Comparison of indoor/outdoor, RSSI-based positioning using 433, 868 or 2400 MHz ISM bands
Abstract
This paper compares accuracy of indoor positioning systems using one of three selected ISM bands: 433, 868 or 2400 MHz. Positioning is based on Received Signal Strength Indication (RSSI), received by majority of ISM RF modules, including low-cost ones. Investigated environment is single, indoor space (e.g. office, hall) and personal use, thus 2-dimensional (2D) coordinate system is used. Obtained results, i.a. average positioning error, are compared with similar measurements taken at outdoor, open space environment. The system is local, i.e. its operational area is limited by range of used RF modules – typical a few tens of meters. The main focus is research of how much accuracy (and usefulness) can be expected from standard RF modules working at typical ISM frequencies.References
P. Gilski, J. Stefański, “Survey of Radio Navigation Systems”, International Journal of Electronics and Telecommunications (IJET), Vol. 61, No. 1, pp. 43–48, 2015.
C. Gao, Z. Yu, Y. Wei, S. Russell, Y. Guan, “A Statistical Indoor Localization Method for Supporting Location-based Access Control”, Mobile Networks and Applications, Vol. 14, Iss. 2, pp. 253-263, 2009.
C. Rung-Ching, H. Sheng-Ling, “A New Method for Indoor Location Base on Radio Frequency Identification”, 8th WSEAS International Conference on Applied Computer and Applied Computational Science, 2009.
J. Rapinski, S. Cellmer, “Analysis of Range Based Indoor Positioning Techniques for Personal Communication Networks”, Mobile Networks and Applications, 2015, doi:10.1007/s11036-015-0646-8.
L. Pieh Wen, C. Wee Nee, K. Meng Chun, T. Shiang-Yen, R. Idrus, “Application of WiFi-based Indoor Positioning System in Handheld Directory System”, 5th European Computing Conference, 2011.
H. Koyuncu, S. Hua Yang, “Comparison of Indoor localization techniques by using reference nodes and weighted k-NN algorithms”, Recent Advances in Information Science, 2012.
M. Stella, M. Russo, M. Šarić, “RBF Network Design for WLAN Indoor Positioning”, Recent Advances in Circuits, Systems, Telecommunications and Control, 2013.
L. Zhonghua, Z. Zijing, H. Chunhui, H. Xiao, “Advances in RFID-ILA: The Past, Present and Future of RFID-based Indoor Location Algorithms”, 24th Chinese Control and Decision Conference, 2012.
Ndeye Amy Dieng, M. Charbit, C. Chaudet, L. Toutain, B. Tayeb Meriem, “A Multi-Path Data Exclusion Model for RSSI-based Indoor Localization”, 15th International Symposium on Wireless Personal Multimedia Communications, 2012.
Raida Al Alawi, “RSSI Based Location Estimation in Wireless Sensors Networks”, 17th IEEE International Conference on Networks, 2011.
Chia-Yen Shih, P.J. Marron, “COLA: Complexity-Reduced Trilateration Approach for 3D Localization in Wireless Sensor Networks”, Fourth International Conference on Sensor Technologies and Applications, 2010.
Chruszczyk Ł., Zając A., Grzechca D., “Comparison of 2.4 and 5 GHz WLAN network for purpose of indoor and outdoor location”, International Journal of Electronics and Telecommunications (IJET), 2016, Vol. 62, No. 1, pp. 71-79, DOI: 10.1515/eletel-2016-0010.
B. Sklar, “Digital Communications: Fundamentals & Applications. Second Edition”, Proc. IRE, Vol. 34, p. 254, 2005.
Hereman W., Murphy S. W. Jr., “Determination of a Position in Three Dimensions Using Trilateration and Approximate Distances”, Department of Mathematical and Computer Science (MCS), Colorado School of Mines, USA, Oct. 1995.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.