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 

Abstract—Two new problems are posed and solved concerning  

minimal sets of prime implicants of  Boolean functions.  It is well 

known that the prime implicant set of a Boolean function should 

be minimal and have as few literals as possible. But it is not well 

known that min term repetitions should also be as few as possible 

to reduce power consumption. Determination of minimal sets of 

prime implicants is a well known problem. But nothing is known 

on the least number of  (i) prime implicants  (ii) literals and  (iii) 

min term repetitions , any minimal set of prime implicants will 

have. These measures are useful to assess the quality of a minimal 

set. They are  then extended to determine least number of prime 

implicants / implicates required to design a static hazard free 

circuit. The new technique tends to give smallest set of prime 

implicants for various objectives.      

 
Keywords—Logic circuits,  Digital circuits,  Boolean functions, 

Minimal sets 

I. INTRODUCTION 

ETERMINATION of a minimal set of prime implicants of 

a Boolean function is a fundamental problem in 

combinational logic circuit design [1 – 4, 6]. This is required to 

reduce the size of the logic circuit. Given two such minimal sets 

with same number of prime implicants , we would like to use 

the one with less number of literals [1 -3 ]. This is done 

primarily to reduce the number of inputs (fan in) of gates. Thus 

minimal sets of prime implicants and literals are important in 

logic circuit design. This attracted the attention of a large 

number of researchers in the last eighty years. In spite of that 

there are some important gaps in the literature. This paper 

points out two such gaps and provides answers to them. The 

first one concerns the nature of a minimal set. The other 

concerns the least number of prime implicants any minimal set 

will have. 

    It is common practice to include a min term in as many 

prime implicants as possible.  This is done to reduce the 

number of literals of an implicant as much as possible. 

Consequently some min terms are covered more than once in a 

minimal set of prime implicants. But these repetitions must be 

avoided as far as possible to reduce power consumption. 

Therefore given two minimal sets with same number of prime 

implicants , we should choose the set with lesser repetitions of 

min terms. Thus the best minimal set of prime implicants will 

have least number of (i) prime implicants  (ii) literals  (iii) min 

term repetitions. Calculation of minimal sets of prime 

implicants is extensively discussed in the literature and it is 

widely taught in undergraduate courses of many disciplines of 

engineering.  But there are no measures in the literature to 

know how “good” is the set so calculated. This paper fills that 
 

 
V. C. Prasad is with the Dayalbagh Educational Institute, Dayalbagh, India 

(Retired from Indian Institute of Technology, Delhi (e-mail: 

prasadvishdelhi@gmail.com).  

gap. It presents methods to compute these numbers. In a given 

situation if a minimal set has numbers close to them, it implies 

that the minimal set is fairly good. A minimal set derived using 

the new technique tends to be the smallest for the intended 

purpose. 

     A minimal set of prime implicants covers all min terms of a 

Boolean function. This is not enough to make a logic circuit 

free of static hazards [1, 2 ]. Additional prime implicants are 

required to achieve this.  Methods are present in the literature 

to determine these additional prime implicants. But there are no 

measures to assess the quality of the set. It is shown in this 

paper that the technique used for normal Boolean functions can 

be used for hazard free circuits also with a simple modification. 

Thus it is possible to compute the least number of prime 

implicants , literals etc  required for static hazard free circuits. 

     Minimal min term set is explained in Section II. Methods to 

compute the lower bounds mentioned above are developed in 

Section III.  Static hazard free circuits are discussed in Section 

IV. The contributions of the paper are summarized in Section 

V. 

 

II. MINIMAL MIN TERM SET 

A. Definitions and Notations 

    A min term is a product (AND) term in which every Boolean 

variable appears in complemented or uncomplemented form. 

An implicant  is a product term of variables of a Boolean 

function  . An implicant is a prime implicant if it does not 

subsume any other implicant with fewer literals [1].  Two min 

terms of a Boolean function of n variables are said to form a 

dyad  if there is an implicant of (n-1) variables covering both of 

them.  

    We are given a Boolean function  f   in the sum (OR) of 

products (SOP) form. It may or may not be a SOP of min 

terms. Using this SOP all prime implicants of the function can 

be determined [ 1, 2, 3]. Henceforth we assume that all prime 

implicants are known.  A set of prime implicants is said to be 

minimal if  (i)  it covers all min terms of  f , (ii) no subset of it 

can do this[1, 2, 3 ].  A literal  x of a product term  xY of  f  can 

be deleted if  f contains    also. i.e., x is redundant in xY. A  

SOP of  f  is a minimal literal set  if   (i) it covers all min terms  

of  f   (ii) a subset of product terms does not cover all min terms   

(iii) no literal is redundant. It is clear from this definition that a 

minimal literal set is a minimal set of prime implicants also. 

Similarly a minimal prime implicant set is a minimal literal set 

also. But if we are given two minimal sets of prime implicants 

of the function with same number of prime implicants we wish 

to choose the set with fewer literals because this reduces the 

fan in of gates. 
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B. Minimal Min Term Set 

    Deletion of a min term from a product term splits the product 

term into two or more product terms. For example let  f  be  a 

Boolean function of four variables A, B, C, D and let  AB be a 

product term in a SOP of  f . Then if the min term ABCD is 

deleted from AB it can be written as  . But if  

 is redundant then AB can be replaced by just one 

product term after ABCD is deleted. Therefore deletion of a min 

term from a product term P of a SOP is allowed only if  (i)  it is 

covered by at least two product terms  (ii) P can be replaced by 

one product term only. In this sense a min term is redundant in  

P if it can be deleted.  A  SOP of  f  is a minimal min term set if   

(i)  it covers all min terms of the function  (ii) no product term 

has redundant min terms. Note that a minimal min term set need 

not be a minimal set of prime implicants.  For example let   f   =  

 . The product terms in it constitute a 

minimal min term set but not a minimal set of prime implicants. 

But this function can also be written as   f  = AB + CD .  ( AB , 

CD ) is a minimal prime implicant set. It is a minimal min term 

set also.  A minimal prime implicant set may not be a minimal 

min term set. For example let  f  =  AB  + BCD . ( AB ,  BCD ) 

is a minimal set of prime implicants. But it is not a minimal min 

term set .  is a minimal min term set. In fact this 

function has no minimal prime implicant set which can be a 

minimal min term set also.  In such situations a minimal prime 

implicant set can be transformed into a minimal min term set by 

eliminating redundant min terms as explained above. 

      Consider any logic realization  of a SOP  in which a min 

term  x  covered by two product terms  P1  and  P 2 has two 

paths to output when  x  = 1. One of them passes through  P 1 

and the other passes through P 2. AND, OR , NOT  and  NAND 

realizations are two well known examples  of this kind. In such 

realizations the load current on inputs increases when  x = 1 

because of multiple paths. Devices and resistors on these paths 

consume power and dissipate as heat. This is reduced if min 

term repetitions are as few as possible. This aspect of min terms 

does not seem to have attracted the attention of researchers all 

these years.    

      Sum of product form of all min terms is a minimal min term 

set. But it requires too many gates. Thus we want a  SOP to be a 

minimal prime implicant set also. In view of this henceforth we 

will restrict our attention to minimal prime implicant sets with 

as few min term repetitions as possible.  

III. MEASURES OF MINIMAL PRIME IMPLICANT  SETS 

    In this section methods are presented to compute the least 

number of prime implicants, literals and min term repetitions, 

any minimal set of prime implicants will have. 

A. Least Number of Prime Implicants 

     We will determine the least number of prime implicants any 

minimal set will have. This is done using the concept of distant 

pair of min terms. A pair of min terms ( m i , m j ) of  f   is said 

to be a close pair  if there is an implicant covering both of them 

. Otherwise it is a distant pair . This implies that every close 

pair lies in at least one prime implicant. Note that a dyad is a 

close pair.  But a close pair may or may not be a dyad. Given  f  

determine all close and distant pairs of min terms. A group of 

min terms can form a close (distant) set if every pair of min 

terms in it is a close   ( distant ) pair.  A  close (distant) set  of 

min terms is maximal if no min term can be added to it without 

violating the close (distant) pair property.  All maximal close 

(distant) sets can be obtained by merging close (distant) pairs [ 

1,2]. Maximal close (distant) sets can also be obtained by 

dividing the universal set of all min terms of  f  using all distant 

( close) pairs [5]. Let  S d = ( m1 , m2 , …,    m d )  be one of the 

largest  distant sets . Since every pair of min terms in it is a 

distant pair we need  d  prime implicants to cover them. They 

may not cover all min terms .Therefore additional prime 

implicants may be required. This proves the following theorem.  

 

Theorem 1 : Every minimal set of prime implicants of  f  has 

at least  number of prime implicants where  Sd is the largest 

distant set and   denotes the size d of S d . 

 

Example 1 : Consider the Boolean function  [1] , 

f  ( A,B,C,D,E )  =  m 4  +  m 5   +  m 9  +  m 11  +  m 12  +  m 14  

+  m 15  +  m 27  +  m 30  .   m 1 , m 17 , m 25 , m 26  and  m 31  are 

don’t care min terms.  m 4 denotes  . Other min 

terms are also denoted similarly. The prime implicants of the 

function are [1]      P 1 :  ( m 9 ),  ( m 9 , m11 , m 

27 ) ,  ( m 11 , m 15 ,m 27 ) ,  ( m 14 , m 15 , m 30 

) ,  ( m 27 ,        m 30 ) ,   ( m 5 )  ,  

 ( m 4 , m 5 ),   ( m 4, m 12 ),  

 ( m 12 , m 14 ). The min terms they cover are 

shown in brackets. Distant min term pairs are easily determined 

from this information. For example consider m 4.  m 4 lies in  P 

7 and  P 8. Therefore all min term pairs of  m 4 except those of  

P 7 and  P 8 are distant pairs. Thus distant  min term pairs of  m 

4 are ( m 4 , m 9 ) ,( m 4 , m 11 ), ( m 4 , m 14 ) ,  ( m 4 , m 15 ) ,  ( 

m 4 , m 27 )  and ( m 4 , m 30 ). Distant  pairs of other min terms 

can also be determined similarly. U = { m 4 , m 5 , m 9 , m 11 , m 

12 ,  m 14 , m 15 , m 27 , m 30 } is the set of all min terms 

excluding don’t cares. Since every pair of min terms of a prime 

implicant is a close pair , retain only one min term of a prime 

implicant and delete others. Do this in all possible ways and for 

all prime implicants. This divides U into many subsets.  

Eliminate a set if it is a subset of another set. At the end of this 

we will have all maximal distant sets. Applying this to  U using 

P 1 , U is not further subdivided because  P 1 has one min term 

only . P 2 has three min terms   (m 9 , m11 , m 27) .  ( m 9 , m11 ), 

( m11 , m 27 )   and ( m 9 , m 27) are three possible close pairs of 

min terms which must be deleted from  U to destroy all close 

pairs of  P 2 .This divides  U  into three sets .They are ( m 4 , m 

5 , m 12 , m 14 , m 15 , m 27 ,       m 30 ) , ( m 4 , m 5 , m 9, m 12 , m 

14 , m 15,  m 30 ), ( m 4 ,  m 5 ,   m 11 , m 12 , m 14 , m 15  ,  m 30 ).  

To destroy close pairs of P 3 , delete (m 11 , m 15 ) ,  ( m 15 ,m 27 

)  and ( m 11 , m 27 ) from each of these sets. Do like this to all 

prime implicants. At the end we get all maximal distant sets. ( 

m 5 , m 9 , m 12 , m 30 ) , ( m 5 , m 11 , m 12 ,  m 30 ) , ( m 5 , m 9 , 

m 12 ,  m 15 ) etc are some of the largest distant  sets . According 

to Th. 1 this implies that every minimal set of prime implicants 

covering all min terms of this function will have at least four 

prime implicants. All minimal sets are easily obtained [1] using 

Petrick’s method revealing that this statement is true. 

     Consider the largest distant set ( m 5 , m 9 ,  m 12 , m 30 ).  P 6 

with one min term and  P 7 with two min terms cover  m 5.  

Choose P 7 to cover  m 5 because it covers more min terms. 

Similarly choose  P 2 ,  P 9  and  P 4  to cover  m 9 , m 12 and       
m 30 respectively. The set ( P 7 , P 2 , P 9 ,    P 4 ) covers all min 
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terms . Therefore this set is the smallest minimal set of prime 

implicants of  f. This shows that if prime implicants covering 

min terms of largest distant set are selected carefully then we 

can get the smallest minimal set. 

Remarks: 

1. If we apply this approach to min terms of  ( f  = 0 ), we get 

the least number of prime implicates which any POS            

( product of sums)  of  f  must have. We can realize  f  using 

prime implicants of   and an inverter at the output. In this 

sense the least number of prime implicants we need to 

realize  f  equals the smaller of   and   where  

denotes the size of the largest distant set of   . 

2. Min terms of don’t care conditions are not included in this 

calculation. 

3. We can extend this to multiple Boolean functions as 

follows: Obtain all distant pairs of each function. ( m i , m j ) 

is neither a close pair nor a distant pair if  m i  and m j 

belong to different functions. If a pair is a distant pair for 

one function and a close pair for another function then take 

it as a distant pair. Using the pairs so obtained determine 

the largest distant set  Sd .   gives the least number of 

prime implicants required to cover min terms of all 

functions. 

4. We don’t have to know all prime implicants to use the 

concepts of close and distant pairs. Let  U p be the set of all 

prime implicants and  S p be a subset of  U p. We can define 

close and distant pairs with respect to S p also.  A close 

(distant) pair with respect to U p ( S p ) may or may not be a 

close (distant) pair with respect to S p ( U p ). Therefore 

least number of prime implicants with respect to S p can be 

more. 

5. Compatible and incompatible pairs of states are well 

known concepts in Sequential circuits. They are used in 

sequential circuit design [1, 2, 5]. The concept of 

compatibility occurs naturally in the state tables of 

sequential circuits. It depends upon next states and outputs 

for all inputs. But there is no equivalent concept for min 

terms in the truth tables of Boolean functions. Close and 

distant pairs of min terms depend on implicants and hence 

prime implicants and not truth tables. So close and distant 

pairs can change with prime implicants sets.  But 

compatible and incompatible  states are fixed for a given 

state table . 

B. Least Number of Literals 

   Let  S d  =  (  m 1, m 2, … , m d ) be the largest distant set of 

min terms. Let  P k be a prime implicant with least number of 

literals covering the min term m k  for all        k = 1, 2, … , d . 

Then S pd  =  ( P 1, P 2, … , P d ) is a set of prime implicants 

covering all min terms of  S d. Let  l  be the total number of 

literals of the prime implicants of  S pd.  

 

Theorem 2:  Any minimal set of prime implicants of  f  will 

have at least  l  literals.  

 

Proof:  Let  X  = { P x1, P x2 , …. , P xb } be a minimal set of 

prime implicants covering all min terms of  f   such that the 

total number of literals in  X is the lowest. X covers the min 

terms of    S d also. Therefore from Th.1  b  ≥ d. Let  P x k be the 

prime implicant of  X with least number of literals covering  m 

k of  S d for all k = 1, 2, …, d . But P k of S p d also covers m k. 

Since P k  has least literals   ≥   where  denotes  the 

number of literals in the product term P. Since every pair of 

min terms of  S d is a distant pair , P x k that covers min term  m 

k of  S d cannot cover other min terms of  S d . 

 

  │P x 1│ + │P x 2│ + …. + │P x d│    ≥   │P 1│ + │P 2│ + 

….. + │P d│  =  l                           i.e.,  │P x 1│ + │P x 2│ + …. 

+ │P x d│ + │P x  d +1│ + …… + │P x b│  ≥  l   .Hence the 

result. 

 

    A minimal set of prime implicants with as few literals as 

possible can be obtained as follows : Choose a prime implicant 

with least number of literals to cover  a min term not covered 

so far. Do this for all min terms to get an ordered set of prime 

implicants in the forward pass. In the reverse pass eliminate 

redundant prime implicants as in Prasad [6] . 

 

Example 2: Consider the Boolean function of Example 1. 

Consider the largest distant set    ( m 5 , m 9 ,  m 12 , m 30 ). P 6  

and  P 7 cover the min term  m 5 . Both of them have four 

literals. Choose any one of them , say , P 7 . Similarly choose  P 

2  , P 8  and  P 4 to cover  m 9 , m 12  and  m 30 respectively. This 

gives   ( P 7 ,   P 2 , P 8 , P 4 ). Total number of literals in this set 

is  14. Therefore every minimal set of prime implicants will 

have at least  14  literals according to Th.2.  A minimal set of 

prime implicants with as few literals as we can , can be 

obtained as follows: Consider  m 4. It is covered by P 7  and P 8 

. Both of them four literals. Choose P 7.  S m = { P 7 }. P 7 

covers m 5 also. Next consider  m 9 . Choose  P 2 with three 

literals to cover it. This gives  S m  = { P 7 , P 2 }. Next consider  

m 12 and select  P 9 with four literals to cover it.   S m  = { P 7 ,  

P 2 , P 9 }. Finally consider  m 15  and cover it with P 4.   S m  =  

{ P 7 , P 2 , P 9  , P 4 }. This covers all min terms . So the 

forward pass[6] is over. In the reverse pass[6] none of them can 

be eliminated as they are not redundant.  Thus this is a minimal 

set of prime implicants with as few literals as possible. It has  

14 literals . This is also a minimal set of prime implicants with 

least number of literals. 

C. Least Number of Min Term Repetitions 

   We are given  S d the largest distant set and all prime 

implicants of  f . Ignore all don’t care conditions. Let  P k  be a 

prime implicant with least number of min terms  covering the 

min term  m k  of  S d. Do this for all  k = 1, 2, …, d. Let  S p d = 

{ P 1, P 2, …., P d }. Let  Q r be the set of all min terms covered 

by the prime implicants of  S p d . Let P’k be a prime implicant 

with least number of min terms of  Q r covering the min term  

m k . Do this for all        k = 1, 2, …, d. Let  S’p d = { P’1, P’2, 

…., P’d }. Let  Q’r be the set of all min terms covered by the 

prime implicants of  S’ p d. If  Q’r = Q r , the process terminates. 

If not , Q’r has less min terms than Q r.  Q’ r →  Q r . Delete  

S’p d. Let P’k be the new prime implicant with least number of 

min terms of the new Q r covering the min term  m k . S’p d is 

the new set of prime implicants and  Q’r is the new set of all 

min terms of  S’p d. Check if  Q’r = Q r . If this is not true repeat 

the process till this is true. Since Q’r has less min terms than  Q 

r , this process must terminate eventually. Let  t d  be the total 

number of min terms  of the prime implicants of  S’ p d where  a 

min term is counted  as many times as it appears. Let  t  be the 

number of min terms of  f  where each min term is counted 
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only once. Let the number of min terms of  f not included in  Qr 

be  γ where each min term is counted only once. 

 

Theorem 3: Every minimal set of prime implicants of  f  will 

have at least ( td + γ -  t )   repetitions of min terms.   

 

Proof:  Let  X  = { Px 1, Px 2, … , Px b }be the smallest minimal 

set of prime implicants with least number of repetitions of min 

terms. From Th.1  b ≥ d . Among all prime implicants of X 

covering  m 1 , let  P x 1  have least number of min terms of  Qr. 

Similarly  Px 2 covers  m 2 and so on. Let  P’x k  be that part of  

Px k containing min terms of  Qr only  for all k  = 1, 2, … , d. 

Since min terms of  S d are not close , a prime implicant of  X 

can cover at most one min term of  Sd. Let │P│denote the 

number of min terms  of P. Then │Px k│  ≥  │P’x k│. Both  P’k  

and  P x k  cover   m k . But P’k has least number of min terms of  

Qr . So │P’x k│ ≥ │P’k│                                               │Px 1│ 

+ │P x 2│ + …… + │Px a│ ≥ │P’1│ + │P’2│ + …… + │P’d│  

=   t d      and       │Px 1│ + │P x 2│ + …… + │Px a│ + │Px  a + 

1│ + ….  + │Px b│  ≥  td  +  γ.  But  X covers all min terms of  f 

. Therefore at least   ( td + γ -  t ) number of min terms must 

repeat in X. This proves the theorem. 

 

       A minimal set of prime implicants with as few min term 

repetitions as possible can be obtained as follows: Cover each 

min term not covered so far by choosing a prime implicant 

with least number of min terms. Do this to cover all min terms 

and obtain an ordered set of prime implicants in the forward 

pass. Eliminate redundant prime implicants in the reverse pass 

as in Prasad [6 ]. 

 

Example  3:  Consider the largest distant set  of min terms  (m5 

,  m11 ,    m12 ,  m30) of the Boolean function of Example.1. P6 

and  P7 cover  m 5 . P 6 has fewer min terms than P7 . So select  

P6  to cover  m 5.  Similarly choose  P2 , P9 and  P5 to cover  

m11,  m12  and  m30  respectively. The min term  m27 lies in  P 2 

and  P5 .  Other min terms covered by (P6, P2, P9, P5)  do not 

repeat. Therefore at least one min term will repeat in every 

minimal set of prime implicants of  f   according to Th.3. (P2, 

P4, P7, P9) is the smallest minimal set.  m14  repeats in this set. 

i.e, there is at least one repetition. This shows that the smallest 

set of prime implicants can have least number of min term 

repetitions also. 

IV.  STATISTIC HAZARD  FREE CIRCUITS 

       It is well known that logic circuits can suffer from static 

hazards [1, 2]. Realization of a minimal set of prime implicants 

covering min terms of  f   can have static one hazards. A circuit 

realized from prime implicants will be free of static one 

hazards if every dyad of the function lies in at least one prime 

implicant of the minimal set [1]. Thus we need a minimal set of 

prime implicants covering all dyads. We can determine the 

least number of prime implicants required in such a minimal 

set as follows: 

   Given the min terms of  f   obtain all dyads. Min terms of 

don’t care conditions do not appear in these dyads. Let U  = 

{d1, d2, ….,  dy} be the universal set of dyads. If no prime 

implicant covers a dyad, it is itself a prime implicant.  

Therefore every dyad is covered by at least one prime 

implicant.  A pair of dyads dj  and dk is said to be close if there 

is a prime implicant covering both of them. Otherwise they are 

distant. Using this definition obtain the largest distant set  Sy  of 

dyads.  This is a subset of U such that no two dyads are close.  

Let Sy = {d’1, d’2, …., d’α}. Every minimal set of prime 

implicants that covers all elements of U covers all elements of  

Sy also. But no two elements of  Sy are covered by a single 

prime implicant. Therefore we need α number of prime 

implicants  to cover Sy . But this set of prime implicants may or 

may cover all dyads. Further it may not cover all min terms 

also. This proves the following theorem. 

 

Theorem 4: Every minimal set of prime implicants of  f  free 

of static one hazards and covering all min terms of  f  will have 

at least  α number of prime implicants. 

 

       A minimal set of prime implicants with as few prime 

implicants as possible and covering all dyads and min terms 

can be obtained as follows: In the forward pass let P1 be a 

prime implicant covering a dyad d1 and containing largest 

number of dyads. Select P1 to cover  d1. Ignore all dyads 

covered by P1. Let d2 be another dyad not covered so far. Let P2 

be another prime implicant containing largest number of 

uncovered dyads and covering  d2. Select P2 to cover d2. In this 

way cover all dyads. This gives an ordered set of prime 

implicants. In the reverse pass eliminate redundant prime 

implicants, if any, as in Prasad [6]. Let Sm be the resulting 

minimal set of prime implicants. If there are any min terms not 

lying in dyads, they are isolated or form prime implicants with 

don’t cares. Include their prime implicants in  Sm. This gives a 

minimal set of prime implicants covering all dyads and min 

terms. Further we tried to do this with as few prime implicants 

as possible. 

 

Example 4:  Consider the Boolean function of Example 1.  

Dyads are  d1: (m4, m5),  d2: (m4, m12), d3: (m9,     m11), d4: (m12, 

m14), d5: (m11, m15), d6: (m11,      m27), d7: (m14, m15), d8: (m14, 

m30). Every min term lies in at least one dyad.  Therefore if we 

cover dyads all min terms are also covered. Close dyad pairs 

are (d3, d6), (d5, d6) and (d7, d8). All other dyad pairs are distant 

pairs.  U = {d1, d2, d3, d4, d5, d6, d7, d8} . Close dyad pair (d3, d6) 

is destroyed if U is divided into two sets . One of them does not 

contain  d 3 while the other does not contain  d6.  Delete one of 

(d5, d6) from these sets in all possible  ways . Later do the same 

for  ( d 7 , d 8 ) . (d 1 , d 2 , d 3 , d 4 , d 5 ,  d 7 ) , ( d 1 , d 2 , d 3 , d 

4 , d 5 ,  d 8 ) are the largest distant sets of dyads that result from 

this method. There are six  dyads in each of these sets. 

Therefore every minimal set of prime implicants not having 

static one hazards requires at least six prime implicants from 

Th.4. 

 

   Consider the largest distant set (d1, d2, d3, d4, d5, d7).  P1, P5  

and P6 do not cover any dyads. Therefore they are redundant 

for static one hazard free circuits. The dyads covered by the 

remaining prime implicants are P2: (d3, d6),   P4: (d7, d8),  P7: 

(d1),  P8: (d2) and  P9: (d4). Take  P7 to cover    d1 .  Similarly   

P8, P2, P9, P3 and  P4 are taken to cover d2,  d3, d4, d5 and d7 

respectively.  This gives (P7, P8, P2, P9, P3, P4). This covers all 

dyads and all min terms. Therefore this is the smallest set of 

prime implicants that does not have static one hazards. Note 

that dyad  d6 is covered more than once. i.e., every minimal set 

will have at least one dyad repetition. 
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Remarks :  

1. Given  Sy , let  Pk be a prime implicant with least number of 

literals covering the dyad  d’k for all  k = 1, 2, …., α . Then  S 

y d  =  (P1, P2, … , Pα )  is a set of prime implicants  covering 

all dyads of  S y. Let  l  be the total number of literals in Sy d . 

Then any minimal set of prime implicants of  f  free of static 

one hazards will have at least  l  literals. The proof is similar 

to that of Th.2.                                                                                                                                 

2.Given  Sy, let  Pk be a prime implicant with least number of 

min terms covering the dyad  d’k for all  k = 1, 2, …., α. Then  

Sy d  =  (P1, P2, … , Pα)  is a set of prime implicants  covering 

all dyads of  S y. Proceeding as in Section 3C  we can state a 

theorem similar to Th.3. This gives the least number of min 

term repetitions any static one hazard free minimal set of 

prime implicants will have. In this argument  if  Pk is a prime 

implicant with least number of dyads  then we get a lower 

bound  on dyad repetitions. 

3.If we apply Th.4 to the prime implicants of    , we get the 

least number of prime implicates of a static zero hazard free 

circuit. Similarly Remarks  6 and 7 can also be stated for 

static zero hazard free circuits. 

4.Similar to a minimal min term set , one can define a minimal 

dyad set . A  SOP of  f  is a minimal dyad set if  (i) it covers 

all dyads of the function  (ii) a subset of product terms  does 

not cover all dyads  (iii)  no dyad is redundant.  A realization 

of a minimal dyad set will be free of static one hazards and 

consumes less power. 

 

V.  CONCLUSIONS 

     Techniques are presented to derive measures like least 

number of  (i) prime implicants  (ii) literals   (iii) min term 

repetitions  and  (iv) prime implicants for hazard free circuits. 

They are useful to assess the quality of a minimal set .The new 

approach tends to give smallest set of prime implicants 

satisfying various requirements. Minimal min term set 

discussed in the paper is particularly important for low power 

digital applications. These techniques are useful to answer 

similar questions for any set covering problem including some 

problems in graph theory. 
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