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 

Abstract—This paper presents a new approach to designing 

reversible circuits. Reversible circuits can decrease energy 

dissipation theoretically to zero. This feature is a base to build 

quantum computers. The main problem of reversible logic is 

designing optimal reversible circuits i.e. circuits with minimal 

gates number implementing the given reversible function. There 

are many types of reversible gates. Most popular library is a set of 

three types of gates so called CNT (Control, NOT and Toffoli). The 

method presented in this paper is based only on the Toffoli gates. 

A graphical representation of the reversible function called s-maps 

is introduced in the paper. This representation allows to find 

optimal reversible circuits. The paper is organized as follows. 

Section 1 recalls basic concepts of reversible logic. In Section 2 

a graphical representation of the reversible functions is presented. 

Section 3 describes the algorithm whereby all optimal solutions of 

the given function could be obtained. 

 
Keywords—reversible logic, reversible circuits, reversible gate, 

Toffoli gate 

I. INTRODUCTION 

YNTHESIS of reversible circuits is one of very important 
problems in new research areas i.e. quantum computing, 

nanotechnologies as well as in low power computation [1]. 
A circuit is called reversible if there is a one-to-one 
correspondence between its inputs and outputs. The idea of such 
circuits was developed on the base of Landauer principle [2]. 
Rolf Landauer in 1961 indicated a link between information 
theory and thermodynamics. He argued that the erasure of 

information is a dissipative process. Hence circuits without 
loose information do not need energy. Therefore, reversible 
logic synthesis has been intensively studied recently. The 
attention is focused mainly on the synthesis of circuits built 
from the NCT library of gates, i.e. NOT, CNOT and Toffoli 
gates [3]. But various researchers uses only Toffoli gates to 

design reversible circuits. A novel method of synthesis using 
only Toffoli gates is presented in this paper This method leads 
to obtaining an optimal solution for the given function. Usually 
there exist more than one optimal solution and the method 
allows to find all of them.  

The set of n balanced Boolean functions of n variables is 

called reversible if each input vector is mapping into a unique 
output vector. The Boolean function is called balanced if the 
number of 0’s minterms is equal to the number of 1’s minterms. 
From this definition originates the main feature of reversible 
circuits. It is possible to determine the input vector if the output 
vector is known. Such circuits fulfil Landauer principle and 

there is no loss of information.  
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The example of three variables reversible function is presented 

in Table I. In this case the reversible function is described by the 

true table. In this article there will be used two other notations: 

one as permutation of the output vectors and the other as s-maps 

introduced in section 3.  

 
TABLE I 

EXAMPLE OF THREE VARIABLE REVERSIBLE FUNCTION 

No. X2X1X0 Y2Y1Y0 

0 000 000 

1 001 011 

2 010 010 

3 011 001 

4 100 100 

5 101 101 

6 110 111 

7 111 110 

 

This function from Table I could be presented as permutation 

of output vectors i.e. <0,3,2,1,4,5,7,6>. This is a sequence of the 

output vectors Y2Y1Y0. To implement the reversible function a 

designer uses  reversible gates. A lot of effort has been made to 

implement reversible gates. Researchers try various 

technologies. The best known are: semiconductor gates YBS 

[4], NMR gates [5], ION trap gates [6], quantum dots [7], optical 

lattice [8].  

In this article the technological implementations will be not 

presented and attention will be focused on logical features of the 

reversible gate. Many gate libraries have been examined in 

literature. Very often the NCT library of gates is used. In 1980 

they proposed a library with so called generalized Toffoli gate 

[9]. This gate contains XOR gate on one input line. The two 

arguments of this gate are:  

1.  proper variable on this line,  

2.  AND function of the remaining variables with or without 

inverter (NOT gate).  

As it will be seen each of these gates swaps one pair of input 

vectors. Thus the sequence of the output vectors differ from the 

input sequence only in two positions .  

For the generalized Toffoli gates some researches proposed a 

few methods of synthesis of reversible circuits [10]-[13]. They 

differ in terms of complexity of algorithms. In this paper there 

will be presented a novel method of an optimal synthesis. This 

method uses a simple algorithm. For three variables reversible 

functions a designer can perform synthesis without computer 

software. 
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Logical features of three variables Toffoli gates are presented 

in Fig. 1. There are four Toffoli gates with XOR gate located on 

X0 line. The symbol of these gates will be begin with T0. 

 

 
Fig.1. Graphical representations of reversible gates: a) T0, b) T0-1, c) T0-2, 

d) T0-12. 

The gates from Fig. 1 implement the reversible function: 

Y2 = X2 

Y1 = X1 

Y0 = X0  ab where a = X1 or �̅�1 and b = X2 or �̅�2 

The AND function arguments are Xi if there is a black dot on 

the line Xi.  The AND function arguments are �̅�i if there is a 

white dot on the line Xi. Thus the output functions Y1 and Y2 

have a values of X1 and X2. And the output function Y0 will be 

as follow: 

Y0 = X0  X1 X2  Fig. 1a 

Y0 = X0  �̅�1 X2  Fig. 1b 

Y0 = X0  X1 �̅�2  Fig. 1c 

Y0 = X0  �̅�1 �̅�2  Fig. 1d 

In the same manner one should define the other eight gates: 

four with XOR on line X2 (T2, T2-0, T2-1, T2-01) and four on 

line X1 (T1, T1-0, T1-2, T1 02). Therefore, there exist 12 three 

variable Toffoli gates.  

 

Lemma 1. The output function of Toffoli gate is the input 

function with two swapped rows. 

Proof. Let be an input function I (identical function i.e. left 

side of Tab. I). The output function of gate T0 is Y0 = X0  

X1X2. If X1X2=0 (rows 0,1,2,3,4,5) the output function is the 

same as the input function. Only if X1X2=1 (rows 6 and 7) Y0= 

�̅�0. The output function of gate T0 in row 6 has a value 7 and in 

row 7 has a value 6. It is a function with two swapped rows 6 

and 7.  

In the same manner it is possible to show the output functions 

for all the other gates. The results of this process are presented 

in Table II. In the first column of this table there are gates 

symbols and in the second column there are appropriate 

swapped pair vectors. 

To implement the given reversible function a designer can use 

a proper sequence of reversible gates. All of the 12 gates from 

Table II can be used. The target of the synthesis of the reversible 

function is to find a cascade of reversible gates as it is shown in 

the Fig. 2. 

In Fig. 2 there are two complementary solutions of the 

synthesis problem. The first solution is a cascade with the input 

vectors F (given function – from the right side of the true table) 

and the output vectors I (identical function – from the left side 

 

TABLE II 
SWAPPED VECTORS BY REVERSIBLE GATES 

Gate Swapped rows  

T0 6,7 

T0-1 4,5 

T0-2 2,3 

T0-12 0,1 

T1 5,7 

T1-0 4,6 

T1-2 1,3 

T1-20 0,2 

T2 3,7 

T2-0 2,6 

T2-1 1,5 

T2-01 0,4 
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Fig. 2. Two cascades with 6 reversible gates implement the same function: 
Upper cascade transform given function into identical function. Bottom 

cascade transform identical function into given function. 

of the true table). The second solution is a cascade with the input 

vectors I (from the left side of the true table) and the output 

vectors F (from the right side of the true table). Both cascades 

implement the given reversible function but the first cascade 

transforms the function F into the function I and the other 

cascade transforms the function I into the function F. In this 

paper only the first type of the cascade will be used. The main 

target for designers is to find an optimal result i.e. cascades with 

minimal number of gates. 

II. GRAPHICAL FUNCTION REPRESENTATION 

The true table and permutation notation are not convenient 

during the synthesis process. This is a reason to introduce an 

easy notation for designers. Because each of the output Boolean 

functions of reversible functions are balanced, i.e. the number 

of 1’s is equal to the number of 0’s, it is convenient to introduce 

the graphical representation. A set of s-maps composed in two 

rows is proposed here. In the upper row there are located the 

vector numbers (minterms) corresponding to 0’s of function and 

in the bottom row the minterms corresponding to 1’s of 

function. The number of the s-maps for the given function is 

equal to the number of variables. The s-maps for the function I 

of three variables are shown in the Fig. 3. 
 

X2        X1       X0 

a     b     c       d          e      f       g      h       i      k      l     m 

0 1 2 3  0 1 4 5  0 2 4 6 

4 5 6 7  2 3 6 7  1 3 5 7 
Fig. 3. Graphical presentation of I function. 
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All the columns of s-maps from Fig. 3 are marked by letters 

from a to m in order to indicate swapping pairs corresponding 

to the given gate. The graphical representation of the reversible 

function F from Table I is shown in the Fig. 4.  

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

0 3 2 1  0 3 4 5  0 2 4 7 

4 5 7 6  2 1 7 6  3 1 5 6 
Fig. 4. Graphical representation of function <0,3,2,1,4,5,7,6>. 

It is easy to note that the output function Y2 is ordered i.e. all 

minterms from the upper row of s-map X2 (Fig. 3) are in the 

upper row of s-map Y2 and all minterms from the bottom row 

of s-map X2 are in the bottom row of s-map Y2. The situation 

with the maps Y1 and Y0 is different. Minterms 3 and 1 must be 

swapped to ordered Y1 (column f) and minterms 6 and 7 must 

be swapped to ordered Y0 (column m). These improper fields on 

the s-maps Y1 and Y0 are highlighted. It is shown in the Fig. 5. 

 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

0 3 2 1  0 3 4 5  0 2 4 7 

4 5 7 6  2 1 7 6  3 1 5 6 
Fig. 5. Graphical representation of function <0,3,2,1,4,5,7,6> with 

highlighted fields. 

The design process involves elimination of the improper fields 

i.e. highlighted fields. For example, for the function from 

Table I a designer must use the gate T1-2 to swap minterms 3 

and 1 (column f in Table III) and gate T0 to swap minterms 7 

and 6 (column m in Table III). The s-maps of the output function 

after gate T1-2 (so called rest function) are shown in Fig. 6.  

 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

0 1 2 3  0 1 4 5  0 2 4 7 

4 5 7 6  2 3 7 6  1 3 5 6 
Fig. 6. Graphical representation of rest function after gate T1-2. 

The gate T1-2 swaps minterms in column f in the s-map Y1 

and it swaps these minterms in rows of the remaining s-maps Y2 

and Y0. These swaps in rows of the s-maps Y2 and Y0 will be 

called a shift. 

The function from Fig. 6 is the input function of gate T0. The 

rest function after gate T0 is shown in Fig. 7.  

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

0 1 2 3  0 1 4 5  0 2 4 6 

4 5 6 7  2 3 6 7  1 3 5 7 
Fig. 7. Graphical representation of rest function after gate T0. 

Because the rest function after gate T0 in Fig. 7 is identical to 

the function I the design process is completed. 

These two gates in the cascade are the solution of the optimal 

synthesis of the reversible function from Table I. In this case the 

sequence of the gates does not matter. Both cascades are shown 

in Fig. 8. 

 

 
Fig. 8. Reversible cascades implemented of function from Tab. I. 

This consideration leads to the design process of the reversible 

function. The beginning of this process is a selection of the first 

gate in the cascade. Next the rest function after this gate should 

be designated. If the rest function is not identical to the function 

I the process for the rest function should be repeated. 

III. ALGORITHM OF SYNTHESIS 

The synthesis problem was solved by Yang and others [13]. 

They used Hamming distance as a criterion to choose a gate in 

the proper place in the cascade. In this paper there will be 

presented a novel algorithm based on a graphical representation 

of the given function.  

Let be given a reversible function F. The first step for a 

designer is to select the first gate in the cascade. To do it is 

necessary to select the best gate in order to obtain an optimal 

circuit. As we have seen every gate swaps minterms in one 

column of one s-map and shifts minterms in the remaining s-

maps. Examination of  the rest function results in the choice of 

the best gate. The best choice must lead to the rest function with 

maximum one over the other highlighted fields. To determine 

the choice an introduction of two criteria is necessary:  

1. in the s-maps of the given function there exist columns with 

both highlighted fields, 

2. the gate will be the best gate if in the s-maps of the rest 

function a new column with highlighted fields is created. 

The best choice of selection is when both the above criteria 

are fulfilled. We can introduce a measurement of the degree of 

matching the given gate.  

1. If there exists a column with two improper fields the 

corresponding gate receives +1 point. 

2. If swapping one column causes in the other s-maps shifting 

the improper field under/above the other improper field the 

corresponding gate receives +1 point. 

3. If there exists a column with two improper fields and in the 

other s-maps shifting of the improper field under/above the 

other improper field is caused the corresponding gate receive +2 

points.  

4. If swapping one column causes destruction of the others 

maps in the column with two improper fields the corresponding 

gate receive -1 point. 

Usually more than one gate fulfilling the criteria of “best” gate 

is in existence. This means that there exist more than one 

optimal cascade. 

Having chosen the first gate in the cascade we repeat the same 

algorithm for the rest function of this gate. These steps are 

performed until the rest function is identical to the function I. 

 

Example: 

Consider a reversible function  <5,1,3,7,4,2,6,0> from [2].  
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Step 1 

The s-maps of this function is shown in the Fig. 9. 

 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

5 1 3 7  5 1 4 2  5 3 4 6 

4 2 6 0  3 7 6 0  1 7 2 0 
Fig.9. Graphical representation of function <5,1,3,7,4,2,6,0>. 

The ranking of all gates should be determined for the given 

function. The punctuation for the ranking is collected in 

Table III.  
 

TABLE III 

 RANKING OF ALL 12 TOFFOLI GATES 

Gate Column Punctuation Y2Y1Y0  

T0 m -1,-1,0 

T0-1 l +1,-1,0 

T0-2 k -1,0,0 

T0-12 i +1,0,0 

T1 h 0,+1,0 

T1-0 g 0,-1,0 

T1-2 f 0,-1,0 

T1-20 e 0,-1,0 

T2 d +1,-1,+1 

T2-0 c -1,0,+1 

T2-1 b 0,-1,+1 

T2-01 a 0,0,+1 

 

From Table III we select four gates as the best gates: T0-12, 

T1, T2 and T2-01. This choice indicates minimum four optimal 

solutions. The first gate T2-01 will be chosen for further 

consideration. 

 

Step 2 for gate T2-01 

This step will be repeated three times. Sequentially we will 

choose the gates: T1, T2 and T0-12. In Fig. 10 is presented the 

s-maps for the rest function after the gate T2-01. 

 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

4 1 3 7  4 1 5 2  4 3 5 6 

5 2 6 0  3 7 6 0  1 7 2 0 
Fig. 10. Graphical representation of rest function <4,1,3,7,5,2,6,0> after gate 

T2-01. 

The gate T2-01 causes swap minterms 5 and 4 in column a. 

These minterms in the s-maps Y1 and Y0 are shifted. Now must 

be selected the next gate. The ranking of the gates for rest 

function (Fig. 10) is collected in Table IV. 

From Table IV we can select three best gates: T0-1, T1, T2. 

This result indicates three optimal cascades where the gate 

T2-01 is the first gate in the cascade. Temporarily, we will  

select the gate T2 and next consider the gates T0-1 and T1.  

 

 
 

TABLE IV 

RANKING OF ALL 12 TOFFOLI GATES 

Gate Column Punctuation Y2Y1Y0  

T0 m -1,-1,0 

T0-1 l +1,-1,+1 

T0-2 k -1,0,0 

T0-12 i +1,0,-1 

T1 h 0,+1,0 

T1-0 g 0,-1,0 

T1-2 f 0,-1,0 

T1-20 e 0,-1,0 

T2 d +1,-1,+1 

T2-0 c -1,0,+1 

T2-1 b 0,-1,-1 

T2-01 a 0,0,-1 

 

Step 3 for gates T2-10, T2 

In Fig. 11 there are presented s-maps of the rest function after 

the two gates: T2-01 and T2.  

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h      i      k      l     m 

4 1 3 0  4 1 5 2  4 3 5 6 

5 2 6 7  3 0 6 7  1 0 2 7 
Fig. 11. Graphical representation of rest function after gate T2-10 and T2. 

TABLE V 

 RANKING OF ALL 12 TOFFOLI GATES 

Gate Column Punctuation Y2Y1Y0 

T0 m 0,0,-1 

T0-1 l +1,0,+1 

T0-2 k 0,0,+1 

T0-12 i +1,0,-1 

T1 h 0,0,-1 

T1-0 g 0,-1,-1 

T1-2 f 0,0,-1 

T1-20 e 0,-1,-1 

T2 d -1,+1,-1 

T2-0 c -1,0,-1 

T2-1 b 0,+1,-1 

T2-01 a 0,0,-1 

 

The minterms 0 and 7 in column d are swapped and these 

minterms in the s-map Y1 and Y0 are shifted. The ranking of the 

gates for this function is collected in Table V. In Table V we can 

find the unique best gate T0-1 with +2 punctuation.  

 

Step 4 for gates T2-10, T2, T0-1 

Fig. 12 contain s-maps of the rest function after gates T2-10, 

T2 and T0-1. 

 

 

 



GRAPHICAL METHOD OF REVERSIBLE CIRCUITS SYNTHESIS 239 

 

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h      i      k      l     m 

4 1 3 0  4 1 2 5  4 3 2 6 

2 5 6 7  3 0 6 7  1 0 5 7 
Fig. 12. Graphical representation of rest function after gate T2-10, T2 and 

T0-1. 

Without the ranking it is easy to observe two best gates T2-01 

(column a) and T0-2 (column k) in the table. Temporarily the 

gate T2-01 will be selected. 

 

Step 5 for gates T2-10, T2, T0-1, T2-01 

Figure 13 contain s-maps of the rest function after gates 

T0-12, T2, T0-1 and T2-01. Without the ranking it is easy to 

observe the unique best gate T0-2 (column k) in Fig. 13. 

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h      i      k      l     m 

2 1 3 0  2 1 4 5  2 3 4 6 

4 5 6 7  3 0 6 7  1 0 5 7 
Fig. 13. Graphical representation of rest function after gate T2-10, T2, T0-1, 

T2-01. 

Step 6 for gates T2-10, T2, T0-1, T2-01, T0-2 

Figure 14 contain s-maps of the rest function after gates 

T2-01, T2, T0-1, T2-01 and T0-2.  

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h      i      k      l     m 

2 1 0 3  2 1 4 5  2 0 4 6 

4 5 6 7  0 3 6 7  1 3 5 7 
Fig. 14. Graphical representation of rest function after gate T2-10, T2, T0-1,  

T2-01, T0-2. 

Only the gate T1-20 is the best gate. It is easy to notice that 

the rest function after the gate T1-20 is identical to the function 

I. It causes a stop of this part of the algorithm. In this manner 

we obtain a cascade with six gates. It is the cascade with gates: 

T2-10, T2, T0-1, T2-01, T0-2, T1-20 

This cascade is presented in Fig. 15. 

 

 
Fig. 15. The one of cascades implemented given function. 

Step 5 for gates T2-10, T2, T0-1, T0-2 

In step 4 two best gates are chosen. Now the algorithm must 

come back for the second time to step 5. Must be choose the 

gate T0-2. It will be exhaust best gates from step 4. Must be 

determinate the rest function after gates T2-10, T2, T0-1, T0-2. 

Fig. 16 contains the s-maps of this rest function. In this case also 

without ranking it is easy to observe the unique best gate T2-01.  

 

 

Y2        Y1        Y0 

a     b     c       d          e      f       g      h      i      k      l     m 

4 1 0 3  4 1 2 5  4 0 2 6 

2 5 6 7  0 3 6 7  1 3 5 7 
Fig. 16. Graphical representation of rest function after gate T2-10, T2, T0-1, 

T0-2. 

Step 6 for gates T2-10, T2, T0-1, T0-2, T2-01 

In this step the best gate is the gate T1-20 and after this gate 

the rest function is I which indicates a new cascade: 

T2-01, T2, T0-1, T0-2, T2-01, T1-20 

Now the algorithm comes back to step 2 where there are three 

best gates T0-1, T1, T2. The algorithm recommends repetition 

of steps from step 3 for the gates T0-1 and T1. 

 

Step 3 for gates T2-10, T1 

The s-maps of the rest function after gates T2-10 and T1 are 

shown in Fig. 17. 
 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

4 1 3 7  4 1 5 0  4 3 5 6 

5 0 6 2  3 7 6 2  1 7 0 2 
Fig. 17. The maps of rest function after gate T2-01 and T1. 

The ranking punctuation for this function is collected in 

Table VI. 
TABLE VI 

RANKING OF ALL 12 TOFFOLI GATES 

Gate Column Punctuation Y2Y1Y0 

T0 m -1,0,0 

T0-1 l +1,0,+1 

T0-2 k -1,0,0 

T0-12 i +1,0,-1 

T1 h 0,-1, 0 

T1-0 g 0,-1, 0 

T1-2 f 0,-1,0 

T1-20 e 0,-1, 0 

T2 d +1,0,+1 

T2-0 c -1,0,+1 

T2-1 b 0,0,-1 

T2-01 a 0,0,-1 

 

From Table VI we can indicate two best gates: T0-1 and T2 with 

punctuation +2. First will be consider the gate T0-1 and after the 

gate T2. 
 

Step 4 for gates T2-10, T1, T0-1 

The s-maps of the rest function after gates T2-10, T1 and T0-1 

are shown on the Fig. 18. 
 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

4 1 3 7  4 1 0 5  4 3 0 6 

0 5 6 2  3 7 6 2  1 7 5 2 
Fig. 18. The s-maps of rest function after gate T2-10, T1, T0-1. 
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Without the ranking table we can see that the gate T2 is the 

unique best gate.  

 

Step 5 for gates T2-10, T1, T0-1, T2 

The s-maps of the rest function after gates T2-10, T1, T0-1 

and T2 are shown in Fig. 19. 

 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

4 1 3 2  4 1 0 5  4 3 0 6 

0 5 6 7  3 2 6 7  1 2 5 7 
Fig. 19. The s-maps of rest function after gate T2-10, T1, T0-1 and T2. 

Without the ranking we can see that the gate T0-2 and T2-01 

are the best gates.  

 

Step 6 for gates T2-10, T1, T0-1, T2, T0-1 

Step 6 for gates T2-10, T1, T0-1, T2, T2-01 

 

The s-maps in Fig. 19 indicate further sequence of the two 

gates T0-2 and T2-01. Therefore, there exist two optimal 

cascades: 

T2-01, T1, T0-1, T2, T0-2, T2-01 

T2-01, T1, T0-1, T2, T2-01, T0-2 

Subsequent two cascades are found and the algorithm comes 

back to step 3 where, except gate T0-1 was gate T2. Steps 4, 5 

and 6 give below result 

T2-01, T1, T2, T0-1, T0-2, T2-01 

T2-01, T1, T2, T0-1, T2-01, T0-2 

Now the algorithm comes back to step 2 where, except gate 

T2 and T1 the gate T0-1 are found. 

 

Step 3 for gate T2-01 and T0-1 

The s-maps of the rest function after gates T2-01 and T0-1 are 

shown on Fig. 20. 

 

Y2        Y1       Y0 

a     b     c       d          e      f       g      h       i      k      l     m 

4 1 3 7  4 1 2 5  4 3 2 6 

2 5 6 0  3 7 6 0  1 7 5 0 
Fig. 20. Graphical representation of rest function <4,1,3,7,2,5,6,0> after gate 

T2-01 and T0-1. 

The best gate for s-maps in Fig. 20 is the gate T2. Using further 

steps of the algorithm  two more cascades can be found: 

T2-01, T0-1, T2, T2-01, T0-2, T1-20 

T2-01, T0-1, T2, T0-2, T2-01, T1-20 

 

These eight solutions finish the repetition of any further steps 

of the algorithm after step 2. 

The last loop of the algorithm begins again in step 2 because 

in step 1 we find the gates T1, T2 and T0-12 except the gate 

T2-01. Repeating the steps from 2 to 6 can help to obtain more 

optimal solutions. Beginning from the gate T0-12 we obtain 

eight optimal cascades and beginning from the gate T1 the result 

will be the same. But beginning from the gate T2 we obtain six 

optimal cascades. This algorithm allows to find 30 optimal 

cascades, everyone with 6 gates.  

IV. CONCLUSIONS 

The main aim of this paper is a design of optimal reversible 

cascades which enables implementation of the given function. 

The presented algorithm for the synthesis of three variable 

reversible functions allows to design optimal reversible circuits 

and find optimal solutions by “manual” process. But for more 

variables it is possible to transform this algorithm into software 

algorithm. This algorithm is also scalable to a greater number of 

variables. Other component of this work is transformation this 

method into other gate sets, especially NCT set. In this case will 

be more difficult to find optimal solutions by executable on 

paper algorithm. 

REFERENCES 

[1] De Vos, “Reversible Computing. Fundamentals, Quantum Computing, 
and Applications”, Wiley-VCH, Berlin 2010. 

[2] R. Landauer, “Irreversibility and heat generation in the computing 
process”, IBM Journal of Research and Development,” vol. 5, 1961, pp. 
183-191. 

[3] O. Golubitsky and D. Maslov, “A study of optimal 4-bit reversible Toffoli 
circuits and their synthesis,” IEEE Transactions on Computers, vol. 61, 
no. 9, 2012,. pp. 1341-1353. 

[4] E. Forsberg, “Reversible Logic Based on Electron Waveguide Y-branch 
Switches”, Nanotechnology, March 2004, vol. 15, no. 4 

[5] R. Marx, A. F. Fahmy, John M. Myers, W. Bermel, and S. J. Glaser, 
“Approaching five-bit NMR quantum computing”, Phys. Rev. A 62, June 
2000 

[6] C. Monroe, J. Bollinger, “Atomic physics in ion traps”, Physics World, 
March 1997  

[7] R. Akter, N. Islam, S. Waheed, “Implementation of Reversible Logic Gate 
in Quantum Dot Cellular Automata”, International Journal of Computer 
Applications, Volume 109, No. 1, January 2015 

[8] H. Deutsch, G. K. Brennen, P. S. Jessen, “Quantum computing with 
neutral atoms in an optical lattice”, Special Issue on Physical 
Implementations of Quantum Computing –Fortschritte der Physik 48, 
2000 

[9] T. Toffoli, J. W. d. Bakker, J. v. Leeuwen, “Reversible computing: MIT 
LCS TM-151”, 1980. 

[10] Y. Zheng, C. Huang, “A novel Toffoli network synthesis algorithm for 
reversible logic,” IEEE ASP-DAC, Yokohama, January 2009. 

[11] I. M. Tsai S. Y. Kuo, “An algorithm for minimum space quantum boolean 
circuits construction”, J. Circuit Syst. Comp., vol. 15, pp. 719-738, 
October 2006. 

[12] M. Saeedi, M. Sedighi, M. S. Zamani, “A novel synthesis algorithm for 
reversible circuits”, IEEE/ACM ICCAD, California, USA, November 
2007. 

[13] Y. Yang, H. Chen, S. Kuo, G. Zeng, Y. Chou, “A Novel Efficient Optimal 
Reversible Circuit Synthesis Algorithm”, IEEE International Conference 
on Systems, Man and Cybernetics, Hong Kong, 2015. pp. 68-73. 

 


