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Saleh’s Model of AM/AM and AM/PM Conversions 

is not a Model without Memory – Another Proof 
 

Andrzej Borys 

 
Abstract—The so-called Saleh’s representation for description 

of the AM/AM and AM/PM conversions, occurring in 

communication power amplifiers, consists of two expressions that 

describe them as functions of a real-valued baseband signal 

modulating the carrier amplitude. It is a common view that this 

description forms a model without memory. We show here that 

the above belief is not correct; just the opposite is true.  To prove 

this, we take into account an equivalent description of the Saleh’s 

model called the quadrature model of bandpass nonlinearities 

and express it in a form of a nonlinear operator. Afterwards, we 

check whether this operator possesses a zero memory. To this 

end, we use an appropriate theorem of the nonlinear systems 

theory. Finally, as a result of this investigation, we observe that 

the memory of the above operator is nonzero. 

Kyeywords—Saleh’s model of AM/AM and AM/PM 

conversions, power amplifiers, memory effects, in-phase and 

quadrature representation of nonlinear devices 

I. INTRODUCTION 

OWER amplifiers (PAs) used in wireless communications, as 

for example in satellite ones [1], exhibit nonlinear 

distortions in the operating regimes in which they work. These 

kinds of distortions manifest by occurrence of the so-called 

AM/AM and AM/PM conversions. More precisely, they are 

caused by the nonlinearities of amplifiers working in the 

transition area between their linear and nonlinear regions of 

operation, and also, slightly, in the nonlinear region. 

There were presented in the literature many ways of 

modeling the AM/AM and AM/PM conversions occurring in 

the PAs. Here, we mention only a few of them [1-3], maybe 

most representative ones. An up-to-date survey of them was 

presented in a tutorial [4]. 

Saleh developed in [3] a simple but accurate model for 

description of the AM/AM and AM/PM conversions. It is one 

of the most frequently used and cited models. Note also that 

this model is assumed in the literature to belong to the group of 

memoryless ones. In other words, it does not incorporate 

memory effects.  

Let us now describe briefly the Saleh’s model in what 

follows, similarly as in [5]. We will do this after [3]. So, to this 

end, assume that the following bandpass input signal 
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       cos cx t r t t t    (1) 

 

is applied to a PA. In (1), 2c cf   with 
cf  meaning the 

carrier frequency, t denotes a time variable, and 1j    . 

Moreover, the bandpass input signal  x t  contains a slowly 

varying real-valued baseband signal  r t  that modulates the 

carrier amplitude. Furthermore, the carrier phase changes with 

time according to a function  t . This function, similarly as 

 r t , represents also a slowly varying baseband signal. 

Then, after [3] (for more details see also, for example, [6]), 

the PA output signal can be expressed as 
 

           cos .cy t A r t t t r t     (2) 

 
 

 In (2),   A r t  and     t r t   denote the carrier 

amplitude and its phase, respectively, at the amplifier output. 

The function   A r t  is assumed to be a nonlinear function of 

 r t . That is     A r t a r t   holds here, where a stands 

for a real-valued constant. Moreover, it is assumed that an 

additional phase component   r t  in (2) does not equal 

zero and depends upon the slowly varying baseband signal 

 r t . This means that a kind of the amplitude modulation 

expressed by the nonlinear characteristic   A r t  as well as 

the phase modulation expressed by another function   r t  

occur here, and both are caused by the signal  r t . Therefore, 

we refer to   A r t  as the AM/AM characteristic and to 

  r t  as the AM/PM characteristic. 

In [3], Saleh developed a model, which approximates the 

above characteristics by the following functions 
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, (3) 

where the coefficients 
1a  and 

2a  as well as 
1b  and 

2b  assume 

real values and need adjustment to the measured data for a 

given amplifier. 
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Note now that (2) can be rewritten in an equivalent form as 
 

            cos cos cy t A r t r t t t       (4) 

          sin sin  .cA r t r t t t      

 

Next, it follows from (4) that the in-phase  p t  and 

quadrature  q t  components of the amplifier output signal 

 y t  are given by 

 
 

        cos cp t P r t t t    (5) 

and 
 

        sin cq t Q r t t t     , (6) 

 

respectively. Further, the form of the functions   P r t  and 

  Q r t  in (5) and (6), accordingly, follows from (4) and (3). 

That is we have 
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 (7) 

 

and 
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 (8) 

 

 
The expressions (4), (5), and (6) were the basis of a model 

developed in [2] and in other publications in the 1970s, which 

preceded Saleh’s article [3]. In these papers, the functions 

  P r t  and   Q r t  were approximated in a different way 

from that in [3], for example, by using polynomials or Bessel 

functions. The resulting model was called the quadrature 

model of bandpass nonlinearities [2] or simply the quadrature 

model. 

One thing is worth noting in the above model, namely that 

both its components, the in-phase and quadrature one, depend 

upon the AM/AM and AM/PM conversions. This is 

immediately seen by looking at the relations (5-8). However, 

when the AM/PM conversion becomes zero, “the quadrature 

path” in the aforementioned model vanishes.  

In [3], Saleh linked also his model with the quadrature one, 

exploiting the relations (7) and (8). In the rest of this paper, we 

will use a form of the above model that was used by Benedetto 

et al. in [1]. 

II. QUADRATURE MODEL AND NONLINEAR OPERATOR 

DESCRIBING IT 

In [1], Benedetto et al. used the quadrature model to describe 

behaviour of a nonlinear device (as, for example, a power 

amplifier working in its nonlinear region of operation) 

exhibiting the AM/AM and AM/PM conversions. This model is 

visualized here in Fig. 1; it is also used by the author of this 

paper in a complementing work [5]. 

 

Fig. 1. The quadrature model of a nonlinear device exhibiting the AM/AM and 
AM/PM conversions. 

The quadrature model of Fig. 1 consists of two parallel paths 

(branches). The upper one represents the model in-phase 

component, but the lower path its quadrature component, 

respectively. The first is described by a memoryless 

nonlinearity  pg  , which can represented, for example, by a 

power series with real-valued coefficients. Similarly, the 

nonlinearity  qg   in the lower branch is assumed to be 

memoryless, too. So, it can be also modelled by a power series 

with real-valued coefficients, another one. However, the latter 

nonlinearity in Fig. 1 is preceded by a 90 degree shifter. And 

this makes the difference between the branches in Fig. 1. 

Consider now the operation of shifting the signal  x t  in 

Fig. 1 by 90 degrees to get another signal denoted as  Hx t . 

This operation can be described in the time domain by the 

following convolution operation 
 

 

 

  
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 H

x
x t d

t




 






  . (9) 

 
 

The relation (9) describes the operation performed by the so-

called Hilbert transformer, in the time domain. For more 

details regarding this topic, see, for example, [7].  

Taking into account (9) and looking at Fig. 1, we see that 

the output signal  y t  at the nonlinear device scheme of Fig. 1 

is related with the input signal  x t  by the relation 
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 y t   

   

 x t   
 pg    

 qg    

90  shifter   

 Hx t   
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Further, (10) can be expressed in the operator form as 
 

           1 2y t N x t N x t N x t    (11) 

 

with 
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and 
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By the way, note that (13) can be rewritten in the following 

form 
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And observe that the second series, equivalent to the first one 

in (14), is nothing else than a Volterra series [8]. Therefore, the 

operator   2N x t  can be also called the Volterra operator [9] 

and, as such, it possesses memory [9]. The usage of the 

Volterra series to prove that the Saleh’s model is not a model 

without memory is dealt with in [5], [10], and [11].  
The operator      N x t Nx t  introduced above is 

defined by relations (11-13). (Note that    Nx t  stands for 

another useful form of notation used for operators.) This 

operator is a sum of two other operators   1N x t  and 

  2N x t . The former is, according to (12), expanded in a 

power series with real-valued coefficients 
1c , 

2c , 
3c , and so 

on; we will see that it is memoryless. But the latter is a little bit 

more complicated; it is a composite operator. Its inner part 

means performing in the time domain the operation defined by 

the Hilbert transformer [7], but the outer one follows from the 

memoryless nonlinearity  qg  , which is here (see (13)) 

expanded in a power series with real-valued coefficients 
1d , 

2d , 
3d , and so on. Further, as we will see later, the operation 

performed by the Hilbert transformer is an operation with 

memory. So, altogether, in connection with the memoryless 

operation indicated by  qg  , it makes the operator   2N x t  

to be an operator having memory. At this point, we remark that 

it is important to see that the operator   2N x t , as indicated, 

works on the signal  x t . In other words, it is an operator 

associated with the device input signal  x t . 

Remember now that the Saleh’s model [3] and related ones 

like the quadrature model [3] or the quadrature model of 

bandpass nonlinearities [2] are assumed in the literature [4] to 

belong to the group of memoryless ones. That is they do not 

incorporate memory effects. In what follows, we will correct 

this common belief using the generic description for all the 

aforementioned models in form of the operator (or sum of 

operators), which was just developed above. We will do this by 

showing that this operator possesses nonzero memory. 

However, here, we will use another approach - different from 

that utilized in [5] - to achieve the aforementioned goal. In [5], 

a mathematical tool called the Volterra series [1] was used. But 

in this paper, we exploit some general results (theorems and 

lemmas) proved in the theory of operators. And with their use, 

we obtain the same result as the one got in [5]. Therefore, we 

can treat the derivations presented here as complementing the 

corresponding ones in [5] as well as strengthening them at the 

same time. 

III. CONSIDERATION OF LINEAR PART OF OPERATOR N 

To understand better the verification problem of whether a 

nonlinear operator possesses memory or does not have it, let us 

start with checking this on the linear part of the operator N 

defined in the previous section. So, consider now the linear 

part of (11), which will be given by 
 

           1 2l l l ly t N x t N x t N x t    (15) 

 

with 
 

        1 1l plN x t g x t c x t   (16) 

and 
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where the added index “l” means a linear part of. 
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In the next step, we invoke a theorem regarding 

representation of linear systems published by Sandberg in [12]. 

It has been shown in [13] that this theorem can be used in 

classification of linear systems or linear operators with respect 

to the memory held. Without going into details, the 

aforementioned theorem [12] and the discussion in [13] 

referred to as say the following: 

Let 
lN  be a linear, causal, and time-invariant operator 

(representation, map). Further, take a “windowing” operator 

W
 given by 

 

       W x t w t x t   (18) 
 

 

with  the function  w t  having the following form 
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t
w t

t

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

 
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

, (19) 

where    means any positive number. Now, under the above 

assumptions, if 
 
 

      l lN x t N W x t  (20) 
 

 

holds for every positive number  ; then the operator 
lN  

possesses no memory. That is it is a memoryless one. 

In what follows, we will use the above statement to verify 

whether the following operators 
lN , 

1lN , and 
2lN  occurring 

in (15) have memory or are memoryless. And let us start with 

the operator 
1lN . Obviously, we take a time while of 

verification or observation, say 
vt , lying in the range of 

activity of the windowing function  w t
. That is we choose 

vt  . Note that for this time while we obtain  

    1 1l v vN x t a x t  for every 0   and 
vt  . In the next 

step, see that for the same values of 0   and 
vt  , we get 

    1 1l v vN W x t a x t   because then     v vW x t x t   holds. 

So, the condition (20), i.e.      1 1l v l vN x t N W x t , is 

fulfilled in this case. Finally, this means that the operator 
1lN  

is memoryless. 

Now, consider the operator 
2lN . Obviously, as before, we 

choose a time while of verification 
vt  . That is such time 

while which lies in the range of activity of the windowing 

function  w t . Observe now that we get 
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from (17). However, we have 
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for the value of the composite operator 
2lN W

 at the time 

while 
vt  by virtue of the function  w t  given by (19). 

Comparison of the right-hand sides of (21) and (22) shows 

that they contain different expressions. Let us check whether 

their values differ for the time while 
vt . To this end, let us 

evaluate their difference 
2l  by taking into account (21) and 

(22). That is we will consider 
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Next, observe that (23) can be rewritten as 
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Note that the function  x t  occurring in (24) means any 

function. So, let us choose for our purpose of testing a function 

 x t , which is defined by 
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Substituting the function given by (25) into (24) gives 
 

 

     2 2 2

3

1 1

3

1 1
    .

l l test v l test v

v v

N x t N W x t

d d
d d

t t



 

 

 
   





   

 
  

  (26) 

 

Using the following 
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in (26), we get from (26)  
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  (28) 

 

Obviously, there are such values of   and 
vt  for which 

2 0l  . This fact is sufficient to conclude that the operator 

2lN  possesses memory. 

Finally in this section, consider the operator 
lN  that 

according to (11) is a sum of operators 
1lN , and 

2lN  analysed 

just before. So, by virtue of this, we have 
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or in a more detailed form 
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From (30), we get  
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But, as shown above, 
2 0l   holds for many combinations of 

values of   and 
vt . Therefore, the operator 

lN  possesses 

memory. In other words, this is not a memoryless operator.  

IV. CONSIDERATION OF NONLINEAR OPERATOR N 

Using the results obtained in the previous section and 

applying the same methodology, it can be shown that the 

nonlinear operator N possesses the memory like its linear part 

lN . On the other hand, this seems to be obvious because the 

strictly nonlinear part of N considered here does not have any 

property to remove the memory from the linear part of N. 

V.  SUMMARY 

This is the third paper in a series of three, together with [5] 

and [11], in which the problem of possessing memory by the 

Saleh’s model of AM/AM and AM/PM conversions is 

discussed. In all of these works, we have proved that this model 

is not a memoryless one. Further, note that to show the above 

fact we have used three different approaches and exploited two 

different mathematical tools: the Volterra series [8], [9] and 

Sandbergs’s theorem [12], [13]. In all of the three cases, we 

have arrived at the same result. 

Finally, we draw the reader’s attention to the fact that above 

conclusions regard also the models related with the Saleh’s one, 

like the quadrature model [3] and the quadrature model of 

bandpass nonlinearities [2]. These are also models possessing 

memory. 
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