on the signal  x t  having a specific form given by (1) -

together with the above accompanying explanations - is called 

here a general model of the AM/AM and AM/PM conversions. 

Note that all the other models published, as, for example, the 

Saleh’s model [1], are its particularizations. Further, 

justification of its correctness was given, among others, in [7]. 

By the way, note that such a justification constitute also the 

derivations presented in [8] which were carried out with the 

use of the Volterra series method [9], [10]. 
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 A particular version of the above general model of the 

AM/AM and AM/PM conversions is the representation 

developed by Saleh in [1]. In this model, the functions 

  A r t  and   r t are approximated in the following way 

  

    
 

  
  

  

  

2

11

2 2

2 2

,   
1 1

b r ta r t
A r t r t

a r t b r t
  

 

, (3) 

 

where the coefficients  and  as well as  and  are 

assumed to be real values and need adjustment to the measured 

data for a given amplifier.  

III. EQUIVALENT QUADRATURE MODELS 

The operation which is used in the theory of 
communications for getting the so-called in-phase and 
quadrature components [7] is called here the quadrature 
mapping. Using it, one can represent the two models 
mentioned in the previous section in equivalent forms. Such 
equivalent forms have been already derived in [1], [11-13], and 
some other works. Here, we recall briefly these results. To do 
this, note that (2) can be rewritten in an equivalent form as 

 

 
           

         

cos cos

  sin sin  .

c

c

y t A r t r t t t

A r t r t t t

 

 

   

  

 (4) 

 

From (4), it follows immediately that the in-phase  p t  and 

quadrature  q t  components of the amplifier output signal 

 y t  are given by [1] 
 

        cos cp t P r t t t    (5) 

and 

        sin cq t Q r t t t     , (6) 

 

respectively. Further, in the equivalent Saleh’s version of this 

equivalent general model, the functions   P r t  and   Q r t  

in (5) and (6), accordingly, follow from (4) and (3). That is we 

get then 
 
 

 

         

 

  

  

  

2

11

2 2

2 2

cos

cos
1 1

P r t A r t r t

b r ta r t

a r t b r t

  

 
  
   

 (7) 

and 

          sinQ r t A r t r t     (8) 

  

  

  

  

2

11

2 2

2 2

sin   .
1 1

b r ta r t

a r t b r t

 
  
   

  

  

Having these results, let us now formulate the following 

theorem. 

Theorem 1. The necessary and sufficient condition for 

occurrence of the nonzero values of AM/PM conversion in the 

general model of the AM/AM and AM/PM conversions and in 

its version developed by Saleh [1] is the existence of the 

nonzero values of the quadrature component function   Q r t

. (Note that we can express this shortly in such a way: the 

existence of “the quadrature path” is needed for the occurrence 

of the AM/PM conversion.) 

Proof: Having in mind the explanations and results 

presented in this and in the previous section, the proof of this 

theorem is obvious because when    0r t  , then 

   0Q r t   holds, according to (8), too. Further, if   Q r t  

is not a function equal identically to zero, then also   r t  is 

not identically zero function (once again, according to (8)).   

Using the equivalent quadrature representations of the 

general model of the AM/AM and AM/PM conversions and of 

its Saleh’s version, we will show in the next section that these 

representations constitute models incorporating memory 

effects. Moreover, we will show that these memory effects are 

closely related with the occurrence of the nonzero values of the 

AM/PM conversion.  

IV. QUADRATURE MODEL IS A MODEL WITH MEMORY 

In what follows, we will use a version of the quadrature 

model which was utilized by Benedetto et al. in [14]. This 

model is convenient for us because its form allows, as we will 

see later, easy derivation of its Volterra series based nonlinear 

impulse responses, or equivalently, calculation of its nonlinear 

transfer functions. 

Benedetto et al. [14] used the aforementioned model in their 

description of a nonlinear device (as, for example, a power 

amplifier working in its nonlinear region of operation) 

exhibiting the AM/AM and AM/PM conversions. Their model 

is shown in Fig. 1. 

Fig. 1. The quadrature model of a nonlinear device exhibiting the AM/AM and 

AM/PM conversions. 

 

The quadrature model of Fig. 1 consists of two parallel 

paths (branches). The upper one represents the model in-phase 

component and corresponds to relation (5). But, the lower path 

is its quadrature component and corresponds to relation (6), 

respectively. The first branch is described by a real-valued 

(memoryless) nonlinearity  pg  , which can be represented, 

for example, by a power series with real-valued coefficients. 

Similarly, the another nonlinearity  qg   in the lower path is 

assumed to be real-valued (memoryless), too. Therefore, it can 

be also modelled by a power series with real-valued 

coefficients. The difference between the upper and lower paths 

in Fig. 1 lies in the fact that the latter nonlinearity is preceded 

1a 2a 1b 2b
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by a 90 degree shifter. We will see that this makes a clear 

qualitative difference between the branches in Fig. 1. 

Consider now the operation of shifting the signal  x t  by 

90 degrees in the lower branch of Fig. 1 to get another signal 

denoted as  Hx t . This operation can be described in the time 

domain by the following convolution operation [15] 
 

  
 1

 H

x
x t d

t




 






  . (9) 

 
Note that the relation (9) describes the operation performed 

by the so-called Hilbert transformer, in the time domain. For 
more details regarding this topic, see, for example, [15].  

Taking into account (9) and looking at Fig. 1, we see that 

the output signal  y t  at the nonlinear device scheme of this 

figure is related with the input signal  x t  by the relation 

 

 

       

  
 1

     .

p q H

p q

y t g x t g x t

x
g x t g d

t




 





  

 
   

 


 (10) 

 

In the next step, we expand the functions  pg   and  qg   

in (10) in power series. That is we assume the following 

 

           
2 3

1 2 3 ..pg x t c x t c x t c x t     (11) 

 

and 

 

          

     

2 3

1 2 3

2 3

31 2

2 3

..

   .. .

q H H H Hg x t d x t d x t d x t

x x xdd d
d d d

t t t

  
  

     

  

  

    

   
      

     
  

 (12) 

 
where the coefficients 

1 2 3,  ,  ,...c c c  in (11) and 
1 2 3,  ,  ,...d d d  in 

(12) have the values being real numbers. 

 Note now that the successive components in (11) can be 

expressed in form of the multidimensional convolution 

integrals with the use of Dirac impulses  t  as 

 

 

          1 1 1  ,c x t c x t d c t x d       
 

 

      (13a)  

 

 

          

       

2

2 2 1 2 1 2

1 2 2 1 2 1 2

1 2

    

       ,

c x t c x t x t

d d c t t x x

d d

     

       

 

 

 

 

 

   

    



 

 
 (13b) 

 

  

          

     

         

3

3 3 1 2 3 1

2 3 1 2 3 3 1

2 3 1 2 3 1 2 3

  

   ,

c x t c x t

x t x t d d d c t

t t x x x d d d

      

      

         

  

  

  

  

  

     

  

  

  
 (13c) 

 
and so on. So, using (11) together (13) and (12) in (10), we can 

rewrite the latter in such a way 

 

 

      

       

     

   

 

1
1 2

2
1 2 1 22

1 2

1 2 3 1 2 3

3
1 23

1 2 3

3 1 2 3

1
 

1 1
  

  

1 1 1
  +

      +...    .

d
y t c t x d c

t

d
t t x x

t t

d d c t t t

d
x x

t t t

x d d d

   
 

     
  

       

 
   

   

  

  

  

  

 
     

 


    

  

     




   



  

  
 (14) 

 

 The Volterra series used as description of a relation between 

the output and input signals of a mildly nonlinear device 

(system) is formulated as [9], [10] 

 
 

 

(1) (2)

1 2

(3)

1 2 1 2 1 2 3

1 2 3 3 1 2 3

( ) ( ) ( ) ( , )

  ( ) ( ) ( , , )

 ( ) ( ) ( ) ( ) ...  ,

y t h x t d h

x t x t d d h

x t x t x t x t d d d

    

      

      

  

  

  

  

   

    

     

  

  
 (15)  

 
where    1

h  ,    2

1 2,h   ,    3

1 2 3, ,h    , and so on, are, 

respectively, the first order (linear), second order, third order, 

and so on, nonlinear impulse responses (Volterra kernels) of 

the device considered. Furthermore, it is easy to show that the 

Volterra series given by (15) can be also written in the 

following form 
 

 

(1) (2)

1 2

(3)

1 2 1 2 1 2 3

1 2 3 3 1 2 3

( ) ( ) ( ) ( , )

 ( ) ( ) ( , , )

 ( ) ( ) ( ) ( ) ...  .

y t h t x d h t t

x x d d h t t t

x x x x d d d

    

      

      

  

  

  

  

     

     

 

  

  
 (16) 

  
   Comparing now the components in the series (14) with the  

corresponding ones in (16) reveals the nonlinear impulse 

responses of the device modelled in Fig. 1. They are given by 
 

    (1) 1
1

1
  ,

d
h c  

 
   (17a) 
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    (2) 2
1 2 2 1 2 2

1 2

1 1
( , )   ,

d
h c     

  
   (17b) 

 

      (3) 3
1 2 2 3 1 2 3 3

1 2 3

1 1 1
( , , )   ,

d
h c        

   
   (17c) 

 
and so on. Note also that these nonlinear impulse responses 

can be transferred into the multifrequency domains using the 

following relation [9] 

 

  

         

 

1 1 1 1

 times

1

,..., ... ,..., , exp 2

      exp 2   ,

n n

n n

n

n n n

H f f h j f

j f d d

   

   

 

 

  

  

 
 (18) 

 
where 1, 2,3,...n  ,    1,...,

n

nH f f  means the n-dimensional 

Fourier transform of the function (distribution)    1,..., ,
n

nh   , 

and 
1

, ..., nf ff  are the frequencies in the n-dimensional 

frequency space. We mention also that    1,...,
n

nH f f  is called 

the system (device) nonlinear transfer function of the n-th 

order [9]. So, applying (18) to relations (17), we get 

 
    (1)

1 1  ,TH f c d H f   (19a) 

 

      (2)

1 2 2 2 1 2,  ,T TH f f c d H f H f   (19b) 

 

        (3)

1 2 3 3 3 1 2 3, ,  ,T T TH f f f c d H f H f H f   (19c) 

 

 
   

     

(4)

1 2 3 4 4 4 1

2 3 4

, , ,

    ,

T

T T T

H f f f f c d H f

H f H f H f

  


 (19d) 

 

 
   

       

(5)

1 2 3 4 5 5 5 1

2 3 4 5

, , , ,

    ,

T

T T T T

H f f f f f c d H f

H f H f H f H f

  


 (19e) 

 

and so on, where  TH f  is the transfer function of the Hilbert 

transformer. It is given by [15] 

 

 
   

  

sgn , 

sgn 1,   0;  0,   0;  1,   0

TH f j f

f f f f

 

    
  . (20) 

  
 Let us now substitute (20) in (19a). As a result, we get 

  (1)

1 1 1 1 1 for  0;   for  0;   for  0H f c jd f c f c jd f      , 

which obviously is not a real-valued function. And observe 

that the same regards also  (2)

1 2,H f f ,  (3)

1 2 3, ,H f f f , and 

the next ones. All of them are not real-valued functions. 

 It is known [5], [6] that the mildly nonlinear systems or 

devices described by the Volterra series do not possess 

memory if their nonlinear impulse responses are pure 

multidimentional Dirac impulses     ,    1 2    , 

     1 2 3      , and so on, multiplied by some real 

numbers. Equivalently, in the multifrequency domains, the 

mildly nonlinear systems or devices described by the Volterra 

series exhibit memory effects only when their nonlinear 

transfer functions are complex-valued [5], [6]. 

 Taking the above into account and looking at the relations 

(17) and (19), we conclude finally that these nonlinear impulse 

responses and nonlinear transfer functions describe a nonlinear 

device with memory. That is, in other words, the quadrature 

model of Fig. 1 is a model with memory. 

V. AM/AM AND AM/PM CONVERSIONS OF PA VIA ITS 

NONLINEAR TRANSFER FUNCTIONS 

 In [8] and [16], formulas for calculation of the AM/AM and 

AM/PM conversions of a PA with the use of its nonlinear 

transfer functions were derived. These formulas have the 

following form 

 

          2 , , , ,( )
n

V n c cA r t G r t H f f n N    (21a) 

 

and 
 

           , , , ,
n

V G n c cr t r t H f f n N     , (21b) 

 

where the function       , , , ,( )
n

n c cG r t H f f n N    is given 

by 
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C n n H f

C n n H f

G r t H f f n N

t

r t





















 
  

 
 

  
     

   

   


 

 


 (21c) 

 
In (21a) and (21b),   VA r t  and   V r t  mean the 

corresponding functions defined in (2) and calculated here 

with the use of the Volterra series [8], [16]. These functions 

are the magnitude and phase, as expressed by (21a) and (21b), 

respectively, of the function       , , , ,( )
n

n c cG r t H f f n N  

given by (21c). The small letter n in (21a), (21b), and (21c) 

denotes a summation index in the latter, which is odd positive 

integer and changes from 1 to N. The number N means the 

order of approximation applied in (21c) and is equal to the 

highest odd order of the nonlinear transfer function of the PA 

used in this expression. Further,  n cf    and  n cf    in 

(21a), (21b), and (21c) denote such frequency sets  1,.., nf f  

whose elements ,  1, 2,..., ,if i n  can take on only the values 

cf  or 
cf , and whose sums are equal to 

cf  or 
cf , 

respectively. Obviously, the definition of the coefficients  
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  , 1 / 2C n n   and   , 1 / 2C n n   occurring in (21c) is the 

following 

 

     , ! ! !C n m n m n m    , (22) 

 

where n and m mean any nonnegative integers, and n m  

holds. And finally, the notation  
*

  in (21c) is used to denote 

the complex conjugate value of a given complex number. 

 Restricting ourselves to consideration of only first five 

nonlinear transfer functions of a PA in (21c) that is assuming 

the order of approximation 5N   and substituting 

 ( ) , 1,3,5,iH i   given by (19a), (19c), and (19e), 

respectively, into (21c), we get 

 

 

        

           

          

1

3 5

3 5 1

3 5

3 5

, , , ,

   3 4 5 8

   3 4 5 8   

( )

.

n

n c cG r t H f f n N c r t

c r t c r t j d r t

d r t d r t

   

   

 



 (23) 

 

Observe then that by using this result in (21a), we arrive at 

  

    2 22VA r t a b   , (24a) 

where 
 

            
3 5

1 3 53 4 5 8a c r t c r t c r t    (24b) 

 

and 
 

            
3 5

1 3 53 4 5 8b d r t d r t d r t    . (24c) 

 

And further, applying also (23) in (21b), we obtain 

 

  
         

         

2 4

1 3 5

2 4

1 3 5

3 4 5 8

3 4 5 8
V

d d r t d r t
r t arctg

c c r t c r t

   
  
   

. (25) 

 

 Note now that having (24a) and (25) a couple of very 

important conclusions can be drawn. The result given by (24a) 

with the coefficient b expressed by (24c) shows clearly the 

influence of the phase shifting occurring in a PA and of its 

nonlinear behaviour (parameters ,  1,3,5id i  ) on the values 

of the AM/AM conversion. In other words, the AM/AM 

conversion of the PA does not depend solely upon the 

parameters of the upper path of the model shown in Fig. 1. It is 

worth noting that this fact is not evident from the Saleh’s 

formula on the left-hand side of (3). 

 Similarly, it follows from (25) that the AM/PM of the PA 

apart from the dependence upon the parameters   ,  1,3,5,id i   

associated with the lower path of the model shown in Fig. 1 

depends also upon the parameters ,  1,3,5,ic i   of the upper 

path of the above model. And once again, this fact is not 

evident from the Saleh’s formula on the right-hand side of (3). 

 Further, note that it follows from (25) that if the coefficients 

0,  1,3,5id i  , then    0V r t  . An vice versa, if 

   0V r t  , then at least some of the coefficients 
id  in (21) 

must differ from zero. This means of course that at least some 

of the nonlinear transfer functions of the PA given by (19a), 

(19c), and (19e) (with taking into account (20)) are complex 

numbers. On the other hand, we know that such nonlinear 

transfer functions describe systems (devices) possessing 

memory [3], [9], [10]. Therefore, the conclusion is the 

following:  the  nonzero  values  of  the  AM/PM  conversion  (

   0V r t  ) are inherently linked to the memory properties 

of a system (device) considered. In view of this, the model of 

the AM/AM and AM/PM conversions derived here and given 

by (24) and (25) is a model with memory. 

 Obviously, the Saleh’s model given by (3) and our model 

associated with the expressions (24) and (25) are conceptually 

identical (by basic equations (1) and (2)). So, taking into 

account this and the conclusion formulated above, we see that 

the Saleh’s model cannot be considered as a memoryless as 

considered, for example, in [2]. 

 It is also worth noting the fact that the AM/AM and AM/PM 

conversions expressed by (24) and (25) do not depend upon 

the carrier frequency 
cf .       

VI. CONCLUDING REMARK 

 The results and conclusions presented in the previous 

section show that our analytical model of the AM/AM and 

AM/PM conversions, which was developed in this paper, 

seems to be more powerful than the Saleh’s measurement-

based one [1].  

 Obviously, after getting this analytical model and carrying 

out its theoretical analysis, further practical investigations 

should follow. For example, such ones which would lead to 

obtaining the values of the coefficients ,  1,3,5,...,ic i   and 

,  1,3,5,...,id i   for concrete PAs. Also, it would be 

interesting to investigate differences for these PAs in the 

functions modelling their behaviour according to (3) and 

according to the expressions (24) and (25) for different values 

of  r. These will be tasks for further investigations. 
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